An XOR-Based FErasure-Resilient Coding Scheme

Johannes Blomer: Malik Kalfane! Richard Karpt Marek Karpinski®
Michael Luby¥ David Zuckerman

Abstract

An (m,n, b, r)-erasure-resilient coding scheme consists of an encoding algorithm
and a decoding algorithm with the following properties. The encoding algorithm pro-
duces a set of n packets each containing b bits from a message of m packets containing
b bits. The decoding algorithm is able to recover the message from any set of r packets.
Frasure-resilient codes have been used to protect real-time traffic sent through packet
based networks against packet losses. Tn this paper we describe a erasure-resilient
coding scheme that is based on a version of Reed-Solomon codes and which has the
property that » = m. Both the encoding and decoding algorithms run in quadratic
time and have been customized to give the first real-time implementations of Priority
Encoding Transmission (PET) [2],[1] for medium quality video transmission on Sun
SPARCstation 20 workstations.

1 Introduction

Most existing and proposed networks are packet based, where a packet is a fixed length
indivisible unit of information that either arrives intact upon transmission or is completely
lost. This model accurately reflects properties of Internet and ATM-based networks, where
local error-correcting codes can be used (and often are used) on individual packets to
protect against possible errors as the packet traverses the network. However, the timely
arrival of individual packets sent long distances over a variety of heterogeneous networks
is a global property that seems to be harder to control on a local basis. Thus, it makes
sense to protect real-time traffic sent through such networks against losses by adding a
moderate level of redundancy using erasure-resilient codes.

Algorithms based on this approach have been developed for applications such as multi-
casting real-time high-volume video information over lossy packet based networks [2, 1, 4]

*Tnternational Computer Science Institute, Berkeley, California. Research supported in part by ESPRIT
BR Grant EC-US 030 and by Deutsche Forschungsgemeinschaft (DFG), Habilitationsstipendium Bl 314 /4-
1

tComputer Science Division, University of California at Berkeley and Tnternational computer Science
Institute, Berkeley, California

YComputer Science Division, University of Californai at Berkeley

iDepartment of Computer Science, University of Bonn and International Computer Science Institute,
berkeley, California

T nternational Computer Science Institute, berkeley, California and Computer Science Division, Univer-
sity of California at Berkeley. Research supported in part by National Science Foundation operating grants
CCR-9304722 and NCR-9416101, United States-Israel Binational Science Foundation grant No. 92-00226,
and ESPRIT BR Grant EC-US 030.

”T)epartment of Computer Science, University of Texas, Austin

and other high volume real-time applications [8]. The two most important properties of
erasure-resilient codes in these applications are the running times of the encoding and
decoding algorithms and the amount of encoding sufficient to recover the message. An
erasure-resilient code where any portion of the encoding equal to the length of the message
is sufficient to recover the message is called a mazimal distance separable (MDS) code in
the literature (see for example [6]). An ideal erasure-resilient code would be a linear time
MDS code, but so far no such code is known.

Theoretically the most efficient MDS codes can be constructed based on evaluating
and interpolating polynomials over specially chosen finite fields using Discrete Fourier
Transform. Up to logarithmic factors these codes achieve a linear running time. However,
they don’t perform well in practice and are not competitive in practice with simpler,
quadratic time methods except for extremely large messages.

In this paper we show how to customize a version of Reed-Solomon codes so that
it yields a (quadratic time) MDS code that runs in real-time for medium quality video
transmission on existing workstations [2, 1], i.e., at the rate of a few megabits per second.

The version of Reed-Solomon codes we use is based on Cauchy matrices over finite
fields (see for example [6] and [11]). Every square submatrices of a Cauchy matrix is
invertible. Therefore Cauchy matrices can be used to implement linear, systematic codes.
i.e., the encoding is a linear function of the message and the unencoded message is part
of the encoding. Since typically the encoding size is only a constant multiple (between
0.1 and 5) of the message size the last property helps implementing an efficient encoding
procedure for these codes.

On the decoding side we achieve running time that decreases with the amount of the
unencoded message received. Since often the encoding is only moderately larger than the
message itself, this is one of the reasons the decoding procedure runs in real time for bit
rates of up to a few megabits.

However, the main gain compared to the method based on the evaluation and inter-
polation of polynomials is achieved by using a well-known representation of elements in
finite fields of the form GF[2"] by (I x L)-matrices over GF[2] (see [9]). This allows us
to replace arithmetic operations on field elements by XOR’s of computer words and in
practice XOR’s of computer words are much more efficient than multiplications in finite
fields.

The paper is organized as follows. In Section 2 we introduce the basic terminology
used throughout the rest of the paper. In Section 3 we present of more detailed outline of
the XOR-code. Section 4 describes the matrix representation elements in finite fields. In
Section 5 we state and partially prove the main properties of Cauchy matrices. In Section
6 we combine Cauchy matrices with the matrix representation of finite field elements to
obtain the XOR-code. We also analyze the running times of the encoding and decoding al-
gorithms. Section 7 contains information on the actual implementation of these algorithms
and we present some timing information for these implementations. In Section 8 we prove
a lower bound on the packet size needed by MDS codes. We show that the XOR code
achieves a nearly optimal packet size. Although the packet size is almost of no concern if
Internet packets (typically 1000 bytes) are used, it is a more serious constraint for ATM
packets (48 bytes). The lower bound we prove applies only to the payload of packets. Tt
does not include the space needed for the unique identifier, we assume is included in every
packet.

