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Abstract—In a recent work, Kumar, Meka, and Sahai (FOCS
2019) introduced the notion of bounded collusion protocols
(BCPs). BCPs are multiparty communication protocols in
which N parties, holding n bits each, attempt to compute some
joint function of their inputs, f : ({0, 1}n)N → {0, 1}. In each
round, p parties (the collusion bound) work together to write
a single bit on a public blackboard, and the protocol continues
until every party knows the value of f .

BCPs are a natural generalization of the well-studied
number-in-hand (NIH) and number-on-forehead (NOF) models,
which are just endpoints on this rich spectrum of protocols
(corresponding to p = 1 and p = N − 1, respectively).
In this work, we investigate BCPs more thoroughly, and
answer questions about them in the context of communication
complexity, randomness extractors, and secret sharing.

1. First, we provide explicit lower bounds against BCPs. Our
lower bounds offer a tradeoff between collusion and complexity,
and are of the form nΩ(1) when p = 0.99N parties collude. This
bound is independent of the relationship between N,n, whereas
all previous bounds became trivial when N > 1.1 logn.

2. Second, we provide explicit leakage-resilient extractors
against BCPs. Also known as cylinder-intersection extrac-
tors, these objects are multi-source extractors of the form
Ext : ({0, 1}n)N → {0, 1}, whose output looks uniform even
conditioned on the bits produced (“leaked”) by a BCP executed
over the inputs of the extractor. Our extractors work for
sources with min-entropy k ≥ polylog(n) against BCPs with
collusion p ≤ N − 2. Previously, all such extractors required
min-entropy k ≥ 0.99n even when p ≤ O(1).

3. Third, we provide efficient leakage-resilient secret sharing
schemes against BCPs. These cryptographic primitives are
standard t-out-of-N secret sharing schemes, equipped with an
additional guarantee that the secret remains hidden even if
the individuals participate in a BCP using their shares. Our
schemes can handle collusion up to p ≤ O(t/ log t), whereas
the previous best scheme required p ≤ O(logN).

Along the way, we also construct objects that are more
general than those listed above (i.e., compilers), objects that
are more specialized (and stronger) than those listed above,
and resolve open questions posed by Goyal and Kumar (STOC
2018) and Kumar, Meka, and Sahai (FOCS 2019).

Keywords-bounded collusion protocols; multiparty commu-
nication complexity; randomness extractors; secret sharing;
leakage-resilience; lower bounds

I. INTRODUCTION

We begin by motivating our questions through the three
main focus areas of this work: communication complexity,
randomness extractors, and secret sharing.

Multiparty communication complexity: In a seminal
work, Yao [1] initiated the study of communication complex-
ity, where one seeks to understand how much communica-
tion is needed to compute a function f when its input is split
between two parties. Since its introduction, communication
complexity has blossomed into a central area of complexity
theory, with connections to many other fields (see, e.g., the
excellent book [2]).

Here, we focus on the multiparty setting - when the
input is split amongst more than two parties. Perhaps the
most natural way to define the multiparty communication
complexity of a function f would be via number-in-hand
(NIH) protocols ([3]–[5]). In this model, the input is split
evenly across the participating parties, and each party can
see only the input provided to them. The parties may
communicate by writing on a public blackboard, and the
protocol continues until every party knows the value of
f . The NIH multiparty communication complexity of f ,
denoted CCNIH(f), is then defined as the number of bits
that must be communicated by any such protocol (in the
worst case over all inputs).

In 1983, Chandra, Furst, and Lipton [6] introduced an al-
ternative way to define multiparty communication complex-
ity via so-called number-on-forehead (NOF) protocols. Here,
the input is once again split evenly across the participating
parties, but each party is now able to see all inputs except
their own (which, metaphorically, is written on their fore-
head). The parties still communicate via a public blackboard,
and the NOF multiparty communication complexity of f ,
denoted CCNOF(f), is defined analogously to CCNIH(f).
Because each party can see much more of the input in NOF
protocols than in NIH protocols, NOF protocols are much
more powerful and hence CCNOF(f) ≤ CCNIH(f).

It turns out that multiparty communication protocols offer
an attractive model in which to pursue lower bounds, for two
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reasons. First, these protocols appear to be simple enough
to reason about combinatorially: if we write down a boolean
function1 f : ({0, 1}n)N → {−1, 1} in the cells of a
multi-dimensional matrix Mf , one can get lower bounds on
CCNIH(f) and CCNOF(f) by upper bounding the discrepancy
of certain well-structured subsets of Mf . Second, these
protocols appear to be rich enough to capture seemingly
unrelated models of computation: NIH lower bounds imply
(memory) lower bounds against streaming algorithms [7],
while NOF lower bounds imply lower bounds in proof
complexity [8] and circuit complexity [9]–[13] (for more
connections, see the excellent survey [14]). Finally, as we
will see, lower bounds against these protocols find great
applicability in settings where hardness is considered “good”
(like cryptography) [15].

Given these beautiful connections, it is natural to wonder
whether NIH and NOF protocols can be placed into a
more general framework of protocols, whose exploration
could offer further insight into the above applications and
lower bounds. In a recent work [15], Kumar, Meka, and
Sahai introduced exactly such a family of communication
protocols, called bounded collusion protocols (BCPs). Like
the protocols we’ve seen before, BCPs are defined with
respect to N parties, holding n bits of input each, who
wish to compute a function f : ({0, 1}n)N → {0, 1} while
communicating via a public blackboard. Unlike the protocols
we’ve seen before, BCPs consider an additional parameter p
(the collusion bound): in every round of the BCP, p parties
may get together to write a bit on the blackboard, using all
of the input in their possession.

BCPs define a natural spectrum of communication proto-
cols, which is induced by the collusion bound p and gets
more powerful as p increases. Furthermore, it is easy to
see that NIH and NOF protocols are just endpoints on this
spectrum (at p = 1 and p = N − 1, respectively). Thus, if
we define CCp(f) as the communication complexity of the
function f : ({0, 1}n)N → {0, 1} with respect to BCPs with
collusion bound p, we have:

CCNOF(f) = CCN−1(f) ≤ CCN−2(f) ≤ . . .
≤ CC2(f) ≤ CC1(f) = CCNIH(f).

It is relatively straightforward to come up with an explicit
function f : ({0, 1}n)N → {0, 1} such that CCNIH(f) ≥ n
(see, for example, the books [14], [16]), whereas getting
strong explicit lower bounds against NOF protocols is much
more difficult: the best known results [17], [18] are of the
form CCNOF(f) ≥ Ω(n/2N ). It is natural to wonder how
explicit lower bounds against BCPs (and the difficulty of
proving them) evolve from the NIH side of the spectrum
to the NOF side of the spectrum. This leads us to our first
question:

1Here and throughout, N and n are distinct parameters.

Question 1. Can we provide explicit lower bounds that
exhibit a collusion-complexity tradeoff against the spectrum
of BCPs?

In particular, it would be especially interesting to under-
stand when we can obtain nontrivial explicit lower bounds
in the setting N � log n. No such bounds are known for
NOF protocols, and in fact overcoming this “logarithmic
barrier” is a longstanding challenge in complexity theory.
Indeed, it has been shown that any significant improvements
to the best NOF lower bounds would yield a breakthrough in
circuit complexity, by providing new lower bounds against
the circuit class ACC0 [10], [12], [13]. Our first main result
(Theorem 1) will answer the above questions, and in fact
show that upon slightly reducing the collusion bound from
p = N − 1 (NOF) to p = 0.99N , we can obtain explicit
lower bounds of the form CCp(f) ≥ nΩ(1), regardless of
the dependence between N,n.

Leakage-resilient extractors: The second main question
that we consider will ask whether we can strengthen the
above explicit worst-case lower bounds to something even
stronger: average-case bounds (or, equivalently, correlation
bounds). In particular, we would like to explore whether
it is possible to explicitly construct a function f such that
every BCP requires a large amount of communication to
compute f even on just slightly more than half of all
possible inputs.2 We will in fact consider an even more
challenging goal: obtaining such correlation bounds under
non-uniform distributions on the input. In order to better
understand and motivate our question, we will venture into
the world of randomness extractors.

Extractors are fundamental objects in pseudorandomness,
motivated by the observation that most applications of ran-
domness in computer science require access to uniform ran-
dom bits, yet the bits that we are able to harvest from nature
are often biased and correlated. Extractors are algorithms
that purify biased samples of randomness into samples that
look uniform, thus offering a solution to the above problem.
More formally, an extractor Ext : {0, 1}n → {0, 1}m is a
single deterministic function, defined with respect to some
error ε and family of distributions X over {0, 1}n. It offers
the guarantee that for any source X ∈ X ,

|Ext(X)−Um| ≤ ε,

where Um is the uniform distribution over {0, 1}m, and
| · | represents the standard statistical distance. Since their
introduction, extractors have found beautiful applications in
cryptography, coding theory, derandomization, and combi-
natorics. We refer the reader to [19], [20] for an excellent
introduction to the area.

2Note that there is always a trivial BCP that computes f on at least
half of all possible inputs: the BCP that always outputs 0, or the BCP that
always outputs 1.
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One of the most well-studied models of randomness
extraction is the setting where each X ∈ X consists of N
independent sources [21]–[25]. Here, the general extractor
definition above specializes to give a so-called extractor for
independent sources Ext : ({0, 1}n)N → {0, 1}m which
guarantees that, given as input N independent sources over
{0, 1}n, each with min-entropy at least k, it will output m
bits that are close to uniform.3 Recently, Kumar, Meka, and
Sahai introduced a much stronger variant of such extractors,
which they call cylinder-intersection extractors [15].

