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Extractor Codes
Amnon Ta-Shma, David Zuckerman

Abstract—We study error correcting codes for highly noisy
channels. For example, every received signal in the channel
may originate from some half of the symbols in the alpha-
bet. Our main conceptual contribution is an equivalence
between error correcting codes for such channels and extrac-
tors. Our main technical contribution is a new explicit error
correcting code based on Trevisan’s extractor that can han-
dle such channels, and even noisier ones. Our new code has
polynomial-time encoding and polynomial-time soft-decision
decoding. We note that Reed-Solomon codes cannot handle
such channels, and our study exposes some limitations on
list decoding Reed-Solomon codes.

Another advantage of our equivalence is that when the
Johnson bound is restated in terms of extractors, it becomes
the well-known Leftover Hash Lemma. This yields a new
proof of the Johnson bound which applies to large alphabets
and soft decoding.

Our explicit codes are useful in several applications. First,
they yield algorithms to extract many hardcore bits using
few auxiliary random bits. Second, they are the key tool in a
recent scheme to compactly store a set of elements in a way
that membership in the set can be determined by looking at
only one bit of the representation. Finally, they are the basis
for the recent construction of high-noise, almost optimal rate
list-decodable codes over large alphabets [1].

Keywords— Extractors, extractor codes, hardcore bits,
Johnson bound, list decoding, Reed-Solomon codes, soft-
decision decoding.

I. Introduction

Consider a channel over a large alphabet Σ such that
upon sending (σ1, . . . , σT) ∈ ΣT, the receiver is only able
to determine sets Si ⊆ Σ, |Si| = |Σ|

2 , such that σi ∈ Si.
Can we find codes for which the number of codewords
(v1, . . . , vT) such that for all i, vi ∈ Si, is small? What
if we require vi ∈ Si for only 51% of i?

This scenario has been raised before in the context of list
decoding. If we allow more than half the distance d errors,
then guaranteed unambiguous decoding is impossible. List
decoding tries to rectify this situation. We give up on guar-
anteed unambiguous decoding and instead we require that
the number of codewords with modest agreement with the
received word is small (and in the algorithmic version we
output all these codewords). Thus, an adversary choosing
d
2 errors may force ambiguous decoding, but will never be
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able to make this ambiguity large. A useful view of this is
that the number of codewords in any large ball is small.

Although list decoding was defined independently by
Elias [2] and Wozencraft [3] in the 1950’s, no non-trivial
list decoding algorithm was known until the late 1980’s.
Since then, there have been several [4], [5], [6], [7]. For an
excellent survey paper and for the history of the list de-
coding problem, we refer the reader to [8], and Section 3.3
therein in particular.

As it turns out, the list decoding algorithms above deal
also with the case where for each i the receiver has a small
set Si of possible explanations of the i’th symbol. In fact,
Guruswami and Indyk [9] subsequently called the natu-
ral generalization of this property “list-recoverable,” and
showed how to use this property of Reed-Solomon codes
to build better list decodable codes. A natural question is
then, can one find such a code for the case where the sets
Si are large?

We first show that when the sets Si are large, Reed-
Solomon codes could have exponentially many codewords
such that for all i, vi ∈ Si. Thus, Reed-Solomon codes
are not a good choice for such a scenario. In contrast,
we exhibit codes with only polynomially many codewords
having 51% of the vi ∈ Si, even when the errors are picked
adversarially. This property also holds in the soft-decision
model. We give explicit codes that have polynomial-time
encoding and list decoding, and non-explicit codes with
better parameters.

Our codes are based upon a combinatorial object from
the study of pseudorandomness called an extractor. An
extractor is a procedure that extracts randomness from a
defective random source, using a small additional number
of truly random bits. Extractors were first defined and
constructed in [10], and have since been improved by sev-
eral authors. Extractors have been used to construct var-
ious types of pseudorandom generators ([10], [11], [12]),
and have had important applications in seemingly unre-
lated areas, including expander graph and superconcentra-
tor constructions [13], time-space tradeoffs [14], and unap-
proximability [15], [16]. See [17], [18], [19] for surveys of
extractors.

This paper gives yet another unexpected application of
extractors. We show an equivalence between extractors
and codes which decode in highly noisy channels in the
adversarial model. This equivalence implies bounds on the
parameters such codes must have. For instance, the rate
of such codes must be smaller than 1

log |Σ| , and there is a

word with at least Ω( |Σ|
n ) close codewords.

This equivalence also sheds light on the Johnson bound
[20]. Restated in terms of extractors, the Johnson bound
becomes the well-known Leftover Hash Lemma. This yields
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a new proof of the bound which applies to large alphabets
and soft decoding.

Our explicit codes are based on Trevisan’s explicit ex-
tractor [21]. We show that it has polynomial-time encod-
ing, polynomial-time list-decoding, and is capable of han-
dling the above noisy channel even in the adversarial model.
Thus, we build an explicit code that has better soft-decision
list decoding than Reed-Solomon, and can tolerate much
more noise.

These explicit codes can be used to extract hardcore bits,
a very useful tool in cryptography and the earliest applica-
tion of list decoding in computer science [4]. We are able
to extract many hardcore bits using few auxiliary random
bits.

II. Top down overview

A. Soft-Decision Decoding

In reality, channel noise is almost always a continuous
phenomenon. Thus, on receiving a signal σ the detector
may decide that the transmitted symbol was a1 with prob-
ability 98

100 , a2 with probability 1
100 and a3 with probability

1
100 . A hard-decision detector may transform the signal σ
to the symbol a1. Soft-decision decoding tries to use these
probabilities.

Early attempts at soft-decision decoding start with For-
ney’s GMD decoding [22]. Recent soft decoding algorithms
include [23] for Reed-Solomon codes and [24] for Chinese
Remainder codes. Some of these papers (e.g., [24]) study a
soft-decision detector that outputs a single Σ symbol along
with a confidence level, thus using only some of the infor-
mation the channel contains. We now formally define soft
decoding.

When we receive a symbol from a noisy channel, we can
infer a probability distribution over all possible symbols in
the alphabet Σ = [M]. We deal with time-varying channels;
seeing a symbol σ ∈ [M] at time i ∈ T induces a weight
function wi : [M] → [0, 1], where wi(z) corresponds to the
probability that the i’th transmitted symbol is z given that
the i’th received symbol is σ.

In fact, we can also deal with noisy channels where see-
ing the whole sequence σ1, . . . , σT ∈ [M]T induces a product
weight function w : [T] × [M] → [0, 1], where w(i, z) corre-
sponds to the probability that the i’th transmitted symbol
is z when receiving σ1, . . . , σT. Notice also, that the weight
function may be arbitrary, and in particular does not have
to sum up to 1. As we work with bounded accuracy we as-
sume w(i, y) is always a multiple of 1

M . For normalization,
we define the relative weight of w as

ρ(w) =

∑
i∈[T],y∈[M] w(i, y)

TM
.