Finally, we should mention that recently [3] constructed erasure-resilient codes that

are almost MDS and that have linear time encoding and decoding algorithms. In these
codes the number of packets needed to recover the message is (1 + €)m, where € is an
arbitrary positive constant. Tt yet needs to be determined whether these codes perform
well in practice.

It remains an interesting open question to design an MDS code with linear time en-
coding and decoding algorithms.

2 Terminology

For our applications we utilize the following definitions of erasure-resilient codes and MDS
codes.

Definition 2.1 An erasure-resilient code, specified by a quadruple (m,n,b,r), is a func-
tion F that maps messages M = (My, ..., M,,) of m packets each of size b onto encod-
ings E(M) = (Fy(M),..., E,(M)) of n packets each of size b, such that any r packets
Ei (M), ..., F; (M) of E(M) together with the indices i; uniquely determine the message
M. Here packets of size b are bit strings of length b. The code is said to be maximum
distance separable (MDS) iff r = m.

It is easy to see that a code is MDS if the encoding of two different messages differs in
at least m — m + 1 packets. Hence our definition coincides with the standard definition of
MDS codes (see for example [6]).

As opposed to error-correcting codes, where bits can be corrupted and the locations
of corrupted bits are not known in advance, in an erasure-resilient code the indices of
corrupted packets are known. The corrupted packets are treated as being lost. In appli-
cations of erasure-resilient codes like robust data transfer on packet-based networks [1],
information dispersal [8], or secret sharing [10], this is a realistic assumption.

An important subclass of error-correcting or erasure-resilient codes are linear codes.
For a linear erasure-resilient, code over the field GF[27] the b bits of a packet are considered
as describing b/, elements in the finite field GF[27]. A message is viewed as an element of
the vector space (GF[27])™" 7. A code is called linear, if the function F is linear. Hence
the code can be described by a (nb/I, x mb/T)-matrix over GF[2"]. This matrix is called
the generator matriz of the code.

An erasure-resilient code is systematic, if the first m packets of the encoding of a
message M are the packets of the message M itself. The first m packets of the encoding
will be called information packets. The remaining n — m encoding packets are called
redundant packets.

A linear code over GF[2] is a systematic code if the first mb/I, rows of its generator
matrix form the identity matrix. For two matrices A, B, where A is a (k x m)-matrix and
B is a (I x m)-matrix denote by (A|B) the (K 4 [) x m)-matrix whose first & rows are
the rows of A and the last [rows are the rows of B. Let I, denote the (m x m)-identity
matrix over an arbitrary field. A proof of the following theorem can be found for example

in [6].

Theorem 2.2 Tet C' be a an (n — m x m)-matriz over GF[2"]. The matriz (I,,]C) is the
generator matriz of a systematic MDS code with packet size I if and only if every square

submatriz of C' is invertible.

The main goal of this paper is to describe a systematic linear MDS code over GF[2] such
that the time needed to decode a message M from m given encoding packets decreases
with the number of information packets among these encoding packets. We first give an
outline of the construction.

3 Outline of the XOR-Code

The goal of this paper is to construct a systematic, linear erasure-resilient MDS code over
GF[2]. As it turns out there is a general method to turn any systematic, linear code over a
finite field GF[27] with packet size b into a systematic, linear code over GF[2] with packet
size b.

This method is based on the fact that for each element of a finite field GF[27] there
is a representation as a column vector of length I over GF[2] and a representation as
an (I x L)-matrix over GF[2] such that the matrix-vector multiplication of the matrix
representation of an element o« with the vector representation of an element 3 yields the
vector representation of the product af3. Moreover, the addition of the vector or matrix
representations of two elements o« and 3 results in the vector or matrix representation of
the sum o + (.

This suggests the following method to transform a linear code over GF[27] into a linear
code over GF[2]. Replace each element in the generator matrix by its matrix representation
to obtain the new generator matrix. Replace each field element in a message by its vector
representation. It is not hard to see using the above mentioned facts that the encoding of
a message using the new code is exactly the encoding using the original code with each
field element in the encoding replaced by its vector representation.

The systematic, linear codes to which we apply this general method are based on
Cauchy matrices. As required by Theorem 2.2, every square submatrix of a Cauchy
matrix is nonsingular. Cauchy matrices are easier to invert than general matrices. This is
important to achieve efficient decoding algorithms. MDS codes based on Cauchy matrices
are a variant of Reed-Solomon codes (see for example [11]). We will describe Cauchy
matrices in detail in Section 5.