A cylinder-intersection extractor is a multi-source ex-
tractor that offers an additional guarantee that its output
will look uniform even conditioned on the output of a
BCP executed on the inputs to Ext. More formally, we
define the class BCP(p, µ) to consist of all functions g :
({0, 1}n)N → {0, 1}µ representing the bits written on
the public blackboard by some BCP (its transcript), with
collusion bound p, executed over N parties holding n bits
each. Then, a cylinder-intersection extractor Ext against
BCP(p, µ) guarantees that, for any N independent sources
X = (X1, . . . ,XN ), each with min-entropy at least k, and
any BCP transcript g ∈ BCP(p, µ),

|(Ext(X), g(X))− (Um, g(X))| ≤ ε,

where Um is independent of g(X). Thus, cylinder-
intersection extractors are classical independent source ex-
tractors, equipped with an additional guarantee of being
leakage-resilient against BCPs. As such, we will also refer to
these objects as leakage-resilient extractors (LREs) against
BCPs.

Beyond being interesting objects in their own right, there
are several reasons to study such leakage-resilient extractors.
First, one can observe that such extractors for min-entropy
k = n, which output m = 1 bit, are actually functions
with high average-case communication complexity (also
known as distributional communication complexity) against
BCPs. Thus, as noted in [15], asking if we can construct
even stronger objects that work for k � n is a natural
way to translate our original question from communication
complexity into the land of extractors. Furthermore, in very
recent subsequent work, it was shown that LREs against
BCPs can be used to create much improved extractors for
more classical settings [26], and it is also not difficult to
imagine settings in cryptography where such objects can
come in handy (see the full version of this paper).

All of this motivates our second main question:

Question 2. Can we construct leakage-resilient extractors
against BCPs for min-entropy k � n?

Our second main result(s) (Theorems 2 and 3) answer
this question positively, and shows that we can construct

3The min-entropy of a source X over {0, 1}n is at least k if and only
if Pr[X = x] ≤ 2−k , for all x ∈ support(X).

such objects even when k = polylog(n). Furthermore, the
tradeoff we obtain between allowed leakage µ and collusion
bound p almost exactly matches the complexity-collusion
tradeoff in our answer to Question 1.

Leakage-resilient secret sharing: The third main ques-
tion that we consider revisits the original motivating ap-
plication considered by Kumar, Meka, and Sahai [15] in
their introduction of BCPs: leakage-resilient secret sharing
schemes. Secret sharing schemes were introduced in the
seminal works of Blakley [27] and Shamir [28] and have
since become a classical cryptographic primitive. These
schemes capture the natural setting of a central authority
who wishes to share some secret (e.g., missile launch codes)
among a group of N somewhat trusted individuals. Each
individual is to receive a portion (or share) of the secret, so
that any t of them may reconstruct the secret, but any fewer
than t of them cannot recover any information. Formally,
these schemes are known as t-out-of-N schemes.

Kumar, Meka, and Sahai study a much stronger variant
of secret sharing, known as leakage-resilient secret sharing
(LRSS). In addition to the above thresholding guarantees, an
LRSS scheme guarantees that the secret will remain statis-
tically hidden even against much stronger adversaries. The
adversaries they consider are exactly the family of bounded
collusion protocols BCP(p, µ) (defined above) acting over
the N individuals participating in the scheme.4 It turns out
that BCPs are an especially natural class against which one
may want to ensure leakage-resilience of a secret sharing
scheme: not only do BCPs generalize and strengthen several
previous models of leakage (from non-adaptive, disjoint
settings to an adaptive, joint setting), but their definition also
allows one to leverage tools from communication complexity
to construct such LRSS schemes.

Indeed, in [15] the authors show that by using a function
with high (distributional) communication complexity against
NOF protocols, it is possible to construct LRSS schemes
against NOF protocols. However, there is a catch: because
the best known NOF lower bounds are quite weak (recall
from earlier that they are of the form Ω(n/2N )), it turns out
that in order to make the schemes leakage-resilient, each
individual must be provided with a secret share of size �
2N . Because efficiency in secret sharing is classified by share
size growing polynomially in the number of participants, N ,
a new idea is needed.

By applying the above NOF lower bounds to a smaller
number of parties, and by reusing shares via perfect hash
families, Kumar, Meka, and Sahai are able to circumvent
this issue (at least for BCPs) and construct LRSS schemes.
However, while they successfully remove the exponential
dependence of share size on N , they incur an exponential
dependence of share size on p. As such, they are only able

4As a sanity check, it is useful to observe that a t-out-of-N secret-sharing
scheme can only be equipped with leakage-resilience against BCP(p, µ)
when p < t.
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to ensure leakage-resilience against BCPs with collusion
p = O(logN). This is again an artifact of the weak
Ω(n/2N ) NOF lower bounds, which they use as a black
box in their construction. Indeed, as observed in [15],
efficient t-out-of-N LRSS schemes for t = p + 1 with
p = ω(logN) would resolve longstanding bottlenecks in
complexity theory. However, it is not unreasonable to think
that if we have stronger lower bounds against BCPs (which
do not follow from applying NOF bounds in a black box
manner), we may be able to avoid this barrier for t � p.
Luckily, as described in the previous two sections, we are
able to obtain explicit bounds of exactly this nature. This
motivates our third and final question:

Question 3. Can we use our new explicit lower bounds
against BCPs to construct efficient LRSS schemes against
BCPs with collusion p = ω(logN)?

As we will see, our third main result (Theorem 4) an-
swers this question in the affirmative, and shows that we
can construct such leakage-resilient t-out-of-N schemes for
collusion p ≤ O(t/ log t). For the special case of N -out-of-
N schemes, we can handle p up to 0.99N .

We now proceed to formally state our main theorems.

A. Summary of Our Results

In our first main theorem, we establish explicit lower
bounds against the spectrum of BCPs. These bounds exhibit
a collusion-complexity tradeoff, answering Question 1.

Theorem 1. For all N,n ∈ N and p ≤ N − 1, there exists
an explicit function f : ({0, 1}n)N → {0, 1} with

CCp(f) ≥ Ω
(
n

log(N/p)
log(N/p)+1

)
.

In particular, Theorem 1 provides an explicit function f
such that for BCPs with p = 0.99N collusion, CCp(f) ≥
nΩ(1). Previously, the best known result [15] followed imme-
diately from lower bounds against NOF protocols [17], and
was of the form CCp(f) ≥ Ω (n/2p).5 Thus, all previous
bounds against p = 0.99N collusion became trivial when
N > 1.1 log n.

Next, we show that we can significantly strengthen our
explicit lower bounds to average-case lower bounds, and
in fact strengthen these even further to produce leakage-
resilient extractors against BCPs for polylogarithmic en-
tropy (such extractors, even for full entropy, give explicit
average-case lower bounds against BCPs). Furthermore,
we achieve a collusion-leakage tradeoff that mirrors the
collusion-complexity tradeoff from the previous result. We
record our second main theorem, which answers Question 2
and a question of Kumar, Meka, and Sahai [15].

5We note that our function in Theorem 1 can also achieve this bound,
which is slightly better when, e.g., p = O(1).

Theorem 2. For all N,n, k ∈ N satisfying N ≥ 3 and
k ≥ polylog n, and any p ≤ N − 2, there exists an explicit
leakage-resilient extractor Ext : ({0, 1}n)N → {0, 1}m
against BCP(p, µ) for min-entropy k, with output length
m = µ and error ε = 2−µ, where

µ = kΩ( log(N/p)
log(N/p)+1 ).

In particular, Theorem 2 provides an explicit extractor for
k ≥ polylog(n) entropy that can handle kΩ(1) leakage from
BCPs with p = 0.99N collusion. Previously, the best known
result [15] followed immediately from lower bounds against
NOF protocols [17], and required min-entropy k ≥ 0.99n
even for p ≤ O(1) collusion. In addition to our explicit
extractor, we also provide a much more general object:
an explicit compiler that can transform any function with
NOF lower bounds into a leakage-resilient extractor against
BCPs. As NOF lower bounds are strengthened over time,
our compiler is guaranteed to produce improved extractors.

Theorem 2 can handle up to p = N − 2 collusion. In the
extreme setting of p = N − 1 collusion (i.e., NOF leakage),
we construct the following extractor.

Theorem 3. For all N,n, k ∈ N satisfying N ≥ 6 and
k ≥ 0.3n, there exists an explicit leakage-resilient extractor
Ext : ({0, 1}n)N → {0, 1} against BCP(N − 1, µ) for min-
entropy k with error ε = 2−µ, where µ = Ω(n/2N ).

We remark that in the case N = 3 (resp., 4, 5), Theorem 3
will work for min-entropy k ≥ 0.4n (resp., k ≥ 0.33n).

In our final main theorem, we combine our explicit
(average-case) lower bounds with new ideas to construct
much improved t-out-of-N secret sharing schemes that are
leakage-resilient against BCPs, answering Question 3.

Theorem 4. For all N ≥ t ≥ 2, there exists an efficient6 t-
out-of-N secret sharing scheme (Share,Rec) that is leakage-
resilient against BCP(p, µ) and complete leakage of any t−1
shares, provided p ≤ O(t/ log t).

As a crucial step towards Theorem 4, we design effi-
cient N -out-of-N schemes that can handle collusion up to
p = 0.99N . Previously, all efficient secret sharing schemes
could only handle p = O(logN) collusion [15]. In addition
to these schemes, we also provide a much more general
object: an explicit compiler that can transform any given
secret sharing scheme having authorized sets of size at least
t into a scheme that is leakage-resilient against BCPs with
collusion p ≤ O(t/ log t). Thus, we can also obtain leakage-
resilient schemes for access structures like monotone span
programs, monotoneP, and monotoneNP, by instantiating
our compiler with previous schemes ([29]–[31]). Finally, in
the special case of BCPs over disjoint subsets of individ-
uals, our t-out-of-N schemes can handle optimal collusion
p = t− 1, resolving a question of Goyal and Kumar [32].

6A scheme is efficient if its sharing and reconstruction functions run in
time poly(N,m, µ, log(1/ε)) for m bit secrets.
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B. Relevant Prior Work

Bounded collusion protocols: BCPs were introduced
by Kumar, Meka, and Sahai in [15]. There, the authors
provided preliminary explicit lower bounds against BCPs
(as discussed in the previous section), but primarily focused
on the application of BCPs to secret sharing. Given their
recent introduction, no other work has been done on BCPs
- we hope, however, they will become a fruitful object of
study.