Notice that ρ(w) is a real number between zero and one.
We call the elements of [T]× [M] points. We view a word

u ∈ [M]T as the set of points {(i, ui) : i ∈ [T]}. The agree-
ment Ag(u,w) between a word u and a weight function w is
the sum of the weights of the points corresponding to u, i.e.,

∑
i∈[T] w(i, ui). The case where w takes on only Boolean

values is of special interest, as then w corresponds to sets.
For sets S1, . . . ,ST ⊆ [M], Ag(u, (S1, . . . ,ST)) = Ag(u,w),
where w is the indicator weight function w(i, σ) = 1 if
σ ∈ Si and 0 otherwise. When the sizes of the Si are
1 this amounts to the usual notion of agreement between
two vectors.

Now, let C = {Cr} be a family of codes, where Cr ⊆
[M]T is a code of length T = T(r) over alphabet [M] =
{1, 2, . . . ,M}, M = M(r). We use unconventional letters
for describing the alphabet and the code length so as to
avoid n,N , k,K, and d,D which are standard for both
extractors and coding theory. We say the family C has
efficient encoding if there is a polynomial-time algorithm
that given r and j computes the j’th codeword of Cr in
time poly(M,T). When it’s clear from the context we say
that C has efficient encoding.

The list decoding problem comes in two flavors, combi-
natorial and algorithmic. In both we are given an arbitrary
weight function w, which is the essence of the adversarial
model. The combinatorial version is to bound the number
of codewords that have large agreement with w, while the
algorithmic version is to actually find all these codewords.
Note that the expected agreement of a random word from
[M]T with w is ρ(w)T; by large agreement we mean notice-
ably larger than this, as is captured in the definition of Aε

below.
Definition II.1: We say a code Cr ⊆ [M]T has (L, ε)

combinatorial soft decoding if for every weight function
w : [T] × [M] → [0, 1] the set

Aε(w) = {u ∈ C : Ag(u,w) > (ρ(w) + ε)T}

has size at most L. We say a family of codes C = {Cr} has
(L = L(r), ε = ε(r)) combinatorial soft decoding if for all r,
Cr has (L(r), ε(r)) soft decoding. If L(r) ≤ p(T,M, 1

ε ) for
some polynomial p(·) we simply say C has ε combinatorial
soft decoding.

In the algorithmic version we want efficient decoding.
That is, we have a noisy channel, and we see σ1, . . . , σT

which induces a weight function w : [T]× [M] → [0, 1]. We
give the decoding algorithm black-box access to w, and we
want to recover the original codeword.

Definition II.2: We say a family {Cr} has efficient ε soft
decoding if there exists an algorithm that given black-box
access to the weight function w outputs all the codewords
in Aε(w) in time polynomial in T,M, 1

ε
1.

We say a family {Cr} has efficient probabilistic ε soft
decoding, if the decoding algorithm is probabilistic, and
for every weight function w, with probability at least
1 − 2−(M+T ) over its internal random coins, outputs all
the codewords in Aε(w) in time polynomial in T,M, 1

ε .

1Notice that we can represent a weight function w : [T]×[M] → [0, 1]
with MT numbers, each a multiple of 1

M , and hence with poly(T, M)
bits. Thus, we could have replaced the above definition with one that
says that given a description of w the algorithm outputs all codewords
in Aε(w) in time poly(T, M, 1

ε ). However, in many settings the black-
box version is more natural.
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We also define Amax(w) to be the set of codewords
u ∈ C that have full agreement with w, i.e., Amax(w) =
{u ∈ C : Ag(u,w) = T}.

B. Strong Extractors

As mentioned earlier, an extractor is a procedure to ex-
tract randomness from a defective random source, using a
small additional number of truly random bits. In order to
define extractors, we first give some standard definitions.

Definition II.3: A probability distribution D on Ω is
a function D : Ω → [0, 1] such that

∑
x∈Ω D(x) =

1. For an integer n, Un is the uniform distribution on
{0, 1}n. We overload notation and for a set S, US de-
notes the uniform distribution on S. The variation (statis-
tical) distance between two probability distributions D1

and D2 on Ω, denoted |D1 − D2|, is 1
2

∑
x∈Ω |D1(x) −

D2(x)| = maxS⊆Ω |D1(S) − D2(S)|. We say D1 is ε
close to D2 if |D1 − D2| ≤ ε. A distribution on a set S is
ε-uniform if it is ε–close to US .

We model a defective random source as one that has
sufficient min-entropy, a notion that is more useful to us
than entropy.

Definition II.4: The min-entropy of a distribution D is
minx log2 1/D(x).

In other words, D has min-entropy $ if for all x, D(x) ≤
2−". We now define extractors, using slightly different pa-
rameters than usual (typically the L below is replaced by
log L).

Definition II.5: A function E : [C]×[T] → [M] is a strong
(L, ε)-extractor if for every distribution D on [C] such that
for all x, D(x) ≤ 1/L, the distribution UT ◦ E(D,UT) ob-
tained by picking x from D, y uniformly from [T] and evalu-
ating y◦E(x, y) is ε-uniform. Here ◦ denotes concatenation.
(E is an extractor if E(D,UT) is ε-uniform.)

In other words, for any test W : [T] × [M] → {0, 1}, the
probability that W (y, z) = 1 is roughly the same whether
y and z are chosen uniformly, or y is chosen uniformly and
z = E(x, y) for x chosen with sufficient min-entropy. Note
that there is no constraint on the efficiency of the test; in
fact, the test can be randomized, as a randomized test can
be viewed as randomly picking one of several deterministic
tests.

A natural interpretation for this is that E : {0, 1}c ×
{0, 1}t → {0, 1}m is a strong (L = 2", ε) extractor, if it
takes an arbitrary distribution over [C] = {0, 1}c with at
least $ min-entropy (this corresponds to X ⊆ [C] of car-
dinality at least L), uses t independent truly random bits,
and distills from X m output bits that are close to uniform
(this corresponds to the fact that no test can distinguish
UT ◦E(D,UT) from uniform). We would like, of course, to
have t as small as possible and m as close as possible to $.

We now define efficiency of extractors; first we give the
usual notion and then a weaker version which will suffice
for our purposes.

Definition II.6: An extractor E : [C] × [T] → [M] is ef-
ficient if it is computable in time polynomial in log T +
log M+log C. It is weakly efficient if is computable in time
polynomial in T + log M + log C.

C. The Equivalence to Extractors

We associate a code with a strong extractor:
Definition II.7: Let E : [C] × [T] → [M] be a strong

extractor. For each c ∈ [C], define a word z(c) =
(z1, . . . , zT) ∈ [M]T where zi = E(c, i). The extractor code
for E is CE =

{
z(c) ∈ [M]T | c ∈ [C]

}
.

The next theorem shows that strong extractors give
codes with good soft decoding, and that these two notions
are, in fact, equivalent.

Theorem 1: If E : [C] × [T] → [M] is a strong (L, ε)
extractor, then CE has (L, ε) combinatorial soft decoding.
Conversely, if CE has (L, ε) combinatorial soft decoding,
even if only with respect to Boolean weight functions, then
E is a strong (L

ε , 2ε) extractor. Finally, CE has efficient
encoding if and only if F is weakly efficient.

Note that this theorem also implies that combinatorial
soft decoding with respect to Boolean weight functions im-
plies general combinatorial soft decoding with only a slight
degrading of parameters.