In practice it turns out to be more efficient to define packets as containing b words
consisting of w bits each than to define them in terms of single bits. In our implementations
we chose w to be 32, the word size on a Sun SPARCstation. For a code over GF[2], a
message of m packets is then considered to be an (mb x 32)-matrix M over GF[2]. Using
the same generator matrix as in the single bit case, the encoding is now given by the
matrix product of the generator matrix with M.

Using this slight variation of the XOR-code, encoding a message of size 32m - I bits
requires m - I coordinate-wise XOR’s of 32-bit words. In the original scheme encoding a
message of the same length requires 32m - I, XOR’s of single bits. This yields a significant
improvement, since the XOR of a computer word of size 32 turns out as fast as the XOR
of single bits.

In practice, packets can often be very large. For example, IP packets contain up to
2000 bytes. In this case, it is more efficient to further split the packets into segments of
size 32 - I, rather than increasing the parameter I,. We then treat the i*" segments in each
message packet as the packets of a single message with the parameters as described above.
To this partial message we apply the XOR-code and put its encoding into the i*" segments

of the encoding packets. In other words, if the number of segments in each packet is N
we apply the code in parallel to N messages.

More formally, a message M consisting of m packets of size 32 - L. - N is considered as
a (mL x 32N)-matrix over GF[2]. The encoding is obtained by multiplying this matrix
by the generator matrix defining the original XOR-code. The j packet of the encoding
is given by the j block of I consecutive rows of the resulting matrix.

In this version the XOR-code has been implemented. A more detailed description of
the implementation and some experimental results will be described in Section 7. In the
next sections we will describe and prove the correctness of the XOR-code, for the case
where the number of segments in a packet is 1.

4 The matrix representation of finite fields

Let p(X) be an irreducible polynomial of degree I, in GF[2][X]. The field GF[2"] is iso-
morphic to GF[2][X]/(p(X)), the field of polynomials in GF[2][X] taken modulo p(X).
Flements in GF[2"] can be identified with polynomials f(X) = 21;01 X f € GF[2],
of degree at most I — 1. The column vector (fo,..., fr_1)" in GF[2]" will be called the
coefficient vector of the element f(X) = 21;01 fi X0

Construction 4.1 (Matrix representation of finite fields) For any f € GF[2"] let

7(f) be the matriz whose i'" column is the coefficient vector of X'~ f mod p(X).

Lemma 4.2 7 is a field isomorphism from GF[2"] to 7(GF[2"]). In particular,
(i) 7(0) is the all-zero-matrix.
(ii) T(1) is the identity matriz.

(iii) T is injective.

(iv) For any two field clements f, g, 7(f + g) = 7(f) + (g).

(v) For any two field elements f, g, 7(fg) = 7(f)7(g).

Proof: It suffices to prove (i) — (v). (i), (47) and (i7i) are obvious. (iv) follows from
X'(f+g) = X'+ X'g mod p(X).

: , e
To prove (v) denote by f() the i'" column of 7(f). Also let (g(()]), .. .,g(,'fl]) be the ji*

column of 7(g), hence
-1

Z gy)X’: = X7"'g mod p(X).

=0
The j* column of 7(f)7(g) is 21;01 gy)ﬁ;. This is the coefficient, vector of

-1 -1

2=0 =0

Z{;}] gf'?‘)X’:*1 = X7'7'g mod p(X), hence the j'* column of 7(f)7(g) is the coefficient
vector of X7~ fg, which is the 77" column of 7(fg).

Observe that the definition of 7 is constructive. 7(f) can easily be computed using
polynomial multiplication and division with remainder. However, in the implementation
of the XOR-code we will store all coefficient vectors of field elements in a table and use
table look-ups to compute 7. Details of the table will be given in a later section.

5 The main properties Cauchy matrices

In this section we describe the main properties of Cauchy matrices. Cauchy matrices have
also been used in [8],[5]. They can be used to define one variant of Reed-Solomon codes

[11]).

Definition 5.1 let F' be a field and let {x1, ..., 20}, {y1,.-.,yn} be two sets of elements
in F such that

(i) Vie{l,...om}Vjie{l,...;on}: a,+y; #0.

The matriz

B 1 1 1 7
T1-1|-l/1 T1-1|-l/2 e T1Tl/n
T2+ To+Y2 T me+yn

1 1 1
T/mf1 + T/mf1 +y2 T TmT1 +yn,
L #m 41 Tm+y2 Y mmtyn

is called a Cauchy matriz over F.

Theorem 5.2 let (' be a Cauchy matriz. Fvery square sub-matriz of C' is nonsingular.