Extractors: Generalizing the work of Santha and Vazi-
rani [33] and Vazirani [34], Chor and Goldreich [21] ini-
tiated the study of extractors for independent sources in
1988. Since then, a beautiful line of work [22]–[25] has
provided explicit constructions of these objects with near-
optimal parameters. Recently, several works have emerged
that study randomness extractors for “slightly dependent”
sources [35]–[37]. In the current paper, we study cylinder-
intersection extractors (which we also call leakage-resilient
extractors against BCPs). These may indeed be viewed as
extractors for “slightly dependent” sources, but the depen-
dence model here is very different from the aforementioned
works. Cylinder-intersection extractors were introduced by
Kumar, Meka, and Sahai [15].

Secret Sharing: Secret sharing schemes were intro-
duced in the seminal works of Blakley [27] and Shamir [28].
These schemes, while originally envisioned with only the
goal of t-out-of-N secrecy, have since been strengthened in
various ways (see the survey [30]). In the current paper, we
focus on equipping secret sharing schemes with leakage-
resilience, which has a long history in cryptography (see,
e.g., the survey of Kalai and Reyzin [38]). In the context
of secret sharing, leakage-resilience has recently garnered
significant interest [15], [32], [39]–[46]. We refer the reader
to [15] and [45] for a more detailed overview.

C. Open Problems

Improved cylinder-intersection extractors for NOF
leakage: In the current paper, we construct leakage-resilient
extractors against BCPs with collusion p ≤ N − 2, which
work for k ≥ polylog(n) entropy. In the NOF case (p =
N −1), however, our extractors require k ≥ 0.3n entropy. It
would be very nice to reduce the entropy requirement in this
more difficult case, even just to k ≥ o(n), as we imagine
this will require significantly new techniques.

Lifting theorems for the NOF model: Two-source
extractors have been useful for obtaining query-to-
communication lifting theorems for the case of two parties
[47]. It is an interesting research direction to use our new
leakage-resilient extractors against BCPs to obtain lifting
theorems for the multiparty case.

Reduce the gap between p and t for LRSS: In the
current paper, we design efficient t-out-of-N secret sharing
schemes for collusion up to p ≤ O(t/ log t). However, it
may still be possible to reach p = 0.99t for all t < N , which

would match our results for the special case of t = N . It
would be interesting to reduce this gap, perhaps by designing
schemes that do not rely on ramp hash families (since this
gap originates from natural barriers that come from such
families).

Leakage-resilient multiparty computation (MPC): Fi-
nally, it would be interesting to try to design leakage-
resilient MPC protocols as a possible application of our
LRSS schemes. Prior work of Goyal et al. [48] designs such
protocols only for the two party case, and leaves open the
design of such protocols for a higher number of parties.

D. Organization

In Section II, we provide an overview of the techniques
we use to prove our main results. In Section III, we discuss
some basic preliminaries, and include formal definitions
for several key notions that were discussed informally in
Section I. Next, in Section IV, we construct explicit lower
bounds and leakage-resilient extractors against BCPs, prov-
ing Theorems 1 and 2. Finally, in Section V, we explicitly
construct a leakage-resilient extractor against NOF leakage,
proving Theorem 3. The proof to Theorem 4, and the
remarks sprinkled throughout Section I-A, can be found in
the full version of the paper.

This paper is a merge of the works [49], [50]. Together,
these should be referenced as the full version of the paper.

II. OVERVIEW OF TECHNIQUES

In what follows, we provide a high level overview of the
techniques we use to prove our main results (recorded in
Section I-A).

A. Explicit Lower Bounds Against BCPs

We start by outlining the proof of our explicit lower
bounds against BCPs (Theorem 1). We recall that a function
hard : ({0, 1}n)N → {0, 1} has complexity CCp(hard) > µ
if, for any BCP protocol g ∈ BCP(p, µ) and uniform random
variable X ∼ ({0, 1}n)N , it holds that hard(X) becomes
a constant with probability less than 1 upon fixing g(X)
(see Remark 1). Thus, we aim to explicitly construct such a
function hard with µ matching the parameters in Theorem 1.
We will show that, in fact, it suffices to simply take hard to
be an explicit function that exhibits the best known lower
bounds against NOF protocols.

We will take hard to be the finite field multiplication func-
tion FFMN : ({0, 1}n)N → {0, 1}. On input (x1, . . . , xN ),
this function interprets these strings as elements of F2n ,
takes their product over this field, interprets this result
again as a boolean string, and outputs the first bit. Using
discrepancy arguments over objects known as Hadamard
tensors, Ford and Gál show [18] that this extremely simple
function has NOF complexity CCNOF(FFMN ) ≥ Ω(n/2N ).

Our first key observation is that this function enjoys
the special property of self-reducibility: if we feed it N
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uniform independent random variables, and fix any N−K of
them to nonzero values, then we simply obtain an instance
of FFMK : ({0, 1}n)K → {0, 1} called on independent
uniform random variables. We will now describe how to use
this property to lift the known NOF lower bounds against
FFMN to BCP lower bounds.7 The overview below will
actually obtain lower bounds against non-adaptive BCPs, as
there is an easy way to transform these into lower bounds
against adaptive BCPs (see full version).

The main idea is as follows. Let g : ({0, 1}n)N → {0, 1}µ
be the transcript (bits written on the blackboard) of an
arbitrary non-adaptive BCP; that is, g ∈ nBCP(p, µ). In
order to show that CCp(FFMN ) > µ, we just need to
show that FFMN (X) becomes constant with probability
less than 1 upon fixing g(X), where X = (X1, . . . ,XN )
is uniform over ({0, 1}n)N . In order to leverage the self-
reducibility of FFMN , we would like to somehow find a
subset S ⊆ [N ] of t random variables {Xi}i∈S with the
guarantee that no leaked bit in g depends on all of them (in
other words, during no round were all of the parties in S
involved in a joint collusion). If we can find such a set S,
then we can fix all random variables outside of that set. The
value FFMN (X) then becomes FFMt((Xi)i∈S), while g(X)
becomes g′((Xi)i∈S) for some NOF protocol g′. Thus, by
applying the NOF lower bounds from [18], we immediately
get bounds of the form CCp(FFMN ) ≥ Ω(n/2t).

Thus, in order to get the best possible lower bounds for
CCp(FFMN ), we would like to find such a subset S with
as small size t as possible.8 The first idea in this direction
is to attempt to find such a subset with size t = p + 1:
this is of course always possible, since every such subset
of this size is guaranteed to never work together in a joint
collusion, simply by the fact that the collusion bound in
g is p. This immediately produces bounds of the form
CCp(FFMN ) ≥ Ω(n/2p+1) = Ω(n/2p). While these are
better than the general NOF bound Ω(n/2N ) for small p,
they become trivial whenever p > log n. We would like to
try to handle much larger collusion.

To go beyond the logarithmic barrier, the key idea is to
consider the round bound µ, and notice that sometimes we
can actually find such a subset of size t � p + 1, if there
are not too many rounds of communication. In particular,
let us fix t ∈ [1, N ] to some value that will be chosen later,
and observe that there are

(
N
t

)
subsets with the desired “non-

joint” property at the beginning of the protocol. Furthermore,
each time a bit is leaked, it can depend on at most p
parties, and thus at most

(
p
t

)
subsets of size t will lose

the “non-joint” property that we desire. Thus, as long as

7The use of self-reductions to prove lower bounds in communication
complexity also appeared in the work of Podolskii and Sherstov [51].

8If we are dealing with some specialized type of BCP that guarantees the
existence of such a set by definition, then of course we can stop here and
get very strong complexity bounds of the form CCp(FFMN ) ≥ Ω(n/2t).
But this will not be the case for general BCPs with collusion bound p.

µ
(
p
t

)
<
(
N
t

)
, we will always be left with at least one subset

with the desired property. By reordering this inequality and
applying Stirling’s formula, the condition µ < Ω((N/p)t)
also suffices. Thus, we immediately get that for any round
bound µ that obeys both µ < Ω((N/p)t) (so that we can find
a “non-joint” subset) and µ < Ω(n/2t) (to ensure that we
can apply the NOF lower bounds of the self-reduced FFMN

function), it holds that CCp(FFMN ) ≥ µ. Thus, setting
t = logn

log(N/p)+1 immediately gives Theorem 1, which in
particular provides us with polynomial lower bounds against
p = 0.99N collusion, for any N,n.

B. LREs Against BCPs for Polylogarithmic Entropy

It turns out that without too much more work, we can
actually equip the function FFMN with a few simple add-ons
so that it becomes an explicit function with much stronger
correlation bounds than those advertised in Theorem 1 (and
outlined in the previous section). Indeed, in this section we
will outline the proof of Theorem 2, which shows that we
can turn FFMN into a leakage-resilient extractor against
BCPs with excellent parameters.

The first step is to augment FFMN so that it achieves
high average-case (or distributional) communication com-
plexity against NOF protocols. Luckily, the discrepancy-
based techniques used by Ford and Gál for their worst-case
bounds yield average-case bounds for free. In particular, in
[18] the authors show that CCNOF

ε (FFMN ) ≥ Ω(n/2N ) for
ε = 2−Ω(n/2N ). Thus, their bounds show that not only do
NOF protocols with Ω(n/2N ) rounds fail to compute FFMN

everywhere, but every such protocol offers no more than an
exponentially small advantage over a trivial (constant) pro-
tocol. Furthermore, by Remark 2, this immediately tells us
that for any g ∈ NOF(µ), it holds that |FFMN (X)◦g(X)−
U1 ◦ g(X)| ≤ ε, where X is uniform over ({0, 1}n)N , U1

is independent from X, and ε = 2−µ, where µ = Ω(n/2N ).
This tells us that FFMN : ({0, 1}n)N → {0, 1} is a leakage-
resilient extractor against NOF(µ) for entropy k = n with
error ε, where µ, ε are as above.