By efficient encoding, we mean that the encoding time is
polynomial in the encoded length T log M ≥ log C. There-
fore, the last statement in the theorem about efficiency is
obvious, since encoding in CF amounts to computing E at
T different points.

Typically we will consider large alphabets: M ≥ TΩ(1)

or larger. (An exception is when we consider the Johnson
bound.) In this typical case, if we want the size L of the
solution list to be polynomial in M (so that we have ε–
combinatorial list decoding) the extractor E has to extract
at least a constant fraction of the min-entropy in the given
source. That is, if we denote L = 2" (i.e., the given source
X has $ min-entropy) and M = 2m (i.e., the extractor
extracts m bits that are close to uniform) then L ≤ MO(1),
or equivalently M ≥ Lα for some constant α, i.e., m = Ω($).

Although a good extractor yields a code with good soft
decoding and efficient encoding, usually we do not have ef-
ficient decoding for such codes. Getting codes with explicit
encoding and decoding is a main goal of this paper, and we
will later show how to achieve it.

The connection between extractors and error correcting
codes sheds light on the Johnson bound [20], which states
that a binary code with relative distance 1

2−δ has the prop-
erty that every ball of relative radius 1

2 −
√
δ contains at

most 1/δ codewords (the bound was generalized to larger
fields in [25]). Typically, the Johnson bound is the key tool
used to determine the quality of combinatorial list decod-
ing in the traditional sense. The Johnson bound, however,
does not generalize to the soft-decision setting (e.g., to the
setting where all we know is that the i’th transmitted sym-
bol is one of |Σ|

2 possibilities).
The Johnson bound was given several proofs; some of

the more recent ones include a proof with geometric moti-
vation in [26], a proof using inclusion-exclusion in [25] and
a combinatorial proof using the Zarankiewicz bound in [27].
We, however, interpret the Johnson bound as saying that
a good code is a good extractor, and we give it a simple
proof that is identical to the simple proof of the Leftover
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Hash Lemma [28]. In Lemma IV.1 we show that our inter-
pretation does generalize to the soft-decision setting.

We also use the equivalence with extractors to derive
bounds on soft decoding. A lower bound of [29] says that
a strong (L, ε) extractor E : [C] × [T] → [M] must have

T ≥ Ω(
log(C

L )
ε2

) (1)

and

L ≥ Ω(
M

T
· 1
ε2

) (2)

Furthermore, random extractors, with high probability, al-
most match these bounds [29]. The equivalence of Theorem
1 translates this to non-explicit codes CE ⊆ [M]T with (L, ε)
soft decoding and |C| codewords. The bound (1) then tells
us how far can we push the rate of this code. Namely, the
rate is log(C)

T log(M) which is about ε2

log(M) as long as L is much
smaller than C. The bound (2) tells us that as long as the
code length T is much smaller than the alphabet size M,
the number of possible solutions cannot be constant. Any-
thing is achievable within these bounds. In particular there
are codes with many codewords and (L, ε) soft decoding for
a relatively small L = poly(M,T, 1

ε ).

D. Reed-Solomon Codes

There has been a lot of research on efficiently encod-
ing and decoding Reed-Solomon codes. We first state the
beautiful list decoding result of Guruswami and Sudan [6]
building upon Sudan [5].

Theorem 2: [6] Let RS ⊆ [M]T be a Reed-Solomon code,
T ≤ M, |RS| = Mc. For every S1, . . . ,ST ⊆ [M]

|
{

u ∈ RS | Ag(u, (S1, . . . ,ST)) ≥
√

cS
}
| ≤ T

where S =
∑T

i=1 |Si|. Furthermore, RS has efficient list
decoding for these parameters.

Note that the bound is very good when S is small (say,
about T) and that it deteriorates as S grows. In particu-
lar it is useless whenever

√
cS > T, (e.g., if M = T and

S = MT
2 ). Restated in our soft decoding notation, the

list decoding algorithm works well as long as ρ(w) is small
(about 1

M ), and is not guaranteed to work when ρ(w) is
large (a constant). We show that this phenomenon is not
an artifact of the analysis but rather Reed-Solomon codes
indeed have poor list decoding when ρ(w) is large.

Theorem 3: Let RS ⊆ [M]T be a Reed Solomon code
with Mc elements, T ≤ M, and M a prime power. Suppose
M − 1 = b1b2 for some integers b1 and b2. Then, there is a
Boolean weight function w : [T]× [M] → {0, 1} with weight
ρ(w) = b1+1

M for which |Amax(w)| ≥ M
c−1
b2 .

Thus, in particular, for b2 = 2 we get a Boolean weight
function of weight about half, for which there are about√

|RS| close codewords. Also notice how the number of
codewords in the bound decays with the relative weight
of w.

E. An Extractor Code with Efficient Soft Decoding

We saw that good extractors E translate to codes CE

with good combinatorial soft decoding; in particular, if E
extracts a constant fraction of the min-entropy of the given
source (i.e., m ≥ Ω($)) and has error ε, then CE has ε
combinatorial soft decoding. Nevertheless, not every good
extractor suits our needs, as CE might not have efficient
soft decoding. Our main technical contribution is show-
ing that block-box pseudorandom generator constructions
translate to codes with efficient soft decoding. In Section
VI we explain in detail the notion of block-box pseudoran-
dom generator, and show that every code that originates
from such a construction has efficient probabilistic soft de-
coding. In Section VII we show how to make the decoding
algorithm deterministic for one such code.

Currently, there are two black-box pseudorandom gen-
erator constructions: Trevisan’s construction [21] and
Shaltiel and Umans’s construction [30].
• Trevisan’s extractor extracts half of the min-entropy in
the source using t = O(log2( c

ε )) truly random bits, hence
its corresponding code CTR ⊆ [M ]T has ε combinatorial
soft decoding. Its rate is log(C)

T
1

log(M) = 1

2(log log( C
ε

))2
1

log(M) ,
which should be compared to the best possible rate of about

ε2

log(M) . This reflects the fact that Trevisan’s extractor has
degree larger than optimal. Nevertheless, we still accom-
modate exponentially many codewords into [M]T.
• Shaltiel and Umans’s extractor extracts a sub-constant
fraction of the min-entropy in the source, m = "

polylog(c) ,
using only O(log( c

ε )) truly random bits. Hence its corre-
sponding code CSU ⊆ [M ]T has (L, ε) combinatorial soft
decoding for a super-polynomial L = Mpoly(log log(C)). Its
rate is log(C)

T
1

log(M) = 1

2log log( C
ε )

1
log(M) which compares bet-

ter to the lower bound which is about ε2

log(M) .
Any future better black-box extractor construction

would immediately translate to a better code. In partic-
ular, if such a construction is found with m = Ω($) and
T = Ω( log(C)

ε2 ) then we would get a code with efficient ε
soft decoding and almost optimal rate.

One special case of interest is when T = M which is sim-
ilar to the Reed-Solomon case. It turns out that Trevisan’s
code has soft decoding for exponentially small ε. In fact, ε
can be as small as 2−Ω(

√
log M). On the other hand, Reed-

Solomon codes do not have soft decoding for any ε > 0. We
again demonstrate this with the case where given a signal
the receiver can only guess the transmitted symbol is one
of |Σ|

2 possible symbols. The code CTR we presented can re-
cover the original symbol even if just slightly over half the
guesses are correct (half is what you expect from a random
guess) whereas for Reed-Solomon codes there is no way to
recover the original symbol even if every guess is always
correct.