If

B 1 1 1 7
14+ 71 4Y2 T miHyn
1 1 1
T2+ To+Y2 T motyn
= .
1 1 1
Tn—1+Y1 Tn—1+ty2 77 Tn_1tyn
1 1 1
L #n+uy Tnty2 T Tntyn i
e Moyl) Ty)
<\ T — T <i\Yi — Yj
det(C) = —= e :

17 = (i + ;)

A proof of this theorem can be found in [7]. Note that the first part of the theorem follows
from the second part, since any sub-matrix of a Cauchy matrix is itself a Cauchy matrix.
Theorem 2.2 and Theorem 5.2 imply that if C'is an (n — m x m)-Cauchy matrix over
GF[27] then (I,,|C) is the generator matrix of a systematic code with packet size I.
Over the finite field GF[27] a (271 x 2F~1)-Cauchy matrix can be constructed as
follows. As a set GF[2”] can be identified with the set of all binary strings of length I.. The

addition of two elements is the component-wise XOR of the corresponding bit-strings. For
each i =1,...,2"7 7 let 2; be the element whose binary expansion is the binary expansion
of the integer 2 — 1 and let g; be the field element whose binary expansion corresponds to
the binary expansion of 2=1 4 — 1. Properties (i) and (ii) of Definition 5.1 are easily
verified.

The following theorem can also be found in Rabin’s paper [8].

Theorem 5.3 The inverse of an (n x n)-Cauchy matriz over a field F' can be computed
using O(n?*) arithmetic operations in F.

Proof: Assume the Cauchy matrix C'is asin Theorem 5.2. Let C~' = (d;;),i,j=1,...,n.
The entry d;; is given by
det (Ci)

d:— (—1)17
i = (1) det(C) ’

where (;; is obtained from C' by deleting the 7" row and the i*" column. TFor each

k=1,...,n,let
iy = H(%*Tk) H(ﬂ?k*ﬂf]‘),

i<k k<j
b= [T (i — ve) [T (vj — ww).
i<k k<j
€L — H(Tk + yi)v
=1
and .
S =TT +).
=1
By Theorem 5.2
T apb
dot(C) = Mi=1 2be
[Ti=1 exfx
and det(C
St (Ces f;
det((jﬂ) = 79 ()P]f .
' aibi(z; + yi)
Hence

e; fi
aib;(z; + y;)

The 4n quantities ay, bg, ex, fr, k= 1,...,n, can be computed using O(n?) arithmetic op-
erations. Given these quantities, each d;; can be computed using a constant number of

dij = (—1)"*

field operations. This proves the theorem.

This theorem shows that inverting Cauchy matrices is significantly simpler than inverting

an arbitrary matrix. However, multiplications and divisions in a finite field GF[27] using
the arithmetic of polynomials over GF[2] is rather inefficient. Tn the implementation of
the XOR-code we avoid polynomial arithmetic by transforming multiplications and divi-
sions into additions and subtractions of exponents by using a table of discrete logarithms.
Details of the table of logarithms and the matrix inversion algorithm will be given in a
later section.

6 An XOR-based MDS code

In this section we construct the XOR-code and analyze its encoding and decoding time.
A description of some of the implementation details will be given in a later section.

We will describe the code for messages that consist of m packets each containing of I
words of size w. The parameter w can be chosen arbitrarily.

Construction 6.1 (XOR-Code) Assume L > max{log(m),log(n — m)}. Consider a
message M = (My,..., M) of m packets containing I. words of size w as an element
of (GF[2])™" Let C' be an (n — m x m)-Cauchy-matriz over the finite field GF[2"].
Let (¢;j),i=1,...,m, 7 =1,...,m, be the matriz (I,

(). The generator matriz F of the
XOR-code is given by

E={(r(ci;),i=1,...,m,j=1,...,m.

The i packet F; of the encoding of M consists of the rows v 41, ..., r(j41yr, of the matriz
product F - M.

Theorem 6.2 The XOR-code is an MDS code.

Proof: Assume that m packets of the encoding F - M = (Fy,..., FE,)" are given. Tet
I CH{1,...,m} be the set of indices of the information packets among these m packets,
T={1,....mN\I.J C{m+1,...,n} is the set of indices of the redundant packets that
are given. Hence |.J| = |T| and |T| 4 |.]| = m.

We need to show that the matrix D = (7(cj;)),j € J,i € T is invertible. By assumption
the matrix (¢;;),7 € J,1 € T is invertible. Tt follows from Lemma 4.2 that the inverse of D
is given by replacing each entry of the inverse of (¢;;) by its matrix representation.

Theorem 6.3 The encoding for the XOR-code can be done using O(m(n—m)L?)) XOR s
of words of size w.

The decoding is also not very difficult.

Theorem 6.4 The decoding for the XOR-code can be done using O(mkL?) XOR’s of
words of size w and O(k*) arithmetic operations in the field GF[2"], assuming that m — k
information packets and k redundant packets are given.

Proof: l.et 1,.J be as in the proof of the previous theorem.
The decoding proceeds in three steps.

Step 1 Compute F:]j = I+ e m(e;i)M; for all j €).
Step 2 Compute D', D = (r(cj;)),j € Ji € 1.

Step 3 Compute D™'F, where F is the matrix whose GL+0) " row (i=0,....0—1)is
the i*" row of Fs.

Remark that the F,’s, F;’s and M;’s are (I x w)-matrices over GF[2] and the 7(¢;;)’s are
(I. x L)-matrices over GF[2]. Hence additions and multiplications in the steps above have
to interpreted as matrix additions and multiplications.