The next step is to augment this leakage-resilient extractor
so that it can output multiple bits, and in particular we
would like m = µ bits of output. While this extension is
not provided in [18], we show that it is straightforward to
apply standard XOR lemmas ([52]) to character sums that
appear in their paper in order to prove this result. As a result,
we obtain a function prodExtN : ({0, 1}n)N → {0, 1}m
which is simply a version of FFMN that can output multiple
bits (by taking the first m bits produced from multiplying
its inputs over F2n , instead of just the first bit). It is
now immediate that prodExtN : ({0, 1}n)N → {0, 1}m
is a leakage-resilient extractor against NOF(µ) for entropy
k = n with error ε and output length m, where µ, ε,m are
as above. Furthermore, at this point, we could plug prodExt
into the analysis of Section II-A to see that prodExt is
also an explicit leakage-resilient extractor against BCP(p, µ)
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for min-entropy k = n, with output length m = µ and
error ε = 2−µ, where µ = Ω

(
n

log(N/p)
log(N/p)+1

)
. This yields

a “uniform” version of Theorem 2, with slightly better
parameters.

We now arrive at the interesting part of the construction:
dropping the entropy requirement. We start with the observa-
tion that without any further modifications, prodExt actually
works when given sources that are missing a little min-
entropy, simply by treating them as leakage. The permissible
missing entropy, however, is extremely small - even for
N = O(1) sources, this approach could never do better than
requiring k ≥ 0.99n. Luckily, however, this “near-uniform”
leakage-resilient extractor is just good enough to enable the
next step, and heart, of our construction.

The main idea is to preprocess the inputs to prodExt
using a low-error strong two-source condenser 2Cond :
({0, 1}n)2 → {0, 1}` for polylogarithmic min-entropy.
Given two independent sources, such an object is guaranteed
to output a source with extremely high entropy, even upon
fixing one of the inputs (with high probability). An explicit
construction of such an object was only recently designed
by Ben-Aroya et al. [53], but it has already found great use
in extractor constructions.

We are now ready to construct our LRE that can han-
dle polylogarithmic entropy. The idea is to simply sacri-
fice one of the sources to use as a common seed across
N − 1 condenser calls (one for every other source).
Then, the outputs of these condenser calls are fed into
prodExt. More formally, we construct our low-entropy LRE,
which we call leProdExt : ({0, 1}n)N → {0, 1}m as
follows: on input X = (X1, . . . ,XN ), define Yi :=
2Cond(Xi,XN ), for each i ∈ [N − 1]. Then, construct
prodExt : ({0, 1}`)N−1 → {0, 1}m as before, and simply
output prodExt(Y1, . . . ,YN−1).

To prove that this leakage-resilient extractor achieves the
parameters advertised in Theorem 2, all that we need to do
is fix the common seed XN , and by a union bound, each
random variable Yi, i ∈ [N−1] obtains extremely high min-
entropy. Furthermore, fixing XN makes Yi a deterministic
function of Xi, for each i ∈ [N −1], and thus these random
variables are all independent. This essentially completes the
reduction from the low-entropy case for leProdExt to the
near-uniform case for prodExt, whose analysis we already
know, from above. All that remains is the simple observation
that leaks we must provide resilience against are still acting
on {Xi}i∈[N−1], whereas we need them to be acting on
{Yi}i∈[N−1] (the inputs to prodExt) in order to apply this
extractor’s leakage-resilience properties. We can easily take
care of this, simply by fixing any additional randomness
that appears in {Xi}i∈[N−1] (but not in {Yi}i∈[N−1]). This
proves Theorem 2.

A compiler that produces LREs against BCPs: Above,
we discussed how we can transform a single explicit func-

tion (FFMN ) with lower bounds against NOF protocols
into a much stronger object: a leakage-resilient extractor
against BCPs for polylogarithmic min-entropy. Given this
construction, it is natural to wonder whether there exists
a general transformation, or compiler, that could transform
any explicit function with NOF lower bounds into LREs
against BCPs. Such a compiler would be useful because it
would be guaranteed to produce improved leakage-resilient
extractors as NOF bounds are strengthened over time. In
the full version of our paper, we explicitly construct exactly
such an object.

The spirit of our compiler is very similar to that of
our simple LRE that is discussed above. However, several
complications arise from the fact that our construction above
relied heavily on FFMN in a white box manner. In particular,
we relied on its self-reducibility, in the sense that FFMN

looks like FFMt on any t of its inputs. If we wish to simulate
this behavior in a black box manner (with an arbitrary
function hard that has NOF lower bounds), one natural idea
is to make a call to hard over every t-tuple of inputs, and take
the bitwise XOR of the results. But even if the sources are
uniform, we immediately run into a problem: if t = ω(1),
then this construction is no longer efficient.

We circumvent the above issue by using a sampler over
the sources to select t-tuples, instead of brute-forcing over
all of them. But now, if we wish to drop the entropy of the
sources by even just a little, this could incur too large an er-
ror in the sampler, which was expecting to receiving uniform
bits. It turns out, however, that by sacrificing an additional
source and using some extra two-source extractor calls, we
can bypass this issue as well. As a result, we are able to
successfully adapt the FFMN -to-LRE transformation above
to work with an arbitrary NOF-hard function in a black box
manner, and thereby construct an explicit compiler.

C. LREs Against NOFs via Exponential Sums

Our polylogarithmic extractor described above works for
all p ≤ N − 2. The case p = N − 1 corresponding to NOF
leakage seems much more difficult. In this case, relying on
recent results in additive combinatorics, we are still able to
construct extractors that can handle min-entropy k ≥ 0.3n,
and prove Theorem 3. Our starting point is a result of Kamp,
Rao, Vadhan, and Zuckerman [54], who used exponential
sum estimates of Bourgain, Glibichuk, and Konyagin [55]
to construct extractors for any constant min-entropy rate,
given just a constant number of independent sources.

To give our extractor construction, we begin with some
notation. Let Fq be the prime field of cardinality q. Inspired
by the extractor of Bourgain [22] and Kamp et al. [54], our
N source extractor Ext : FNq → {0, 1} is defined as

BouExt(x1, . . . , xN ) = sign sin

(
2π
∏
i∈[N ] xi

q

)
,
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where sign is the usual sign function defined as sign(x) = 1
if and only if x ≥ 0. Bourgain [22] noted that the above
is an extractor for rate δ if we can obtain non-trivial upper
bounds on the exponential sum∣∣∣∣∣∣

∑
x1∈X1

. . .
∑

xN∈XN

eq

 ∏
i∈[N ]

xi

∣∣∣∣∣∣ ,
where eq is the exponential function, defined as eq(x) =

exp
(

2πix
q

)
, and X1, . . . , XN are arbitrary subsets of Fq of

size qδ . Bounds with optimal subset sizes have been obtained
by Bourgain [56].

Intuitively, notice that the choice of x2 is independent of
the choice of x1, and thus sums of the above form cor-
respond to independent source extractors. To model sources
correlated by NOF leakage, we need to look towards a richer
class of exponential sums. For example, to model three
sources against NOF leakage, we can use three indicator
functions (traditionally known as cylinders) φ1,2, φ2,3, φ1,3,
each of the form F2

q → {0, 1}. In more detail, the cylinder
φ1,2 decides whether or not to sum over the input x1, x2,
modeling the correlation between the pair of sources. Cor-
relation between every pair of sources can then be modeled
as the product of these three cylinders (traditionally known
as a cylinder-intersection [17]). Formally,

φ(x1, x2, x3) = φ1,2(x1, x2) · φ2,3(x2, x3) · φ1,3(x1, x3).

Equipping the previous exponential sum with these indi-
cators yields a richer class of sums, which are of the form∣∣∣∣∣∣

∑
x1∈X1

∑
x2∈X2

∑
x3∈X3

φ(x1, x2, x3) · eq

∏
i∈[3]

xi

∣∣∣∣∣∣ .
Fortunately, such multilinear exponential sums have been

recently considered in the additive combinatorics literature,
starting with the work of Petridis and Shparlinski [57], who
obtained concrete bounds for the special cases of 3 and 4
sources. Very recently, Kerr and Macourt [58] generalized
their result to N sources, for N � log log q.

It has been shown in [17] that each possible transcript
of an NOF protocol induces a cylinder-intersection on its
inputs. This observation allows us to rely on the above
multilinear exponential sum upper bounds to prove that
BouExt is in fact an LRE against BCP(N − 1, µ). In the
full version of this paper, we also consider more general
exponential sums, which may be of independent interest.

D. Leakage-Resilient Secret Sharing Schemes

In order to construct our LRSS schemes, we start by
constructing secret sharing schemes that are resilient against
adaptive but disjoint leakage, and then extend it to obtain
Theorem 4, which works for overlapping leakage. We begin
by considering a leader-based t-out-of-N scheme, which at

first sight looks artificial, but proves instrumental in both of
these results. Our notion can be seen as a generalization of
an idea present in the recent work of Aggarwal et al. [43],
who implicitly designed leader-based 2-out-of-N schemes
against non-adaptive and individual leakage, while designing
general LRSS schemes in the same leakage model.

Leader-based t-out-of-N schemes: For any “leader”
` ∈ [N ], we define and construct t-out-of-N schemes for
leader `, which allow the leader and any t− 1 other parties
to reconstruct the secret. More importantly, it guarantees
that the transcript of any protocol over the two unauthorized
subsets, namely [N ] \ {`} and {`} ∪U for any |U | = t− 2,
reveals nothing about the underlying secret.

Standard SS schemes from leader-based schemes: The
idea now is to share the secret Ψ using any standard t-out-of-
N scheme to obtain N shares Ψ1, . . . ,ΨN ← ShareNt (Ψ),
and make each of the N parties the leader for exactly one
of these shares. That is, Ψi is shared using a t-out-of-N
scheme for leader i. Notice that any set of less than t
parties of the final scheme can only have at most t − 1
leaders, and consequently the secret will be hidden. To prove
leakage-resilience, we use a hybrid argument, which relies
on the leakage-resilience that is ensured by our leader-based
scheme for each choice of leader. It is not hard to generalize
this result to general access structures, and we defer the
details to the full version.