F. Applications

The first application of list decoding [4] was obtaining
hardcore bits, though it was not observed to be a list de-
coding algorithm at the time. For this application, soft list
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decoding is more useful than ordinary list decoding. Using
our codes we can output many hardcore bits while adding
only few auxiliary random bits. In Section VIII we explain
the problem, previous work and our result.

Recently, the results of this paper were used in [31] to
give an explicit space-efficient method of storing a set of
elements from a large universe in such a way that member-
ship in the set can be determined (with high probability)
by reading only one bit from the set representation. For
the history of the problem, and the extensive previous work
on it we refer the reader to [32].

III. Equivalence of Extractors and Soft
Decoding

We now prove Theorem 1, the equivalence of extractors
and codes with good soft decoding. The proof makes use
of an alternate view of extractors suggested in [11], where
for a given test the number of “bad” strings for this test is
small.

Proof: [Of Theorem 1]:
E strong extractor =⇒ CE has soft decoding :
Suppose E : [C] × [T] → [M] is a strong (L, ε) extractor.
Let w : [T]× [M] → [0, 1] be a weight function for the code
CE ⊆ [M]T. Define the test W : [T] × [M] → {0, 1} which
accepts (i, y) with probability w(i, y). Then

Pr[W (U[T ]×[M ]) = 1] =
∑

i,y w(i, y)
TM

= ρ(w)

We wish to show that the set A = Aε(w) is small.
For a set X ⊆ [C], let DE,X be the distribution obtained
by picking x uniformly from X, y uniformly from T and
evaluating y ◦ E(x, y). By the definition of A,

Pr[W (DE,A) = 1] > ρ(w) + ε.

Hence, DE,A is not ε-uniform, so by the extractor definition
we must have |A| ≤ L.

CE has soft decoding =⇒ E is a strong extractor :
Fix a test W : [T] × [M] → {0, 1}. As CE has (L, ε) soft

decoding, for at most L values of x ∈ [C],

Pr[W (DE,{x}) = 1] > Pr[W (U[T ]×[M ]) = 1] + ε.

Now let D be an arbitrary distribution on [C] with D(x) ≤
ε/L for all x. Then

Pr[W (UT ◦ E(D,UT)) = 1] ≤ Pr[W (U[T ]×[M ]) = 1] + 2ε,

since the L “bad” x only account for probability at most ε.
As this is true for every test W , and in particular for the

test W ′ that negates W , we must have:

|Pr[W (UT ◦ E(D,UT)) = 1] − Pr[W (U[T ]×[M ]) = 1]| ≤ 2ε

Hence, E is a strong (L
ε , 2ε) extractor.

IV. The Johnson bound

We start with the well known claim that codes with good
distance properties are reasonable extractors:

Claim IV.1: (Codes are extractors) Let C be a [T, k, (1−
1
q − δ)T]q code. Let E : Fk

q × [T] → Fq be the function

E(x, i) = C(x)i. Then E is a ( 1
δ ,

√
qδ
2 ) extractor.

Proof: We follow Rackoff’s proof of the Leftover Hash
Lemma as in [33]. Let X ⊆ Fk

q be of cardinality 1
δ , and

recall that DE,X is the distribution obtained by picking y
uniformly from [T], x uniformly from X, and evaluating
y ◦ E(x, y).

The collision probability of DE,X , denoted col(DE,X), is
the probability that two independent samples of the dis-
tribution DE,X are the same. It is therefore the proba-
bility over y1, y2 ∈ [T] and x1, x2 ∈ X that y1 = y2 and
E(x1, y1) = E(x2, y2). Obviously we should have y1 = y2.
If we also have x1 = x2 then we get a collision. From the
large distance of the code C it follows that if x1 += x2 we
have probability (over y = y1 = y2) of at most 1

q + δ of
having a collision. Altogether,

Col(DE,X) ≤ 1
T

(
1
|X| +

1
q

+ δ)

=
1

qT
(1 +

q

|X| + qδ)

Rackoff shows that if D is distributed over some domain
Ω and col(D) ≤ 1

|Ω| (1 + 4ε2) then D is ε-uniform. It there-
fore follows that DE,X is ε-uniform where

ε ≤ 1
2

√
q

|X| + qδ =
√

qδ/2 (3)

and E is a strong extractor.
The original Johnson bound [20] was for binary codes

and was later generalized to arbitrary alphabets (e.g., in
[25]). Our framework allows us to generalize the the second
bound in [25] to the soft-decision setting.

Lemma IV.1: (Johnson bound - soft decoding setting)
Let C be a [T, k, (1 − 1

q − δ)T]q code. Then for ε > 1
2

√
qδ,

C has ( q
4ε2−qδ , ε) soft decoding.

Proof: Let w : [T]×Fq → [0, 1] be a weight function.
Let A = Aε(w) and F , DF,A be as before. On the one hand,
for every u ∈ A we have Ag(u,w) > (ρ(w)+ ε)T and there-
fore |DF,A−U[T ]×[M ]| > ε. On the other hand, from Equa-
tion (3) it follows that |DF,A − U[T ]×[M ]| ≤ 1

2

√
q

|A| + qδ.
Putting it together we see that |A| < q

4ε2−qδ .
A special case of the theorem is when q = 2 and we look

at regular list decoding. We then get that if the relative
distance is 1

2 −δ then any ball of relative radius 1
2 −

√
δ con-

tains at most 1
δ code words, which is the original Johnson

bound.

V. Reed-Solomon Codes

Proof: (of Theorem 3) The proof uses the multiplica-
tive subgroups of F∗

M, an idea that was exploited in a more
sophisticated way in [34].
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For b1|M − 1, F∗
M contains b1 distinct solutions to the

equation xb1 = 1. Denote these solutions by {α1, . . . , αb1},
and define α0 = 0. Let S = {(i, αj) : i ∈ [T], 0 ≤ j ≤ b1},
|S| = T(b1 + 1) and define the Boolean weight function
w : [T] × [M] → {0, 1} to be one on S and zero otherwise.

Let A be the set of polynomials pb2 for some p of de-
gree at most c−1

b2
. For every q = pb2 ∈ A and i, ei-

ther p(i) = 0 and then q(i) = 0 or p(i) += 0 and then
(q(i))b1 = (p(i))b1b2 = (p(i))M−1 = 1, and so (i, q(i)) ∈ S.
Hence, if RS(q) denotes the codeword corresponding to q,
Ag(RS(q),S) = T. Since distinct q of degree less than
c give distinct codewords RS(q), Amax(w) ≥ |A|, where
Amax(w) is the set of all codewords u that have full agree-
ment with w, i.e., Ag(u,w) = T .

To lower bound |A|, note that FM[X] is a unique factor-
ization domain, which implies that for each q ∈ A, the p
such that pb2 = q is uniquely determined up to multiples
of FM. Consequently, each q ∈ A can arise from at most
M polynomials p of degree at most c−1

b2
(in fact, at most b2

such polynomials). Therefore |A| ≥ M1+ c−1
b2 /M.