Assuming |[T| =k and |.J| = |I| = k, Step (i) requires O(k(m — k)L2) XOR’s of words
of size w. Step (iii) requires O(k*I?) XOR’s. Hence, together these two steps require
O(mk1?) XOR’s of words of size w.

D~ can be computed by first computing the inverse of (c;;),j € .J,1 € T, over GF[2",
and then replacing each element in the resulting matrix by its image under 7. Since I
is a (k x k)-matrix, by Theorem 5.3 this requires O(k?) arithmetic operations in GF[2'7].

In Step 2, instead of computing D~' using the isomorphism 7 and the procedure for
inverting Cauchy-matrices we could also use Gaussian elimination over GF[2]. This would
require O((m — k)*I?) bit operations. Tt turns out that in practice the method described
in the proof of Theorem 6.4 is faster.

7 Implementation details and timing information

The XOR-code was implemented in C, and runs on most Unix platforms, including HP
workstations running HP/UX and Sun workstations running SunOS and Solaris.
The driver used to test the program was structured as follows:

e (GGenerate a random message.

e Initialize the field structures needed by the erasure-resilient code.

e FEncode the data into packets using the XOR-based erasure-resilient code.
e Destroy some of these packets.

e Decode the message from the remaining packets.

e Compare the retrieved message to the original to ensure that the decoding was
correct.

The main computation time is spent in the encoding and decoding routines. Tess than
1% of the time is spent in the other parts of the program. The field initialization consists
of building two tables that allow us to go back and forth between the following two possible
representations of an element of the finite field GF[27]:

e The exponent to which one needs to raise a given generator of multiplicative group
of the finite field to obtain the particular element. This representation is very useful
to multiply two elements, as one just needs to add their exponents (modulo 27— 1).

e Asan L-dimensional vector over GF[2]. This representation is useful to add elements,
as well as to generate the matrix representation of the element.

7.1 Encoding

The encoding routine consists of three steps:

e Set the identifier in each packet being sent, so that, on the decoding side, the packets
can be identified.

e Copy the appropriate message parts into the information packets.
e Compute the values of the redundant packets.

More than 99% of the time is spent, in computing the contents of the redundant packets, as
the first two steps are just linear in the number of packets sent. To compute the redundant
packets, we create a Cauchy matrix over GF[27], and replace the elements of this matrix
by the matrix representation described in Section 4. This gives us the generator matrix

of the XOR-code.

The parameters for computing the redundant packets are:
Mpackets This is the number of message packets sent.
Rpackets This is the number of redundant packets sent.

Lfield This will also be referred to as 1. The field we use is GF[2"].

Nsegs This is the number of segments in our packet. Since we use a word size of 32 bits
the size of our packets is: 32 - I - Nsegs bits.

The redundant packets are computed as follows:

/* The variables that are defined prior to computing the redundant

packets are:

MultField: The size of the multiplicative group of the finite field.

ExpToFieldElt: A table that goes from the exponent of an element, in
terms of a previously chosen generator of the
multiplicative group, to its representation as a
vector over GF[2].

FieldEl1tToExp: The table that goes from the vector representation of
an element to its exponent of the generator.

Bit: An array of integers that is used to select individual bits:

(A & Bit[i]) is equal to 1 if the i-th bit of A is 1, and O

otherwise.
*/
For row = 0 to Rpackets-1 /* The number of rows in our Cauchy matrix
is equal to the number of redundant
packets. */
For col = 0 to Mpackets-1 /* The number of columns in our Cauchy

matrix is equal to the number of
information packets. */

10

/* exponent is the multiplicative exponent of the element of the
Cauchy matrix we are currently looking at. XOR computes the
coordinatewiswise exclusive—or of the bit representation of two
integers. ¥ is the remainder operator. */

exponent =
(MultField - FieldEltToExp[row XOR col XOR MultField]) % MultField

For row_bit = 0 to Lfield-1 /* Each element of our finite field
is now represented as a Lfield by
Lfield 0-1 matrix. */
For col_bit = 0 to Lfield-1

/* Check if the current bit of the matrix element is 1. */
If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])

For segment = 0 to Nsegs-1

/* (a”=y) is short for (a = a XOR b). */
redundant_packets[row] [segment+row_bit*Nsegs] ~=
message[segment+col_bit*Nsegs+col*Lfield*Nsegs]

The running time for this algorithm is directly proportional to Mpackets, Rpackets,
Nsegs, and 2. However, we can significantly reduce the running time by computing and
storing before the execution of a loop all the values used in that loop that are invariant
during the execution of the loop. The further up in the above loop structure that we can
compute a value, the greater the performance gain we achieve by eliminating redundant
computations. The above algorithm is therefore actually implemented as:

For row = 0 to Rpackets-1
packet = redundant_packets[row]

For col = 0 to Mpackets-1

exponent =
(MultField - FieldEltToExp[row XOR col XOR MultField]) % MultField

For row_bit = 0 to Lfield-1
local_packet = packet + row_bit*Nsegs

For col_bit = 0 to Lfield-1

If (ExpToFiedlElt[exponent+row_bit] & Bit[col_bit])
local_message = message + col_bit*Nsegs + col*Lfield*Nsegs

For segment = 0 to Nsegs-1
local_packet[segment] ~= local_messagel[segment]

11

For typical values of the parameters, such as Mpackets=100, Rpackets=50, Nsegs=25,
and L=10, we get a speedup of about 4 times (700 msec vs 3.00 seconds).