Leakage-resilience against BCPs: We next sketch the
proof of Theorem 4. We first describe the basic construction
of LRSSs [15] which we will rely on. The construction in
[15] can be abstracted as follows:

1) Use a function hard for NOF protocols (in a black-box
way) to get an N -out-of-N LRSS against BCP(N −
1, µ).

2) Use several instantiations of the above LRSS, along
with perfect hash families, to build a t-out-of-N LRSS
against BCP(p, µ).

Both of these steps hit barriers at p = ω(logN) in [15]:
The first step blows up the share-length by a 2p factor,
owing to the use of NOF lower bounds; and the second
step incurs another 2O(p) factor, owing to the use of perfect
hash families [59].

If we use our average-case lower bounds against BCPs, as
opposed to NOF lower bounds, we can already implement
step (1) above without losing a 2p factor, as long as p is
any constant fraction of N . The main hurdle is now in
implementing step (2) efficiently when p = ω(logN). But
we need a new idea, as there are information theoretic lower
bounds against perfect hash families [60]. We will use two
special ingredients to circumvent this hurdle: ramp hash
families and leader-based threshold secret sharing schemes.

Ramp hash families: Inspired by the ramp secret shar-
ing literature [61], [62] and covering hash families as defined
in [63], we define ramp hash families as weaker analogues
of perfect hash families.
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Definition 1 (Ramp hash families). A family of hash
functions H = {h : [N ] → [p]} is called a (p, t,N)-
ramp hash function family if for all subsets T ⊆ [N ] of
cardinality t, there exists a function h in the family such
that h is surjective on T — that is, {h(i) : i ∈ T} = [p].

Perfect hash families correspond to (p, p,N)-ramp hash
families and necessarily need to have size at least
2Ω(p) logN [60]. But, owing to a “coupon collector” phe-
nomenon, if t > Cp log p, then there exist (p, t,N)-ramp
hash families with size poly(p) · logN . One can use the
probabilistic method to argue the existence of such families.

Such a property was first studied as covering in the work
of Alon et al. [63], who asked for the stronger requirement
that a random hash function from H be surjective on any
fixed set T with high probability. We will use an explicit
construction of such families of size poly(p, logN), due to
Meka, Reingold, and Zhou [64].

Given ramp hash families as above, we can implement
the second step of [15] (which is based on a classical idea
of Kurosawa and Stinson [65], [66]) to get “ramp” secret
sharing schemes that are leakage-resilient against collusion
p = O(t/ log t), but satisfy a weaker secrecy guarantee.
Concretely, while any t parties can recover the secret, no
p parties can reconstruct the secret. However, some set of
p+1 shares may reveal the secret, whereas we need to ensure
that no t− 1 parties can learn anything about the secret.

Stronger leader-based t-out-of-N schemes: To fix the
secrecy issue, we rely on our notion of leader-based scheme,
albeit a stronger one. Apart from the reconstruction property
as in the disjoint case, now we also require that the transcript
of any BCP, along with all but the leader’s shares, reveal
nothing about the underlying secret. To achieve this, we
need to strengthen our communication complexity lower
bounds from Theorem 1 to also hold when one set of N −1
parties to collude, in addition to the usual p-party collusion.
Fortunately, our techniques can easily be generalized to this
setting. We can then proceed as in the disjoint case, and
use these leader-based schemes to get standard t-out-of-N
SS schemes, proving leakage-resilience via an appropriately
modified hybrid argument.

III. PRELIMINARIES

We provide here formal definitions of the objects dis-
cussed informally in the introduction (BCPs, communica-
tion complexity and leakage-resilient / cylinder-intersection
extractors against BCPs). Additionally, we provide some
basic notation and concepts regarding probability. The reader
should feel free to skip this section and return should
anything become unclear.

A. Basic Notation, Definitions, and Objects

Notation: Throughout, we let ◦ denote string concate-
nation. For a string x ∈ {0, 1}n, we let xi denote the value
at its ith coordinate, and we let xS for some S ⊆ [n] denote

the concatenation of all xi, i ∈ S, in increasing order of i.
For a string x ∈ ({0, 1}n)N and i ∈ [N ], we let xi denote
its ith chunk of n consecutive bits, and for a set S ⊆ [N ],
we define xS as the concatenation of all chunks indexed by
i ∈ S.

Probability: The min-entropy of a random variable X
over {0, 1}n is defined as minx∈support(X) log(1/Pr[X =
x]), and X is said to be an (n, k) source if it has min-
entropy at least k. The statistical distance between distri-
butions X and Y over {0, 1}n, is defined as |X − Y| :=
1
2

∑
v∈{0,1}n |Pr[X = v] − Pr[Y = v]|, or equivalently,

maxS⊆{0,1}n |Pr[X ∈ S]− Pr[Y ∈ S]|.

B. Bounded Collusion Protocols

While we believe the informal definitions of BCPs (pro-
vided in the introduction) to be much more illuminating,
we provide here the formal definitions of non-adaptive and
adaptive BCPs from Kumar, Meka and Sahai [15].

Definition 2. A function f : ({0, 1}n)N → {0, 1}µ is
in the class of non-adaptive bounded collusion protocols
nBCPN,n(p, µ) if: for every i ∈ [µ], there exists a subset
Si ⊆ [N ] of size p, and a function gi : ({0, 1}n)p → {0, 1}
such that for every x ∈ ({0, 1}n)N , it holds that f(x) =
(y1, y2, . . . , yµ), where yi := gi(xSi), for every i ∈ [µ].

Definition 3. A function f : ({0, 1}n)N → {0, 1}µ
is in the class of adaptive bounded collusion protocols
BCPN,n(p, µ) if: for every i ∈ [µ], there exists a sub-
set function Si : {0, 1}i−1 →

(
[N ]
p

)
, and a function

gi : {0, 1}i−1 × ({0, 1}n)p → {0, 1} such that for every
x ∈ ({0, 1}n)N , it holds that f(x) = (y1, y2, . . . , yµ),
where yi := gi(y1, y2, . . . , yi−1, xSi(y1,y2,...,yi−1)), for every
i ∈ [µ].

For ease of exposition, we will occasionally shorten the
names of these classes. For example, when N,n are clear
from context, we will drop the subscripts of the class names,
and when p, µ are also clear from context, we simply
write nBCP and BCP. Furthermore, we define number-
on-forehead protocols and number-in-hand protocols in the
expected way: we let nNOF(µ) := nBCP(N − 1, µ) and
NOF(µ) := BCP(N−1, µ), and let nNIH(µ) := nBCP(1, µ)
and NIH(µ) := BCP(1, µ).

Next, we extend the definition of communication com-
plexity against NOF and NIH protocols to BCPs in the
expected way, and also provide an alternative definition that
will be useful later on.

Definition 4. The communication complexity of a function
f : ({0, 1}n)N → {0, 1} against BCPs with collusion bound
p, denoted CCp(f), is defined as the minimum µ such that
there exists some g : ({0, 1}n)N → {0, 1}µ ∈ BCP(p, µ)
such that for every x ∈ ({0, 1}n)N , it holds that f(x) =
g(x)µ.
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Remark 1. We can equivalently define CCp(f) as the
minimum µ such that there exists some g : ({0, 1}n)N →
{0, 1}µ ∈ BCP(p, µ) such that if we sample X uniformly
from ({0, 1}n)N , then with probability 1 over fixing g(X),
it holds that f(X) becomes fixed.

We now do the same for distributional (average-case)
communication complexity.

Definition 5. The ε-distributional communication complex-
ity of a function f : ({0, 1}n)N → {0, 1} against BCPs
with collusion bound p, denoted CCpε (f), is defined as the
minimum µ such that there exists some g : ({0, 1}n)N →
{0, 1}µ ∈ BCP(p, µ) such that f(X) = g(X)µ with
probability at least (1 + ε)/2 over sampling X uniformly
from ({0, 1}n)N .

Remark 2. We can equivalently define CCpε (f) as the
minimum µ such that there exists some g : ({0, 1}n)N →
{0, 1}µ ∈ BCP(p, µ) such that if we sample X uniformly at
random from ({0, 1}n)N , then |f(X)◦g(X)−U1◦g(X)| ≥
ε/2, where U1 is independent from g(X).

C. Randomness Extractors

In this paper, we study a much stronger (and more gen-
eral) version of classical extractors, called leakage-resilient
extractors (LREs). Such extractors offer the additional guar-
antee that their output looks uniform even conditioned on
leakage from certain families of functions.

Definition 6. Let X be a family of sources over {0, 1}n,
and F ⊆ {f : {0, 1}n → {0, 1}µ} a family of leakage
functions. A function Ext : {0, 1}n → {0, 1}m is a leakage-
resilient extractor (LRE) against F for the family X , with
error ε, if for every X ∈ X , f ∈ F ,

|Ext(X) ◦ f(X)−Um ◦ f(X)| ≤ ε,

where Um is independent from f(X).

The particular type of LREs that we examine in this paper
are cylinder-intersection extractors, which are multi-source
extractors that offer leakage-resilience against BCPs:

Definition 7 ([15]). A function Ext : ({0, 1}n)N → {0, 1}m
is a (p,N, µ)-cylinder intersection extractor for (n, k)
sources and error ε if Ext is an LRE against BCPN,n(p, µ)
with error ε, for the family of sources X where each
X = (X1, . . . ,XN ) ∈ X consists of N independent
(n, k) sources. Equivalently, we also call such objects LREs
against BCPs.

Given Definition 6, Definition 7, and Remark 2, it is
easy to see that leakage-resilient extractors against BCPs
are strictly stronger than average-case lower bounds against
BCPs.