VI. Extractors and Pseudorandom Generators

In this section, we show that extractors constructed via
so-called black-box pseudorandom generators give extrac-
tor codes with efficient probabilistic soft decoding. In the
next section, we show how to make the soft decoding deter-
ministic for one such extractor, Trevisan’s extractor [21].
The next section does not rely on this section, so some
readers who wish to avoid more computer science termi-
nology may skip directly to that section. However, we be-
lieve that this section is more basic. We begin with the
necessary background.

A. Background on Non-uniformity and Circuits

A non-uniform algorithm A is an infinite sequence of
algorithms A1, A2, . . ., one for each input size. To run A
on an input x of size n, we run An on x. As one might
expect, an infinite sequence of algorithms is more powerful
than one algorithm; intuitively, it may be hard to compute
the algorithm An from n.

Traditionally, the Ai are modeled as circuits; here it is
natural to have a different circuit for each input size. An
equivalent way to model A is as a Turing machine with ad-
vice. On an input x of size n, A receives some advice string
an depending only on n; A then performs its computation
on x and an. One may think of an as a description of the
circuit.

For more background in this area, we refer the reader to
textbooks in computational complexity, such as [35].

B. Pseudorandom Generators

A pseudorandom generator takes a short random string
and expands it to a long string that looks random to all
small circuits.

Definition VI.1: Let D1,D2 be two distributions on Ω.

We say a circuit A ε–distinguishes D1 from D2 if

| Pr
x1∈D1

[A(x1) = 1] − Pr
x2∈D2

[A(g2) = 1] | ≥ ε

If D2 is uniform on Ω we say A ε–distinguishes D1 from
uniform.

Definition VI.2: G : [T] → [M] is a strong ε–
pseudorandom generator against size s circuits, if no size s
circuit ε–distinguishes the distribution U[T ] ◦ G(U[T ]) from
uniform, where the distribution U[T ]◦G(U[T ]) is obtained by
picking y uniformly from [T] and evaluating y ◦ G(y). (A
pseudorandom generator without the word strong would
only require that no small circuit distinguishes G(U[T ])
from uniform.)

Note that for strong pseudorandom generators, we re-
quire the circuit size s to be smaller than the time to
compute G; otherwise, the circuit could compute G and
distinguish the output from uniform.

Currently, no explicit pseudorandom generators are
known. However, it is known how to build pseudorandom
generators from a given hard function f . I.e., there is a
general construction G = Gf : [T] → [M], that is guaran-
teed to be pseudorandom for small circuits whenever f is
hard for small circuits. Such a construction first appeared
in [36] and was later improved in [37], [38], [12]. A sec-
ond construction appears in [30]. In these constructions,
correctness is proved by proving the contrapositive. If Gf

is not a pseudorandom generator, then by definition there
exists a small circuit A distinguishing U[T ] ◦Gf (U[T ]) from
uniform. The proof then shows how to use the distinguisher
A to build a small circuit for f . As f is hard for small cir-
cuits, one must conclude that Gf is pseudorandom.

A notable property of all current pseudorandom con-
structions is that they are block-box. This means that the
generator G = Gf only needs black-box access to f , i.e.,
it only needs f values on given inputs, and otherwise does
not use any other operty of f . Similarly, the reconstruction
algorithm that computes f using the distinguisher A, only
needs black-box access to evaluations of A, and otherwise
does not use any other property of A. This is captured
in the definition of a black-box pseudorandom generator
below. Note that an oracle Turing machine (circuit) is a
Turing machine (circuit) that has black-box access (also
called oracle access) to a function.

Definition VI.3: A black-box generator is an oracle ma-
chine Gf : [T ] → [M ], with black-box access to a Boolean
function f : [log(C)] → {0, 1}. We say G is efficient if it
runs in time polynomial in its input length log(T ).

Definition VI.4: A black-box reconstruction algorithm
for Gf with a bits of advice, is an algorithm R that takes
a short advice string adv = adv(f) ∈ {0, 1}a and outputs
an oracle circuit R(a)A. Let Time(R) be the running time
of R and Size(B) the size of the oracle circuit implement-
ing B. R may be uniform or non-uniform, deterministic or
probabilistic.

Definition VI.5: We say (Gf , R) is a black-box ε–
pseudorandom generator if for every Boolean function f :
[log(C)] → {0, 1}, and every circuit A ε–distinguishing
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U[T ] ◦Gf (U[T ]) from uniform, there exists an advice string
adv = adv(f) ∈ {0, 1}a such that R(adv)A = f . If R is
probabilistic, this means that with high probability over
the random coins of R, the output B = R(adv)A is an ora-
cle circuit, that with oracle access to A correctly computes
f .

Note that the definition of a black-box pseudorandom
generator does not refer to the size of circuits. However,
when we instantiate f to be a hard function for certain size
circuits, we do obtain a pseudorandom generator for small
circuits.

We now claim:
Proposition VI.1: ([36]) Let (Gf , R) be a black-box ε–

pseudorandom generator with B = R(adv)A the oracle
circuit output by R. If f can not be computed by size
s · Size(B) circuits, then Gf is a strong ε–pseudorandom
generator for size s circuits.

Proof: Let f : [log(C)] → {0, 1} be an arbitrary
Boolean function. If there exists a size s circuit A ε–
distinguishing the distribution U[T ] ◦ Gf (U[T ]) from uni-
form, then given the right advice adv = adv(f), BA =
R(adv)A computes f . We can then take the oracle circuit
for B and replace each oracle call to A with a size s cir-
cuit. We thus get a size size(B) · s circuit evaluating f ,
contradicting the hardness of f .

Notice that for the proposition to be useful, Size(B) has
to be small. On the other hand, the argument does not
require that the reconstruction algorithm R be uniform or
efficient.

C. A Probabilistic Soft Decoding Algorithm

Trevisan showed that a black-box pseudorandom genera-
tor Gf gives rise to a strong extractor E : [C]× [T ] → [M ]
defined by E(f, y) = Gf (y) [21]. Here f ∈ [C] is identi-
fied with a function f : [log(C)] → {0, 1}. We rephrase
his proof to say that the corresponding extractor code CE ,
defined by CE(f) = (Gf (y1), . . . , Gf (yT )), has good soft
decoding. Further, we extend it to say that if the recon-
struction procedure is efficient (and hence the output cir-
cuit has small size Size(B)), then the code has efficient soft
decoding.

Proposition VI.2: Suppose (Gf , R) is a black-box pseu-
dorandom generator with R using a bits of advice. Then
the extractor code CE for E(f, y) = Gf (y) has (L = 2a, ε)-
combinatorial soft decoding with respect to Boolean weight
functions. If R is efficient, then so is this soft decoding.

It follows from Theorem 1 that E is a strong (2a/ε, 2ε)
extractor and CE has (2a/ε, 2ε)-combinatorial soft decod-
ing.