The running time of this algorithm is no longer directly proportional to Mpackets,
Rpackets, Nsegs, and the 2, because the operations that are performed early are com-
puted only once for each execution of the inner loops, so that their cost is amortized over
each iteration of the inner loops. In particular, for the inner most loop, we find that the
cost of the first iteration is much higher than the the cost of following iterations. These
iterations reuse many of the values that are computed for the first one. We therefore
expect the running time to be an affine function of the number of segments, rather than
linear as in the original algorithm.

The savings we get for the two loops depending on Ifield are much more modest, since
the operations moved outside the loops are fairly simple. We only get an improvement
of about 10% from this, so the running time is still essentially proportional to 2. From
the data we collected for the actual running time of the algorithm, we come up with the
following formula for the running time:

T (Mpackets, Rpackets, I, Nsegs) = 4.5x 10~ "msec x Mpackets x Rpackets x .2 x (Nsegs+6).

Using the fact that the message size is given by Mpackets x I x Nsegs, that the
message to packet ratio is given by Mpackets, and that the redundancy is given by
Rpackets/Mpackets, we can rewrite the equation above in terms of the parameters Ms-
gSize, which is the message size, Ratio, which is the message to packet ratio, and Red,
which is the redundancy (expressed as a fraction). Also note that I will usually be equal
to log(Ratio) + 1. The above equation now becomes:

T (MsgSize, Ratio, Red, I, a) = 4.5 x 10 "msec x MsgSize x Ratio x Red x I, x (1 + «)

where « is a correction factor due to the fact that T is affine in Nsegs: o = 6/Nsegs.
Figure 1 below gives some timing information for the encoding procedure. The number
of segments varies between 1 and 100. Mpackets was chosen to be 100, Rpackets is 50
and [field is 10. Thus, the message size varies between 32Kbits and 3.2Mbits, and the
redundancy is 50%. The information was collected on a Sun SPARCstation 20, with a
SuperSPARC Model 61 SPARCmodule CPU’s running at 61 MHz, and 64MB of main

memory.

12

7.2

Encoding Time vs Number of Segments
msec x 103

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Segments
0.00 20.00 40.00 60.00 80.00 100.00

Figure 1

Decoding

The decoding routine consists of the following steps:

Check if enough packets were received to recover the message. If not, then return.

Collect all the information packets that were received, and then pick enough redun-
dant packets to decode the message.

Copy the information from the information packets into the appropriate parts of the
outgoing message.

Compute the square submatrix M of the original Cauchy matrix over GF[2"], whose
row indices are given by the indices of the redundant packets used and whose column
indices are given by the indices of the missing information packets.

Compute the inverse of M and replace each entry in the matrix by its matrix repre-
sentation. Call this matrix D.

Update the contents of each redundant packet as described in Section 6.
Multiply the updated redundant packets by /D to obtain the missing information
packets.

13

For typical input parameters, over 99% of the time is spent in the last three steps. The
parameters for the decoding time are:

Mpackets, Lfield, Nsegs These are exactly the same as for the encoding.

Nextra This is the number of extra packets needed to decode the message, which is equal
to the number of message packets that were not received. Nextra can range between
0 and Rpackets (the total number of redundant packets sent on the encoding side).

The matrix inversion algorithm is implemented as follows:

/* The variables FieldE1tToExp, MultField and MultField are as described
in the encoding algorithm.

The following variables are computed in the decoding routine

before the matrix inversion step is called:

RowInd: An array that keeps track of the extra packets received:
RowInd[i] is the identifier of the i-th extra packet that
was received.

ColInd: An array that keeps track of the message packets received:
ColInd[i] is the identifier of the i-th message packet
that was received.

M: The submatrix of the original Cauchy matrix.

The inverted matrix is stored in variable InvMat. The algorithm we
use to invert the Cauchy matrix M is explained in Section 4.

*/
For row = 0 to Nextra-1
For col = 0 to Nextra-1

/* '= is the Not-Equal operator. */
If (col !'= row)

/* (a+=b) is short for (a = a+b) */
C[row] += FieldEltToExp[RowInd[row] XOR RowInd[col]]
D[col] += FieldEltToExp[ColInd[row] XOR ColInd[col]]
Elrow] += FieldEltToExp[RowInd[row] XOR ColInd[col] XOR MultField]
Flcol] += FieldEltToExp[RowInd[row] XOR ColInd[col] XOR MultField]
For row = 0 to Nextra-1

For col = 0 to Nextra-1

InvMat[row] [col] = E[col] + F[row] - C[col] - D[row]
- FieldEltToExp[RowInd[col] XOR ColInd[row] XOR MultField]

14

If (InvMat[row] [col] >= 0)
InvMat [row] [col] InvMat [row] [col] % MultField

Else
InvMat [row] [col]
(MultField - ((-InvMat[row][col]) % MultField)) % MultField

This algorithm is quadratic in Nextra, and the formula for its running time is:
T (Nextra) = 7.5 x 10 *msec x (Nextra)?