IV. EXPLICIT LRES AGAINST BCPS

In this section, we will prove Theorems 1 and 2. As
discussed in the overview, the foundation of our leakage-
resilient extractors is the finite field multiplication function
FFMN : ({0, 1}n)N → {0, 1}. This function takes as input
N bitstrings of length n, treats them as elements of F2n ,
takes their product over this field, interprets the result again
as a bitstring over {0, 1}n, and outputs the first bit. In [18],
Ford and Gál show that CCNOF

ε (FFMN ) ≥ Ω(n/2N ) for
ε = 2−Ω(n/2N ), thereby proving strong average-case lower
bounds against this very simple function.

As a first step in transforming FFMN into a low-entropy
LRE against BCPs, we slightly modify this function so that it
can output many bits. In particular, for m ≤ n, we let σn,m :
F2n → F2m denote the function that interprets its input as an
element of Fn2 and projects it onto its first m coordinates, and
we define a multi-bit output version of FFMN as follows.

Definition 8. For any N,n,m ∈ N with n ≥ m, the product
extractor prodExt : ({0, 1}n)N → {0, 1}m is defined as:

prodExt(x1, x2, . . . , xN ) := σn,m(x1 · x2 · · · · · xN ),

where the inputs are interpreted as elements of F2n , and the
product is taken over this field.

We remark that, using the standard encoding of F2n , it
is straightforward to perform all the above operations in
poly(n,N) time (see, e.g., [20]). Now, because we have
modified the original extractor from [18], we are not able
to apply their correlation bound on FFM as a black box
in order to show that prodExt is a basic leakage-resilient
extractor. Instead, we dig into their proof and show that the
main character sum in their work can be combined with
standard XOR lemmas [52] to yield the following:

Lemma 1. For all N,n ∈ N such that N ≥ 2, the product
extractor prodExt : ({0, 1}n)N → {0, 1}m from Definition 8
is an explicit leakage-resilient extractor against nNOF(µ)
for entropy k = n and leakage µ = ξ, output length m = ξ,
and error ε = 2−ξ, where ξ = Ω(n/2N ).

As the techniques used to prove Lemma 1 are relatively
standard, we refer the reader to a full version of the paper
for a proof.

A. Handling More Leakage When There Is Less Collusion

Next, we show that without any further modifications,
prodExt can handle leakage from BCPs across a very general
range of parameters, and furthermore achieve a nontrivial
tradeoff between leakage (complexity) and collusion. In
particular, we prove the following lemma, and note that we
optimize to pick a good setting for t in Section IV-C.

Lemma 2. For all sufficiently large N,n ∈ N and any
t, p ∈ N such that t ≤ N and p ≤ N − 1, the product
extractor prodExt : ({0, 1}n)N → {0, 1}m from Definition 8
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is an explicit leakage-resilient extractor against nBCP(p, µ)
for entropy k = n and leakage µ < min{ξ,

(
N
t

)
/
(
p
t

)
},

with output length m = ξ and error ε = 2−ξ, where
ξ = Ω(n/2t).

Proof: We must show that for N independent uniform
sources X = (X1, . . . ,XN ) and any Leak ∈ nBCP(p, µ)
with µ < ξ and µ

(
p
t

)
<
(
N
t

)
,

|prodExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ε,

where ε = 2−ξ. For brevity, we let Z1 := prodExt(X) ◦
Leak(X) and Z2 := Um◦Leak(X) and show |Z1−Z2| ≤ ε.
By Definition 2, there must exist some S1, . . . , Sµ ⊆ [N ],
each of size p, and some functions g1, . . . , gµ : ({0, 1}n)p →
{0, 1} such that Leak(X) = (g1(XS1

), . . . , gµ(XSµ)). Thus:

Z1 := prodExt(X) ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ),

Z2 := Um ◦ g1(XS1) ◦ · · · ◦ gµ(XSµ).

The goal now is to perform fixings so as to reduce the
analysis to let us apply Lemma 1 over t sources. We proceed
as follows. First, notice that each of the µ subsets Si has
size p, and can therefore hold at most

(
p
t

)
distinct subsets of

size t. Thus, since we are told µ
(
p
t

)
<
(
N
t

)
, there must be

some good G ∈
(

[N ]
t

)
where G 6⊆ Si,∀i ∈ [µ]. Without loss

of generality, we may assume G = [t] (any other case uses
almost exactly the same ideas that follow, but the notation
gets a little cumbersome). We let G = [N ] \ G, and by
definition of statistical distance, we know that |Z1 − Z2| ≤
|Z1 ◦XG−Z2 ◦XG|. This means there is some fixed X∗ ∈
({0, 1}n)N−t such that

|Z1 − Z2| ≤ |(Z1 | XG = X∗)− (Z2 | XG = X∗)|.

Now, to see that this quantity is bounded above by ε, we
just have to carefully rewrite the random variables. First,
we note that it is safe to assume that X∗i 6= ~0, for all i ∈
[N − t]: this is because we can in fact preprocess the input
to redirect zeroes to ones before calling prodExt. Later on
in the proof, when it is convenient, we can still assume
that each Xi, i ∈ G is uniform by incurring an additive
t · 2−n+1 in the error (which is always insignificant). Let us
now examine the conditioned versions of Z1 and Z2.

We start by observing that (prodExt(X) | XG =
X∗) = σn,m(X1 · · · · · Xt · X∗1 · · · · · X∗N−t) =
prodExt(X1,X2, . . . ,Xt−1,Xt · π), where π = X∗1 · · · · ·
X∗N−t is some fixed nonzero value in F2n . Furthermore, for
any i ∈ [µ], observe that (gi(XSi) | XG = X∗) becomes the
function g′i(XSi∩G), which is the restriction of gi obtained
by fixing the variables Xi, i ∈ Si ∩ G according to X∗.
By definition of G, we know G 6⊆ Si, and thus if we
define S′i := Si ∩ G, we know S′i ( G, and furthermore

(gi(XSi) | XG = X∗) = g′i(XS′i
). Thus we have:

(Z1 | XG = X∗) = prodExt(X1, . . . ,Xt · π)

◦ g′1(XS′1
) ◦ · · · ◦ g′µ(XS′µ), and

(Z2 | XG = X∗) = Um ◦ g′1(XS′1
) ◦ · · · ◦ g′µ(XS′µ).

Suppose now that we define Yi, i ∈ [t] as Yi := Xi when
i ∈ [t − 1], and Yi := Xt · π when i = t. Then, for
each i ∈ [µ], we define g′′i to be identical to g′i, except
for the fact that if g′i receives Xt as an input - say, as
its jth argument - then g′′i multiplies its jth input by the
inverse of π (in F∗2n ) before passing all its input into g′i,
and returning the result. By construction, such a function
guarantees g′′i (YS′i

) = g′i(XS′i
). And thus, we see that we

can write:

(Z1 | XG = X∗) = prodExt(Y1, . . . ,Yt)

◦ g′′1 (YS′1
) ◦ · · · ◦ g′′µ(YS′µ), and

(Z2 | XG = X∗) = Um ◦ g′′1 (YS′1
) ◦ · · · ◦ g′′µ(YS′µ).

Since Yt is just a permutation of Xt, it must have the
same entropy, and furthermore note that each g′′i acts as
non-adaptive NOF leakage on Y1, . . . ,Yt, since S′i ( [t].
Thus we can use Lemma 1 to bound the difference |(Z1 |
XG = X∗)− (Z2 | XG = X∗)| as desired, completing the
proof.

B. Reducing the Entropy Requirement

In this section, we will show how to improve the en-
tropy requirement of prodExt from k = n all the way to
k = polylog n, ultimately proving Theorem 2. The first step
we take in this direction is a modest one: we show that
without any further modificiations, prodExt will still work
if its inputs are missing just a little entropy. More generally,
we prove the following result:

Lemma 3. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-
resilient extractor against nNOF(µ) for entropy k = n and
error ε. Then for any 0 < k ≤ n, Ext is also a leakage-
resilient extractor against nNOF(µ − 2) for entropy k and
error ε · 2N(n−k).

Proof: Given N independent (n, k) sources X =
(X1,X2, . . . ,XN ) and any Leak ∈ nNOF(µ− 2), we wish
to upper bound the quantity

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|. (1)

We may assume that each source Xi is flat; i.e., uniform
over some Ti ⊆ {0, 1}n of size 2k (this is a standard
assumption that can be done without loss of generality;
see, e.g., [20]). The main idea of this proof is to treat
the missing entropy as leakage on uniform sources, by
defining a function belonging to nNOF(2) that identifies
the support of (X1, . . . ,XN ). In particular, we define the
indicator function id : ({0, 1}n)N → {0, 1}2 as the map
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(x1, . . . , xN ) 7→ (y1, y2), where y1 = 1 if and only if
xi ∈ Ti, for all i ∈ [N − 1], and y2 = 1 if and only if
xN ∈ TN . Furthermore, we define ~1 := (1, 1). Given these
definitions, it is straightforward to verify that id(x) = ~1 if
and only if x ∈ T1 × · · · × TN , and that id ∈ nNOF(2).
Thus, if we define a function Leak′ : ({0, 1}n)N → {0, 1}µ
that maps x 7→ (Leak(x), id(x)), then Leak′ ∈ nNOF(µ),
and we may use it to upper bound Equation (1):

|Ext(X) ◦ Leak(X)−Um ◦ Leak(X)|
= |Ext(UNn | id(UNn) = ~1) ◦ Leak(UNn | id(UNn) = ~1)

−Um ◦ Leak(UNn | id(UNn) = ~1)|
≤ |Ext(UNn) ◦ Leak(UNn) ◦ id(UNn)

−Um ◦ Leak(UNn) ◦ id(UNn)|/Pr[id(UNn) = ~1]

≤ ε · 2N(n−k),

where the first inequality is a Markov-type inequality, and
the second inequality follows from the hypothesis.