Proof: Let w : [T ]×[M ] → {0, 1} be a Boolean weight
function, and let W be a circuit computing w. Let A be the
set of functions corresponding to Aε(w), i.e., let A be the
set of all functions f ∈ C with Ag(C(f), w) > (ρ(w) + ε)T .
Then for any f ∈ A, W ε-distinguishes U[T ] ◦ Gf (U[T ]).

This is because Pr[W (U[T ], U[M ]) = 1] = ρ(w) and

Pr
y∈U[T ]

[W (y,E(f, y)) = 1] =
∑

y

1
T

w(y,E(f, y))

=
Ag(C(f), w)

T

Therefore, the reconstruction property implies that for
every f ∈ A there exists an advice string adv = adv(f)
such that R(adv(f))W = f . In particular, different func-
tions f ∈ A must have different advice strings adv(f). We
conclude that the number of functions in A is at most 2a,
as required.

If R is efficient, then the decoding algorithm is to cycle
over all 2a advice strings adv. For each of the 2a functions
f = R(adv)W , test if f ∈ A, and if so, output C(f). By
the previous argument, this outputs every codeword C(f)
with f ∈ A. The running time is polynomial in L and the
running time of R (since the size of R(adv) is at most the
running time of R).

We now extend the previous proposition to soft decoding
with arbitrary weight functions:

Proposition VI.3: Suppose (Gf , R) is a black-box pseu-
dorandom generator with R using a bits of advice, where R
is efficient. Then the extractor code CE for E(f, y) = Gf (y)
has (L = 2a

ε , 2ε) combinatorial soft decoding and efficient
probabilistic 2ε–soft decoding.

Proof: As mentioned earlier, the combinatorial soft
decoding follows from Proposition VI.2 and Theorem 1.
We now describe the efficient decoding.

Let w : [T ] × [M ] → [0, 1] be a weight function. Define
the probabilistic test W : [T ] × [M ] → {0, 1} that accepts
(y, z) ∈ [T ] × [M ] with probability w(y, u). As before, let
A be the functions corresponding to A2ε(w). Then, for
the same reason as in Proposition VI.2, for any f ∈ A, W
2ε-distinguishes U[T ] ◦ Gf (U[T ]). We are therefore in the
same situation as in Proposition VI.2, but now we have
a probabilistic distinguisher W . However, the property of
the black-box pseudorandom generator only applies to de-
terministic circuits.

We get around this by viewing the probabilistic test W
as a probability distribution over deterministic tests {Wr},
where r are the internal coins of W . As W 2ε–distinguishes
U[T ] ◦ Gf (U[T ]) from uniform, it must be that for at least
ε faction of the random coins r, Wr ε–distinguishes U[T ] ◦
Gf (U[T ]) from uniform. Let us call such an r good for f .
If r is good for f , then the soft decoding algorithm from
Proposition VI.2 running on Wr will output f .

We therefore define our decoding algorithm to toss s =
2a/ε2 random strings r1, . . . , rs. For each r in the sequence,
run the decoding algorithm from Proposition VI.2 on Wr.
For fixed f , the probability that none of r1, . . . , rs are good
for f is at most (1 − ε)s ≤ exp(−2a/ε). Thus, this bounds
the probability that f is not output. By the union bound,
the probability there exists some f ∈ A that is not output
is at most L exp(−2a/ε) ≤ 2−a.
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VII. A Deterministic Soft Decoding Algorithm

Proposition VI.3 gives us a probabilistic soft decoding
algorithm. Our next goal is to find a deterministic soft
decoding algorithm. Looking back at the decoding algo-
rithm in Proposition VI.3 we see that the problem is it
uses a probabilistic distinguisher A = {Ar}. While many
choices for r work, some do not and the decoding algorithm
then may (with very low probability, yet non-zero) sample
r1, . . . , rs that are all bad.

To rectify this problem we observe that current pseudo-
random black-box generators are designed very much like
concatenated codes. We then show how to reduce soft de-
coding of the concatenated code to soft decoding of the
inner code. We take the inner code to be Reed-Solomon
concatenated with Hadamard, and we show an explicit soft
decoding for it. Together, we get a deterministic soft de-
coding algorithm.

The above approach works for both Trevisan’s extractor
and Shaltiel and Umans’ extractor. We work out the de-
tails for Trevisan’s extractor [21] because technically it is
simpler.

A. Weak Designs

We first present the extractor [21] following the some-
what improved version given in [39]. We begin with some
definitions.

Definition VII.1 (Weak design) [39] A family of sets
Z1, Z2, . . . , Zm ⊆ [t] is a weak (s, ρ) design if
1. ∀i |Zi| = s, and
2. ∀i,

∑
j<i 2|Zi∩Zj | ≤ ρ · (m − 1).

We have:
Lemma VII.1: [39] For every s,m and ρ > 1, there exists

a weak (s, ρ) design Z1, Z2, . . . Zm ⊆ [t] with t =
⌈

s
ln ρ

⌉
· s.

Such a family can be found in time poly(m, t).
We introduce some notation for specifying substrings in-

dexed by weak designs. For y = y1 . . . yt ∈ {0, 1}t and
Z = {z1, . . . , zs} ⊆ [t] we denote by y|Z the nonnegative
integer obtained by restricting y only to those entries that
are in Z, i.e. j = y|Z is the number whose binary repre-
sentation is yz1yz2 . . . yzs .

Also, for strings β ∈ {0, 1}t−s and γ ∈ {0, 1}s we denote
by γZ◦β[t]\Z the t bit long string that has γ in the locations
indexed by Z and β in the other locations.

B. Soft Decoding Reed-Solomon concatenated with Hadamard

We will need to use a soft decodable binary code; we
choose to use Reed-Solomon concatenated with Hadamard.
Let RS be an [n, k, n − k + 1]n Reed-Solomon code. Let
H be an [n, log n, n

2 ]2 Hadamard code. The concatenated
code BC is an [n̄ = n2, k log n, n(n−k+1)

2 ]2 code. A simple
calculation shows that if we introduce a new parameter
δ than BC is an [n̄, k, (1

2 − δ)n̄]2 code with δ = k
2n (and

n̄ = O((k
δ )2)). The Johnson bound shows that C has good

list decoding, and its generalization shows that C has good
soft decoding.

Explicit list decoding is also not hard. In [40] improved
explicit list decoding is shown. A soft decoding algorithm

can be obtained in a standard way by first soft decoding
the inner Hadamard code with brute force (the number of
Hadamard codewords is only n so we can cycle over all
of them) and then using list-decoding for the outer Reed-
Solomon code. Details follow:

Lemma VII.2: Let C ⊆ [M]T be the [n̄, k, (1
2 − δ)n̄]2

Reed-Solomon concatenated with Hadamard code as
above, M = 2, T = n̄. Then C has 4δ1/4 efficient soft
decoding.

Proof: We first define the soft decoding algorithm,
having black-box access to some weight function w : [T] ×
[M] → [0, 1]. We view the output bits as composed of
n̄
n = n blocks of length n each. For each block j, the weight
function w induces a weight function wj : [n] × {0, 1} →
[0, 1] on the block, where wj(i, σ) is the weight w gives to
σ in the i’th location of the the j’th block.