For typical input parameters, this time is negligible compared to the time spent in the
steps that update the redundant packets and that eventually retrieve the missing infor-
mation packets. For instance, if we use values such as Nsegs=25, L.=10, Mpackets=100,
Rpackets=50, and Nextra=35, the time for the matrix inversion is about 0.2% of the time
spent in the overall decoding algorithm (1 msec vs. 500 msec).

The algorithm for the second last step is:

/* Variables MultField, FieldEltToExp, RowInd, MultField, Bit, and
ExpToFieldElt are as previously defined.

M is a matrix containing the values from the redundant packets
that are being used to decode the message.

RecMsg is the array where the message is to be stored. The

information contained in the message packets that were received
has already been copied to this array.

*/
For row = 0 to Nextra-1
For col = 0 to Mpackets-1
/* If the message packet was received, then process it. */
If (RecIndex[col] == 1)
exponent =
(MultField - FieldEltToExp[RowInd[row] XOR col XOR MultField])
% MultField
For row_bit = 0 to Lfield-1
For col_bit = 0 to Lfield-1

If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])

For segment = 0 to Nsegs-1

15

M[row_bit + row*Lfield] [segment] "=
RecMsg[segment + col_bitx*Nsegs + col*Lfield*Nsegs]

The algorithm for the last step is:

/* InvMat is the inverted matrix computed during the matrix inversion
step.

ExpToFieldElt, Bit, RecMsg, ColInd, and M are as described above.
*/

For row = 0 to Nextra-1

For col = 0 to Nextra-1
exponent = InvMat[row] [col]

For row_bit = 0 to Lfield-1
For col_bit = 0 to Lfield-1
If (ExpToFieldElt[exponent+row_bit] & Bit[col_bit])
For segment = 0 to Nsegs-1

RecMsg[segment + row_bit*Nsegs + ColInd[row]*Lfield*Nsegs]
"= M[col_bit + colx*Lfield][segment]

Again, these two algorithms were modified by introducing local variables that store when-
ever possible values that can be computed before the execution of a loop. This results in
a similar performance gain to the one we obtained for the encoding. The formula for the
total running time for the resulting two algorithms combined is almost exactly the same
as the corresponding formula for the encoding algorithm, with Nextra replacing Rpackets.
Nextra is bounded above by Rpackets, and in general will be less than Rpackets. For in-
stance, if we send 100 message packets and 50 redundant packets, and we lose 50 packets,
we expect to use 33 redundant packets for decoding, which means that the total decoding
time will be 2/3 of the encoding time.
The formula for the running time of the last two steps is:

T (Mpackets, Nextra, I, Nsegs) = 4.5 x 10~ "msec X Mpackets x Nextra x L% x (Nsegs + 6)

As we did for the encoding, we can rewrite the above equation using the fact that the
message size is given by Mpackets X I X Nsegs. Using the parameter MsgSize for the
message size, we get:

T (MsgSize, Nextra, I, a) = 4.5 x 10" "msec x MsgSize x Nextra x L x (1 + «)

where « is a correction factor due to the fact that T is affine in Nsegs: o = 6/Nsegs.
Figure 2 below gives some timing information for the decoding procedure. The number
redundant packets used in the decoding procedure varies between 1 and 50. Mpackets was

16

chosen to be 100, Nsegs is 25 and I.field is 10. Thus, the message is 800Kbits and the
redundancy used varies between 1% and 50%. Again the information was collected on a
Sun SPARCstation 20, with a SuperSPARC Model 61 SPARCmodule CPU’s running at
61 MHz, and 64MB of main memory.

Decoding Time vs Redundant Packets needed

msec
750.00
700.00

650.00
600.00
550.00 -
500.00 .

450.00 =
400.00 .

350.00 -
300.00

250.00 -

200.00 =

150.00

100.00 =

50.00 =

0.00 Packets

0.00 10.00 20.00 30.00 40.00 50.00

Figure 2

8 A lower bound for the packet size of MDS codes

In this section a lower bound for the packet size of MDS codes is shown. The bound is
significantly better than the bound shown in [1]. The bound almost matches the least
possible packet size of the Cauchy-code and the XOR-code. For slightly better bounds for
the case of special linear MDS codes see [6].

Theorem 8.1 For any MDS code F that encodes a message consisting of m packets into
an encoding F (M) consisting of n. > m + 2 packets the packet size b has to satisfy the
inequality

2" +1 > max{m,n — m}.

Proof: In the first part it will be shown that if there is an MDS code that encodes messages
of m packets of size b into encodings of n packets of size b than there is also a systematic
code with the same parameters. Hence it suffices to prove the lower bound for systematic
codes. This is done in the second part of the proof.