The key object we need in order to drop the entropy
requirement of our extractor down to k ≥ polylog(n)
is a low-error strong two-source condenser. Ben-Aroya et
al. [53] recently constructed such objects with excellent
parameters; most relevant to us here will be the following
specialization of one of their more general constructions:

Theorem 5 ([53]). There exist universal constants C > 0
and γ := 1/C such that for every n, k,m ∈ N and ε > 0

satisfying k ≥ logC n and kγ ≥ m and ε ≥ 2−k
γ/2

, there
exists an explicit function 2Cond : {0, 1}n × {0, 1}n →
{0, 1}m such that for any two independent (n, k) sources
X1,X2, with probability 1 − ε over x2 ∼ X2, the output
has min-entropy H∞(2Cond(X1, x2)) ≥ m−

√
m.

With this condenser in hand, we are ready to define our
final, low-entropy, version of the product-extractor:

Definition 9. For a sufficiently large constant C ≥ 1
and any N,n, k,m0,m ∈ N satisfying k ≥ logC n and
k1/C ≥ m0 ≥ m, let 2Cond : {0, 1}n×{0, 1}n → {0, 1}m0

be the condenser for (n, k) sources from Theorem 5, and
let prodExt({0, 1}m0)N−1 → {0, 1}m be the product ex-
tractor from Definition 8. We define the low entropy product
extractor, leProdExt : ({0, 1}n)N → {0, 1}m, as

leProdExt(x1, x2, . . . , xN )

:= prodExt((2Cond(xi, xN ))i∈[N−1]).

We now prove the main lemma of the section, which
proves that leProdExt can in fact handle low-entropy, while
simultaneously achieving a leakage-collusion tradeoff simi-
lar to Lemma 2. We remark again here that we will optimize
to pick a good setting for t in Section IV-C.

Lemma 4. There is a constant C ≥ 1 such that for all
sufficiently large N,n ∈ N and any t, p ∈ N such that
t ≤ N−1 and p ≤ N−2, the low-entropy product extractor

leProdExt : ({0, 1}n)N → {0, 1}m from Definition 9 is an
explicit leakage-resilient extractor against nBCP(p, µ) for
entropy k ≥ logC n and leakage µ < min{ξ,

(
N−1
t

)
/
(
p
t

)
},

with output length m = ξ and error ε = 2−ξ, where

ξ = kΩ(1)/2t.

Proof: We must show that for N independent (n, k)
sources X = (X1, . . . ,XN ), and any Leak ∈ nBCP(p, µ)
with Leak ∈ nBCP(p, µ) with µ < ξ and µ

(
p
t

)
<
(
N−1
t

)
,

|leProdExt(X) ◦ Leak(X)−Um ◦ Leak(X)| ≤ ε,

where ε = 2−ξ. For brevity, we let Z1 := leProdExt(X) ◦
Leak(X) and Z2 := Um◦Leak(X) and show |Z1−Z2| ≤ ε.
By Definition 2, there must exist some S1, . . . , Sµ ⊆ [N ],
each of size p, and some functions g1, . . . , gµ : ({0, 1}n)p →
{0, 1} such that Leak(X) = (g1(XS1), . . . , gµ(XSµ)). Thus,
substituting in the definition of leProdExt, we have

Z1 := prodExt((2Cond(Xi,XN ))i∈[N−1])

◦ g1(XS1
) ◦ · · · ◦ gµ(XSµ), and

Z2 := Um ◦ g1(XS1
) ◦ · · · ◦ gµ(XSµ).

We remark that any parameters in the construction itself (like
condenser output length, condenser error, product extractor
output length, etc.) will be set at the end so that everything
works out.

The goal now is to perform fixings to reduce the analysis
to the analysis in Lemma 2. We proceed as follows. First,
notice that each of the µ subsets Si has size p, and can
therefore hold at most

(
p
t

)
distinct subsets of size t. Thus,

since we are told µ
(
p
t

)
<
(
N−1
t

)
, there must be some good

G ∈
(

[N−1]
t

)
where G 6⊆ Si,∀i ∈ [µ]. Like in the proof to

Lemma 2, we will assume, without loss of generality, that
G = [t].

Now, we let ε1 be the error of 2Cond, meaning that with
probability 1 − ε1 over xN ∼ XN , 2Cond(Xi, xN ) has
entropy at least m0−

√
m0, for any single i ∈ [N−1]. Thus,

by a union bound, with probability 1− tε1 over xN ∼ XN ,
every random variable in {2Cond(Xi, xN ) : i ∈ G} has
entropy at least m0−

√
m0. In other words, there is always

some X∗N such that the following is true:

|Z1 − Z2| ≤ |Z1 ◦XN − Z2 ◦XN |
≤ tε1 + |(Z1 | XN = X∗N )− (Z2 | XN = X∗N )|,

where 2Cond(Xi, X
∗
N ) has entropy at least m0−

√
m0, for

each i ∈ G. We now define Yi := 2Cond(Xi, X
∗
N ) for each

i ∈ [N − 1], and we notice that this collection of random
variables are mutually independent (because they are single-
argument deterministic functions of the independent random
variables {Xi}i∈[N−1]). We write Y = Y1 ◦ · · · ◦ YN−1.
We now fix each Xi, i /∈ G ∪ {N} to some X∗i ∈ {0, 1}n
such that the following holds:

|(Z1 | XN = X∗N )− (Z2 | XN = X∗N )|
≤ |(Z1 | Xi = X∗i ,∀i /∈ G)− (Z2 | Xi = X∗i ,∀i /∈ G)|.
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Notice that as a result, each Yi, i /∈ G ∪ {N}, gets fixed
to Y ∗i = 2Cond(X∗i , X

∗
N ) ∈ {0, 1}m0 , while each Yi, i ∈

G still has entropy at least m0 −
√
m0, and the collection

{Yi : i ∈ G} remains mutually independent. By following
the exact same reasoning as in the proof to Lemma 2 about
restrictions and the structure of prodExt, we know that at
this point we can write

(Z1 | Xi = X∗i ,∀i /∈ G)

= prodExt(Y1,Y2, . . . ,Yt−1,Yt · π)

◦ g′1(XS1∩G) ◦ · · · ◦ g′µ(XSµ∩G) =: Z′1, and

(Z2 | Xi = X∗i ,∀i /∈ G)

= Um ◦ g′1(XS1∩G) ◦ · · · ◦ g′µ(XSµ∩G) =: Z′2,

where π = Y ∗t+1 · · · · · Y ∗N−1, and each g′i is the appropriate
restriction of gi induced by the fixings of its inputs outside
G. We are nearly ready to apply the leakage-resilience of
prodExt against NOF protocols and complete the proof. In
order to arrive at this situation, we must somehow write each
leakage function g′i as a function of random variables from
{Yi : i ∈ G} instead of {Xi : i ∈ G}. It turns out this is not
so difficult to do: we know that for each i ∈ [N−1], Yi is a
deterministic function of Xi. As such, for each i, we can find
some randomness Qi and a deterministic function sample
such that Qi is independent of Yi, and sample(Yi,Qi) is
arbitrarily close to the distribution Xi: for any fixed y ∼ Yi,
the function call sample(y,Qi) simply uses Qi to sample
from (Xi | Yi = y).9

As always, we can fix the random variables {Q′i : i ∈ G}
to some values {Q∗i } without reducing the distance between
Z′1,Z

′
2:

|Z′1 − Z′1| ≤ |(Z′1 | Qi = Q∗i ,∀i ∈ G)

− (Z′2 | Qi = Q∗i ,∀i ∈ G)|.

Furthermore, under this conditioning, we know that each
g′i(XS1∩G) obtains the form g′′i (YS1∩G) for some other
deterministic function g′′i , since we saw above that Xi ≈
sample(Yi,Qi), and we have fixed all the variables {Qi :
i ∈ G}. Thus, we may write:

(Z′1 | Qi = Q∗i ,∀i ∈ G)

= prodExt(Y1,Y2, . . . ,Yt−1,Yt · π)

◦ g′′1 (YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G), and

(Z′2 | Qi = Q∗i ,∀i ∈ G)

= Um ◦ g′′1 (YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G)

Using the same trick as in the proof to Lemma 2, we may
remove π from the equation above, and thus we just assume
now that it is no longer present. Thus, at last, we see that it

9We ignore the error from this approximation, as it can be made
arbitrarily small and thereby absorbed by any other error appearing in this
proof.

suffices to upper bound |Z′′1 − Z′′2 |, where

Z′′1 := prodExt(Y1, . . . ,Yt)

◦ g′′1 (YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G), and

Z′′2 := Um ◦ g′′1 (YS1∩G) ◦ · · · ◦ g′′µ(YSµ∩G).

These random variables have a very special structure: the
collection {Yi : i ∈ [t]} are independent, and each is an
(m0,m0 −

√
m0) source, due to the parameters of 2Cond.

Furthermore, we know G∩Si ( G, for all i ∈ [µ], and thus
each g′′i is an NOF-leak on Y = Y1 ◦ · · · ◦Yt.

Thus, to conclude, we combine Lemma 1 with Lemma 3
to see that prodExt : ({0, 1}m0)t → {0, 1}m is a leakage-
resilient extractor against nNOF(µ2 − 2) for entropy m0 −√
m0, error ε3 = ε2 ·2t

√
m0 , and output m = γm0/2

t, where
ε2 = 2−m and µ2 = m, for some small universal constant
γ > 0. Furthermore, we know the sources Yi, i ∈ [t] end
up with the promised entropy m0 −

√
m0 as long as k ≥

logC n and k1/C ≥ m0, with error ε1 = 2−k
1/(2C)

, for some
universal constant C ≥ 1. Thus, the condenser and extractor
will both work as long as this entropy is guaranteed, and as
long as µ < µ2 − 2 (because this means the concatenation
of leaks g′′1 , . . . , g

′′
µ is in nNOF(µ2 − 2)). Furthermore, its

error will be

ε = |Z1 − Z2| ≤ tε1 + |Z′′1 − Z′′2 | = tε1 + ε3.

Finally, recall that we required µ
(
p
t

)
<
(
N−1
t

)
at the

beginning to ensure we could find a good set G. Thus,
there exists some small constant c > 0 and function
ξ(k, t) := kc/2t such that as long as k ≥ logC n, and
µ < min{ξ,

(
N−1
t

)
/
(
p
t

)
}, and m ≤ ξ, it holds that

|Z1 − Z2| = ε ≤ 2−ξ, which completes the proof.