For each block j, we run a 2δ1/4 Hadamard soft decoding
by brute force (i.e., by enumerating all n codewords in the
Hadamard code, and checking the weights) and get a list
Sj of all Hadamard codewords in A2δ1/4(wj). By Lemma
IV.1, |Sj | ≤ 1

8
√
δ
. We now apply Theorem 2 and find all

Reed-Solomon codewords with 2δ1/4n agreement with the
sets S1, . . . , Sn.

Every codeword of C that is also in A4δ1/4(w), must
have at least 2δ1/4n blocks j that belong to A2δ1/4(wj),
and therefore must appear in the soft-decoding output list.
Also, the parameters were chosen such that 2δ1/4 ≥

√
k|S|

(keeping in mind that δ = k
2n ), and so by Theorem 2 the

procedure outputs at most n codewords of C, and the whole
procedure is efficient.

C. Trevisan’s Extractor

Trevisan [21] constructed an extractor TRc,m,ε(x, y) as
follows. Compute a weak (s, ρ) design Z1, Z2, . . . Zm ⊆ [t]
as in Lemma VII.1. Encode the input x ∈ {0, 1}c using
the binary error correcting code BC given in Lemma VII.2
to get a c̄ = poly(c, 1

β ) long string x̂ = BC(x). Use the
random string y to select m output bits from x̂. The i’th
output bit is x̂j , where j = y|Zi.
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Trevisan’s extractor [21] TRc,m,ε.

Parameters : c,m, ε > 0. ρ = 2.
Binary code : BCc,δ : {0, 1}c → {0, 1}c̄ the binary
code given by Lemma VII.2 with δ = ( ε

4m )4.
Weak Design : A weak (s, ρ) design
Z1, . . . , Zm ⊆ [t], with:
• s = log c̄ = O(log c + log m + log(1

ε )),
• t = s- s

ln ρ. = O((log c + log m + log(1
ε ))

2)

Input : x ∈ {0, 1}c.
Random string : y ∈ {0, 1}t.
Output : The output has m bits,

TR(x; y)i = x̂(y|Zi)

where x̂ = BC(x).

Letting T = 2t and M = 2m, note that CTR ⊆ [M]T is of
size 2c.

D. Decoding CTR

We now describe the decoding algorithm for CTR.

Algorithm VII-D: Decoding CTR.

Input : w : [T] × [M] → [0, 1].

Algorithm : For every:
• α ∈ {0, 1}m,
• β ∈ {0, 1}t−s,
• 1 ≤ i ≤ m,
• set of possible truth tables P1, . . . , Pi−1, where

Pj has size 2|Zi∩Zj |,

define a weight function wBC for the binary code BC
as follows. For every γ ∈ {0, 1}s and bit ∈ {0, 1}:

• Let y = γZi ◦ β[t]\Zi .
• Define b ∈ {0, 1}m by:

bj =






Pj(y|Zi∩Zj ) if j < i
bit if j = i
αj if j > i

and we let wBC(γ, bit) = w(y, b).

Find all codewords v̂ ∈ BC with Ag(v̂, wBC) ≥ ( 1
2 +

δ
m )c̄ and output the corresponding v ∈ {0, 1}c.

Lemma VII.3: For every w : {0, 1}t × {0, 1}m → [0, 1]
and every x ∈ {0, 1}c for which Ag(x,w) ≥ (ρ(w) + ε)T, x
appears in the output list of Algorithm VII-D.

The proof follows the outline in Section VI, and is a ”con-
structive” variation of Trevisan’s proof, giving an efficient

algorithm ”decoding” the extractor. A technical difference
between this proof and Trevisan’s proof, is that our decod-
ing algorithm reduces to a soft decoding algorithm of the
binary code BC.

Proof: Fix any x ∈ {0, 1}c such that Ag(x,w) ≥
(ρ(w) + ε)T. Define the probabilistic test

W : {0, 1}t+m → {0, 1}

which accepts (y, u) with probability w(y, u). As before, let
DTR,{x} be the distribution U[T ] ◦ TR({x},U[T]) obtained
by picking y uniformly at random from {0, 1}t and com-
puting y ◦ TR(x, y).

We now define the reconstruction procedure R. Define
the hybrid distributions D0, . . . , Dm where Di picks the
first t + i bits from DTR,{x} and the last m − i bits from
Ut+m. We have

Pr[W (D0) = 1] = Pr[W (Ut+m) = 1] = ρ(w)

and

Pr[W (Dm) = 1] = Pr[W (DTR,x) = 1] ≥ ρ(w) + ε

Therefore there must be an i, 1 ≤ i ≤ m, such that

Pr[W (Di) = 1] ≥ Pr[W (Di−1) = 1] +
ε

m

In both Di−1 and Di, the last m− i bits are uniform and
independent of the rest. Hence there exists a fixed string
α ∈ {0, 1}m such that fixing the last m − i bits to the last
bits of α preserves the gap of at least ε/m.

We can also split y ∈ {0, 1}t into those bits in locations
indexed by Zi, which we denote by γ, and the rest of the
bits in locations [t] \ Zi which we denote by β (and so
y = γZiβ[t]\Zi). Again, there is a way to fix β and still
preserve the gap.

Furthermore, once β is fixed the values TR(x, j) for
j = 1, . . . , i − 1, that appear on both distributions, de-
pend only on the bits of γ and in a very weak way. In
particular there are truth tables P1, . . . , Pi−1 that describe
these dependencies (the string describing the truth tables
P1, . . . , Pi−1 corresponds to the advice string adv = adv(x)
in Section VI).

Now, for the given x we have:

Pr
γ

[W (y ◦ P1(γ) . . . Pi−1(γ) x̂(γ) αi+1 . . . αm) = 1] ≥

Pr
bi∈{0,1},γ

[W (y ◦ P1(γ) . . . Pi−1(γ) bi αi+1 . . . αm) = 1] +
ε

m

Now notice that Eγ∈{0,1}s [wBC(γ, x̂γ)] is

Pr
γ

[W (y ◦ P1(γ) . . . Pi−1(γ) x̂γ αi+1 . . . ..) = 1]

and Ebit∈{0,1},γ [wBC(γ, bit)] is

Pr
bi∈{0,1},γ

[W (y ◦ P1(γ) . . . Pi−1(γ) bi αi+1 . . . ..) = 1]
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We therefore conclude that

Eγ [wBC(γ, x̂γ)] ≥ Ebit∈{0,1},γ [wBC(γ, bit)] +
ε

m

which means that

Ag(x̂, wBC)
c̄

≥ ρ(wBC) +
ε

m

Since ε
m ≥ 4δ1/4 Lemma VII.2 asserts that x appears in

the output.
The number of elements in the output list is at most 2m ·

2t ·m·2ρm ·O(m
ε )4 because we have 2m possibilities for α, 2t

possibilities for β, m possibilities for i and 2ρm possibilities
for the tables P1, . . . , Pi−1, and then we get at most 1

δ =
O((m

ε )4) possible answers (see Lemma VII.2). Taking ρ =
2, c ≤ M we get a running time of poly(M,T, 1

ε ), which
completes the proof of Theorem.