Without loss of generality we view a packet as describing some element of § =

{0,...,2" —1}.

17

l.et K/ be an MDS code that maps messages of m packets onto encodings of n packets.
The set. of messages is S™ and the set of encodings is a subset T of S™ of size 2. Since F
is an MDS code, any two elements in T agree in at most m — 1 coordinates. This implies
that

(i) Any other bijection of S™ onto T is also an MDS code.

(ii) The projection of the elements in T onto their first m coordinates is a bijection
between T and S.

Combining (i) and (ii) shows that the bijection that maps an element M in S™ onto the
element in T whose projection onto its first m coordinates is M, is an MDS code. This
finishes the first part of the proof.

To prove the lower bound for any systematic code, let I be a systematic code that
maps a message (M, ..., M,,) onto F(M) = (My,..., My, Ex(M),..., E,_n(M)), where
each F; is some function mapping messages onto single packets.

First it is shown that the packet size of this code has to satisfy the inequality

2P 41> m.

For a pair (x,4),2 € S,x # 0,5 € {1,...,m}, let M(x,4) be the message whose i’* packet
is 2 and whose remaining packets are 0. For any two distinct pairs (2,14), (y,7)

(Fa (M (2, 7)), Ba(M (2,0))) 7 (FA (M (y, 7)), E2(M(y, 7)) (1)

Otherwise the encodings of two different messages M (x, i) and M(y, j) agree in at least
m packets and F is not an MDS code.

Since there are m (2" — 1) pairs (z,i),7 € S, # 0,5 € {1,...,m}, and each F; can
take on only 2 different values, (1) implies

22> m2" —1) or 241> m. (2)
Next it is shown that the packet size of F also has to satisfy
2P +1>n—m,

For any pair (z,y) € S? let M(z,y) be the message (7,y,0,0,...,0). Any two of these
messages must be distinguishable from the last m — 2 information packets and any two
redundant packets. This implies that for (z,y) # (2/,¢y") and 4,5 € {1,...,n—m}, i #j

(Fi(M (z,y), E{(M (2,9))) # (F:(M (2, y), B (M (2, y)))- (3)

For afixed i € {1,...,n—m} and for any k € S| let n; be the number of messages M (z, y)
such that F;(M (y)) = k. The number of pairs of messages (M (x,y), M (2',y’)) such that

Fi(M(x,y)) = ((2',y")) is)
> (%)

. b
This sum is minimized if ny = 2° for all &, in which case its value is 2° (22). Hence for each

i€ {l,....,n—m} there are at least 2%() pairs of messages (M (x,y), M(2’,y’)) such
that E(/\/[(T,y)) = F;(M(2',y')).

18

Assume n —m > 2P + 1. This implies

(22%) < (n— m)Qb (2;) .

b
Since there are only (2;) different pairs of messages this implies that there is a pair of
messages (M (z,y), M(2,y")) such that for two different indices 7,7 € {1,...,n — m}

Ei(M(z,y)) = Fi(M(2',y)) and F;(M(,y)) = F;(M (2", y/)).

This violates (3). Hence 2° 41 > n — m, which finishes the proof.

For n = m + 1 a packet size of 1 suffices. The encoding contains the bits of the message
and the XOR of all bits in the message.

References

[1] A. Albanese, J. Blémer, J. Edmonds, M. Luby, M. Sudan, Priority Encoding Trans-
mission, in Proc. 35" Symposium on Foundations of Computer Science (FOCS), 1994.
pp- 604 613.

[2] A. Albanese, J. Blomer, J. Edmonds, M. Luby, Priority Encoding Transmission, Tech-
nical Report TR-94-039, International Computer Science Institute, Berkeley, 1994.

[3] N. Alon J. Edmonds, M. TLuby, Linear Time Frasure Codes with Nearly Optimal Re-
covery, in Proc. 36"" Symposium on Foundations of Computer Science (FOCS), 1995.

[4] E. Biersack, “Performance evaluation of forward error correction in ATM networks”,
Proceedings of SIGCOMM 92, Baltimore, 1992.

[5] D. Grigoriev, M. Karpinski, M. Singer, Fast Parallel Alogorithms for Multivariate
Polynomial over Finite Fields, STAM Journal on Computing, Vol. 19, 1990, pp. 1059-
1063.

[6] F. J. MacWilliams, N. J. A. Sloane, The Theory of Frror-Correcting Codes, North-
Holland, New York, 1977.

[7] T.. Mirsky, An Introduction to Linear Algebra, Dover, New York, 1982.

[8] M. O. Rabin, Ffficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance, J. ACM, Vol. 36, No. 2, April 1989, pp. 335 348.

[9] S. Roman, Coding and Information Theory, Springer-Verlag, New York, 1992.

[10] A. Shamir, How to Share a Secret, C. ACM, Vol. 22, No. 11, November 1979, pp. 612-
613.

[11] S. B. Wicker, V. K. Bhargava, Reed-Solomon Codes and their Applications, TEEE,
Press, New York, 1994.

19