C. Adding Adaptivity and Wrapping Up

Finally, all that remains is to add adaptivity to Lemma 2
and Lemma 4, and set t, in order to obtain our main theorems
about the product extractor (Theorems 1 and 2). Our main
tool in this direction is the following general adaptivity
lemma, which shows that any LRE against non-adaptive
BCPs actually works against adaptive BCPs as well - at
the expense of some loss in the error.

Lemma 5. Let Ext : ({0, 1}n)N → {0, 1}m be a leakage-
resilient extractor against nBCP(p, µ) for entropy k, with
error ε. Then Ext is also a leakage-resilient extractor against
BCP(p, µ) for entropy k with error at most (2µ + 1)

√
ε.

The proof of this lemma works, in some sense, by
approximating adaptive BCPs by non-adaptive BCPs. It can
be found in the full version of the paper.

Finally, we note that by applying Lemma 5 to Lemma 2
and setting t = log(n)

log(N/p)+1 , we immediately obtain The-
orem 1. By applying Lemma 5 to Lemma 4 and setting
t = log(kΩ(1))

log((N−1)/p)+1 , we immediately obtain Theorem 2.
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V. AN EXPLICIT LRE AGAINST NOFS

In this section, we will prove Theorem 3, and show that
the function BouExt : FNq → {0, 1}, defined by

BouExt(x1, . . . , xN ) = sign sin

(
2π
∏
i∈[N ] xi

q

)
,

is an explicit LRE against number on forehead protocols.10

We follow the approach of the seminal work of Babai,
Nisan, and Szegedy [17], who proved lower bounds for
number-on-forehead (NOF) protocols. We begin by recalling
the relevant definitions and lemma from [17].

Definition 10 (τ -Components of a protocol Π). Let Π be
a multiparty protocol on N parties and τ be any transcript.
The τ -component XΠ,τ is defined as the set of N -tuples
x ∈ FN such that on input x the protocol Π results in
exactly τ being written on the board.

Definition 11 (Cylinders and cylinder-intersections). A
subset Y of N -tuples in called a cylinder in dimension i ∈
[N ] if membership in Y does not depend on coordinate i. A
subset Y of N -tuples in called a cylinder-intersection if Y
is an intersection of cylinders.

Definition 12 (Discrepancy). Let f : FN → {0, 1} be a
boolean function. The discrepancy of f , denoted Γ(f), is
defined as

max
Y
|Pr[f(x) = 1 & x ∈ Y ]− Pr[f(x) = 0 & x ∈ Y ]| ,

where Y ranges over cylinder-intersections and x is chosen
uniformly over FN .

Lemma 6 ([17]). For any N -party NOF protocol Π
and transcript τ , the τ -component XΠ,τ is a cylinder-
intersection.

Our extractor will use these notions in the context of
exponential sums, which we recall next.

A. Exponential Sums

Let Fq be a prime field of cardinality q. Let eq(x) =
exp(2πix/q). Building upon the exponential sums of [55],
[56], Petridis and Shparlinski [57] defined the following
class of exponential sums.11

Definition 13 (Multilinear exponential sums [57]). For
any K and N , the multilinear exponential sum SUMN is
defined as

SUMN (K) = max
X,η,φ

∣∣∣∣∣∣
∑
x1∈X1

. . .
∑

xN∈XN

φ(x)eq

η ∏
i∈[N ]

xi

∣∣∣∣∣∣ ,
10We can use standard XOR lemmas to output multiple bits [52].
11Petridis and Shparlinski [57] use the term weight functions to denote

cylinder-intersections. Their functions are more general, and can output any
complex number with absolute value at most 1.

where the maximum is over all subsets X = X1 × · · · ×
XN ⊆ FNq with |Xi| ≤ K for all i ∈ [N ], all η ∈ F∗q ,
and all cylinder-intersections φ : FNq → {0, 1}. Here and
throughout, φ(x) = φ1(x) · · · · · φN (x), where φi does not
depend on xi for each i ∈ [N ].

Extending the results of Petridis and Shparlinski [57],
Kerr and Macourt [58] obtained bounds on SUMN for any
N � log log q. We state the most suitable bounds of Petridis
and Shparlinksi [57] and Kerr and Macourt [58] that we will
use12 for small constants (3,4,6). In our notation, their results
translate to:

Theorem 6. For some constant C > 0, we have:
• [57]: SUM3(K) ≤ Cq1/8K43/16.
• [57]: SUM4(K) ≤ Cq1/16K61/16.
• [58]: SUM6(K) ≤ Cq1/64K3045/512+o(1).

Furthermore, in the full version, we show that for all N ≥ 6,

SUMN (q0.3) ≤ q0.3N

qΩ(1)/2N
.

Finally, we recall an observation from Bourgain [22,
Remark 3.3] (see also [67]), which shows that it suffices
to obtain upper bounds on multilinear exponential sums in
order to obtain upper bounds on sums that involve BouExt.

Lemma 7 ([22]). For any X = X1 × · · · ×XN ⊆ FNq and
φ : FNq → {0, 1}, we have∣∣∣∣∣ ∑

x1∈X1

. . .
∑

xN∈XN

φ(x)(−1)BouExt(x)

∣∣∣∣∣ ≤
(C log q) max

η∈F∗q

∣∣∣∣∣∣
∑
x1∈X1

. . .
∑

xN∈XN

φ(x)eq

η ∏
i∈[N ]

xi

∣∣∣∣∣∣ ,
where C is a universal constant and x = (x1, . . . , xN ).

B. The Extractor

We are now ready to prove Theorem 3. A technicality is
that while Theorem 3 was stated with inputs to each party
being elements of {0, 1}n, we will on the other hand work
with inputs to each party being elements of Fq for prime
q ≈ 2n. We assume that we have access to such a prime.13

Theorem 7. Fix a sufficiently large prime q. Let n = log q,
and BouExt : FNq → {0, 1} be defined as above. Then for
all N ≥ 6, BouExt is an (N−1, N, µ)-cylinder intersection
extractor with error ε for all (n, 0.3n)-sources, where ε =
2−µ and µ = Ω(n/2N ).

Proof: We begin with the observation of Chor and
Goldreich [21] that any source Xi distributed on Fq with

12This will help us achieve the best min-entropy rate later.
13We could potentially avoid this technicality by assuming Cramer’s

conjecture on primes, or by using part of the input to generate the prime at
random (we only need average-case lower bounds). We do not delve into
this issue here.

1239

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 15,2021 at 16:31:35 UTC from IEEE Xplore.  Restrictions apply. 



min-entropy rate δ := 0.3 is a convex combination of
uniform sources on qδ sized subsets Xi ⊆ Fq . Therefore,
we only need to focus on qδ sized subsets. Fix any X =
X1×· · ·×XN ⊆ FNq such that |Xi| = qδ for each i ∈ [N ].

Fix any number-on-forehead protocol Π with at most
µ bits of communication. Let Γ be the set of transcripts
that can be produced by executing Π on some x =
(x1, . . . , xN ) ∈ X . Recall the notion of a τ -component
from Definition 10: XΠ,τ denotes the set of x ∈ X that
result in transcript τ when protocol Π is executed on x. By
Lemma 6, for each transcript τ , the τ -component XΠ,τ is a
cylinder-intersection. Denote it by φτ .

To show that BouExt is a (N − 1, N, µ)-cylinder inter-
section extractor with error ε, it suffices to upper bound

|(BouExt(X),Π(X))− (U1,Π(X))|

where X = (X1, . . . ,XN ), and each Xi is uniformly
distributed over the subset Xi of size qδ . By definition of
statistical distance, this is equal to

=
1

2

∑
b∈{0,1}

∑
τ∈Γ

∣∣∣∣Pr [Π(X) = τ and BouExt(X) = b]

− Pr [Π(X) = τ and U1 = b]

∣∣∣∣
=

1

2

∑
τ∈Γ

Pr [Π(X) = τ ]

∣∣∣∣Pr [BouExt(X) = 1 | Π(X) = τ ]

− Pr [BouExt(X) = 0 | Π(X) = τ ]

∣∣∣∣
Next, note that the condition Π(X) = τ is equivalent to
X being in the τ -component, which in turn, is equivalent
to X being in the corresponding cylinder-intersection φτ .
Substituting this in, we get

=
1

2

∑
τ∈Γ

Pr [Π(X) = τ ]

∣∣∣∣Pr [BouExt(X) = 1 | φτ (X) = 1]

− Pr [BouExt(X) = 0 | φτ (X) = 1]

∣∣∣∣
Computing this conditional probability, we obtain

=
1

2

∑
τ∈Γ

Pr [Π(X) = τ ]
1

|XΠ,τ |

·

∣∣∣∣∣ ∑
x1∈X1

. . .
∑

xN∈XN

φτ (x)(−1)BouExt(x)

∣∣∣∣∣
where x = (x1, . . . , xN ). Moreover, since X is uniform
over X , we know Pr [Π(X) = τ ] is equal to |XΠ,τ |/|X|.
Plugging this in, the above simplifies to

=
1

2

∑
τ∈Γ

1

|X|

∣∣∣∣∣ ∑
x1∈X1

. . .
∑

xN∈XN

φτ (x)(−1)BouExt(x)

∣∣∣∣∣

We can then use the connection to exponential sums
(Lemma 7) to upper bound the above quantity by

≤ 1

2

∑
τ∈Γ

(C log q)SUMN (qδ)

|X|

Now, as there can be at most 2µ transcripts in Γ, we obtain

≤ (C log q) · 2µ · SUMN (qδ)

|X|
.

Finally, since |X| = qδN , we can use Theorem 6 to see that,
for N ≥ 6, we have

|(BouExt(X),Π(X))− (U1,Π(X))| ≤ C · 2µ · q−Ω(1)/2N .

Substituting in a sufficiently small µ = qΩ(1)/2N proves our
theorem.
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