VIII. Hardcore bits

One-way functions and their hardcore bits are key tools
in cryptography. Informally, a one-way function f is easy
to compute but hard to invert. By inverting z we mean
finding any element of f−1(z). A function h on the same
domain as f is hardcore for f if all statistical information
about h(x) is hard to predict even given f(x). We usually
allow h to also have access to auxiliary randomness. We
formalize all this as follows.

Definition VIII.1: f : [C] → S is a one-way function
with security (K, ε) if f is computable in time

√
K but

no probabilistic algorithm running in time K can invert f
with probability at least ε, where the probability is over a
random input and the coins of the inverting algorithm.

Typically, the time to invert f is conjectured to be su-
perpolynomial in the time to compute f , but we only need
the above small difference for our result.

Definition VIII.2: Let f : [C] → S be a function.
h : [C] × [T ] → [M ] is a hardcore function for f ,
with security (K, ε), if there is no probabilistic algorithm
running in time K that ε–distinguishes2 the distribu-
tions (f(C), U[T ], h(C,U[T ])) and (f(C), U[T ], U[M ]), where
(f(C), U[T ], h(C,U[T ])) is the distribution obtained by pick-
ing c uniformly from C, y uniformly from [T ] and evaluat-
ing (f(c), y, h(c, y)), and (f(C), U[T ], U[M ]) is the distribu-
tion obtained by picking c uniformly from C, y uniformly
from [T ], z uniformly from [M ] and evaluating (f(c), y, z).

We say h is hardcore with security (K, ε) if it is hardcore
with security (K, ε) for all one-way functions with security
(K4, ε

4 ).
Goldreich and Levin [4] showed that for T = C = {0, 1}c,

the function h(x, y) = ⊕ixiyi is a hardcore bit (with
M = {0, 1}m=1). Note that this requires as many aux-
iliary random bits y as input bits x, and that the hardcore
function has only one output bit.

Impagliazzo [41] noticed that this is a special case of a
generic construction based on list decodable codes. Let
C : [C] → {0, 1}T be a list decodable binary code. Then

2Recall that ε–distinguishing was defined in Definition VI.1

h(x, y) = C(x)y (the yth bit of the encoding of x) is a hard-
core predicate. Thus, the Goldreich and Levin result can be
viewed as a list decoding algorithm for the Hadamard code.
Moreover, by using list decodable binary codes with better
rate, such as Reed-Solomon concatenated with Hadamard,
a hardcore bit can be obtained with few auxiliary random
bits. The hardcore function, though, still has only one out-
put bit.

The main point of this section is to obtain many hardcore
bits using small auxiliary randomness. This follows from
our observation that Impagliazzo’s construction generalizes
to the case of more output bits. To get more bits, we choose
a code over a larger alphabet, C : [C] → [M]T, and the
hardcore bits are h(x, y) = C(x)y. The notion of soft list
decoding turns out to be what is needed here.

Theorem 4: Let C : [C] → [M]T be a code with a ε
4 soft

decoding algorithm, running in time K, ε ≥ 1/K. Then
h(x, y) = C(x)y is hardcore with security (K, ε).

Proof: Suppose there exists a one-way function f with
security (K4, ε/4) and a statistical (possibly probabilistic)
test D which takes time K and ε-distinguishes the distri-
butions (f(C), U[T ], h(C,U[T ])) and (f(C), U[T ], U[M ]). We
now give an inversion algorithm for f . The inversion al-
gorithm is given an input z ∈ S to invert. We first define
a weight function w = wz : [T ] × [M ] → [0, 1] by letting
w(y, v) be the probability that D accepts the input (z, y, v).
As D may be probabilistic, we do not have direct access to
w. Nevertheless, we can estimate w(y, v) by random sam-
pling, and in particular, if we run D on a given (z, y, v)
O(K log K) times, with probability 1 − 1

2K we can obtain
an estimate ŵ(y, v) which differs from w(y, v) by at most
1

2K ≤ ε
4 .

On input z, our inversion algorithm runs the ε
4 soft

decoding algorithm for C with estimated weight function
ŵ = ŵz to output a list of candidates. For each candi-
date c it tests if f(c) = z and outputs the first such c if it
exists.

We now analyze the running time. The decoding algo-
rithm runs in time K given access to ŵ. Since each access
to ŵ is computed by O(K log K) accesses to W , each of
which in turn takes time K, the total running time of the
decoding algorithm is K · O(K log K) · K = O(K3 log K).
The candidate list has size at most K, since the decoding
algorithm itself runs in time K except for accesses to ŵ.
Therefore, the running time for the candidate checks is at
most K ·

√
K4 = K3. Thus the total running time is o(K4).

We now show that the algorithm inverts many in-
puts z. We know that D ε–distinguishes the dis-
tributions (f(C), U[T ], h(C,U[T ])) and (f(C), U[T ], U[M ]).
Say, without loss of generality, that D accepts
(f(C), U[T ], h(C,U[T ])) more often than (f(C), U[T ], U[M ]).
I.e.,

E c,y,
z=f(c)

wz(y, h(c, y)) ≥ Ey,vwz(y, v) + ε = ρ(wz) + ε.

Equivalently,
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Ec[
Ag(C(c), wz)

T
] ≥ ρ(wz) + ε.

An averaging argument then gives that there is a set A
of size at least ε

2C, such that for all c ∈ A,

Ag(C(c), wz)
T

≥ ρ(wz) +
ε

2
(4)

Now, say z is of the form z = f(c) for c ∈ A. Then, with
probability at least 1−K · 1

2K = 1
2 , all the estimated weights

ŵz(y, v) will be within ε/4 of the true weight wz(y, v). Since
we output all c such that

1
T

Ag(C(c), ŵz) ≥ ρ(ŵz) +
ε

4
,

if our estimates are accurate and our input is z = f(c) for
c ∈ A, then c will appear in the candidate list. Hence,
with probability at least 1

2 some element of f−1(z) will be
output. Since A constitutes a ε/2 fraction of all inputs
and our algorithm runs in time o(K4), this contradicts the
security of f . We conclude that h is hardcore.

We can now use the extractor code CTR to obtain a hard-
core function outputting many bits with few auxiliary ran-
dom bits.

Theorem 5: There exists a constant α > 0 such that
TRc,m=αk,ε= 1

cM
: [C] × [T] → [M = Kα], defined above

in Section VII, is hardcore with security (K = 2k, ε). Fur-
thermore, the function uses only t auxiliary randomness
where t ≤ O((log c + log(1

ε ))
2).

Proof: We have T ≤ M and ε = 1
M and so the decod-

ing running time is bounded by p(M) for some polynomial
p(·). We choose M so that p(M) ≤ K, which holds as long
as m ≤ αk for some constant α < 1, and then the decoding
running time is at most K. By Theorem 4 the function
TR is hardcore with security (K, ε). The number of truly
random bits used for these parameters is t = O(log2( c

ε )).

The function TR is hardcore for all one-way functions
with security (K4, ε

4 ). We can think of a one-way func-
tion with security (K4, ε

4 ) as having ”hardness” 4k. We
therefore see that for every such f the function TR out-
puts a constat fraction of the hardness of f , and does so
while using only very few auxiliary random bits. Thus, the
hardcore function TR uses few random bits and outputs an
almost optimal number of hard bits.
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