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Abstract

Small-bias, or ε-biased, spaces have found many applications in complexity theory, coding
theory, and derandomization. We generalize the notion of small-bias spaces to the setting
of group products. Besides being natural, our extension captures some of the difficulties in
constructing pseudorandom generators for constant-width branching programs - a longstanding
open problem. We provide an efficient deterministic construction of small-bias spaces for solvable
groups. Our construction exploits the fact that solvable groups have nontrivial normal subgroups
that are abelian and builds on the construction of Azar et al. [AMN98] for abelian groups. For
arbitrary finite groups, we give an efficient deterministic construction achieving constant bias.
We also construct pseudorandom generators fooling linear functions mod p for primes p.

1 Introduction

In this work we generalize the notion of small-bias spaces to the setting of group products. Small-
bias, or ε-biased, spaces over Z2 have been very useful in constructions of various pseudorandom
objects. In particular, they are used in the construction of almost k-wise independent spaces
([NN93]), which in turn have many applications such as universal sets ([LY94], [BEG+94]). An
application of interest to us is that ε-biased spaces fool branching programs of width two. Can we
generalize this observation to fool constant-width branching programs? Our extension of small-bias
spaces to finite groups besides being interesting on its own, could be useful for constructing pseu-
dorandom generators for small width branching programs. We address the problem of explicitly
constructing such small-bias spaces over finite groups, and give an efficient deterministic construc-
tion for solvable groups and a partial solution to the problem for arbitrary finite groups.

Constructing pseudorandom generators for constant-width branching programs is a fundamental
problem with many applications in circuit lower bounds and derandomization. The problem is
largely open even for strongly restricted classes such as width three read-once permutation branch-
ing programs (ROPBPs) - branching programs where no variable is read more than once and the
edges between any two layers with the same label define a permutation.

Our notion of small-bias spaces is motivated by the following group-theoretic formulation of
the problem of constructing pseudorandom generators for constant-width ROPBPs. Consider the
edges between layers i and i + 1 of a width-w ROPBP. By relabeling the nodes if necessary, we
may assume that the permutation corresponding to the edges labeled 0 is the identity permutation.
Then the permutation corresponding to the label 1 is some permutation gi ∈ Sw, where Sw denotes
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the permutation group on w elements. Under this description, if the variable read by the branching
program at layer i is xi, the computation performed by the ROPBP can be written as follows: on
input (b1, . . . , bn) ∈ {0, 1}n, output gb11 g

b2
2 . . . gbnn ∈ Sw.

Thus, pseudorandom generators for width w ROPBPs are equivalent to functions P : {0, 1}r →
{0, 1}n that fool products of group elements in the sense that, for all g1, . . . , gn ∈ Sw, the distribu-
tions of gb11 g

b2
2 . . . gbnn with b ∈u {0, 1}n and g

P (y)1
1 g

P (y)2
2 . . . g

P (y)n
n with y ∈u {0, 1}r are ε-close in

variation distance (for a multi-set S, x ∈u S denotes a uniformly sampled element of S.).

In this work we consider a dual of the above problem. A PRG for ROPBPs outputs Boolean
exponents that fool products of arbitrary group elements raised to these exponents. Our notion
of ε-biased space outputs group elements that fool products of these elements raised to arbitrary
exponents. For convenience we use the max norm instead of variation distance.

Definition 1.1 A multi-set S ⊆ Gn is an ε-biased space for products over G 1 if for all b1, . . . , bn ∈
{0, 1} not all zero, and every h ∈ G∣∣∣∣Prg∈uS [ gb11 g

b2
2 . . . gbnn = h ]− 1

|G|

∣∣∣∣ ≤ ε.
Remark. The definition can naturally be extended to non-binary exponents b1, . . . , bn ∈ [|G|] and
arbitrary permutations π : [n] → [n], where we look at products of the form gb1π(1)g

b2
π(2) · · · g

bn
π(n). In

this abstract we only consider the definition above for simplicity. Our results extend straight-
forwardly to arbitrary permutations π as well as for non-binary powers bi ∈ [|G|], provided
gcd(b1, . . . , bn, |G|) = 1.

When the group G is the additive group Z2, the definition above coincides with the usual notion
of small-bias spaces over Z2 of Naor and Naor [NN93]. Besides being a natural generalization of ε-
biased spaces over Z2, the definition above captures some of the difficulties involved in constructing
PRGs for constant-width ROPBPs, as PRGs for constant-width ROPBP imply ε-biased spaces for
finite groups.

Theorem 1.1 Given a PRG G : {0, 1}r → {0, 1}n for width w ROPBP with error at most ε
and running time t(n, ε), for every group H ⊆ Sw there exists an algorithm with running time
O(t(n, ε)2r) that outputs a 2ε-biased set over H of size poly(2r, n, 1/ε).

We defer the proof to Section 6.

Remark. Azar et al. [AMN98] characterize ε-biased spaces for abelian groups in terms of the
characters of the group. One could generalize this definition to non-abelian groups using the irre-
ducible characters or irreducible representations of the group. However, there does not seem to be
any connection between such objects and pseudorandom generators for constant-width read-once
branching programs, our original motivation. As far as we know, a notion of small-bias spaces
for finite groups in terms of irreducible representations is incomparable to our notion of small-bias

1By convention, ε-biased spaces with no explicit mention of a group will correspond to ε-biased spaces over Z2.
For brevity, we will refer to small-bias spaces for products over G simply as small-bias spaces over G.
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spaces and to pseudorandom generators for constant-width ROPBPs.

By the probabilistic method it can be shown that for any group G, ε-biased sets of size O(|G|n/ε2)
exist. The constructions of Naor and Naor [NN93], Alon et al. [AGHP92], Azar et al. [AMN98]
give explicit polynomial size ε-biased spaces for abelian groups. However, the problem seems to be
considerably harder for non-abelian groups and the techniques of [NN93, AGHP92, AMN98] fail
when the group is non-abelian. We prove the following results for general finite groups.

Theorem 1.2 Let G be a finite group. There exists a deterministic algorithm running in time
poly(n) that takes as input n and outputs a set S of size poly(n) that is α-biased over G, where
α < 1/|G| is a fixed constant depending on |G|.

Theorem 1.3 Let G be a finite solvable group. There exists a deterministic algorithm running in
time poly(n, 1/ε) that takes as input n, ε and outputs a set S of size poly(n, 1/ε) that is ε-biased
over G.

Our constructions are based on the ε-biased spaces for abelian groups of Azar et al. The con-
struction for solvable groups is recursive and uses the fact that every solvable group has a nontrivial
normal subgroup that is abelian.

It is instructive to examine the dual objects - PRGs and ε-biases spaces - for simpler families
of constant-width ROPBPs such as the class of linear functions modulo a prime p. For this case,
our notion of ε-biased spaces with group G = Zp corresponds to the usual notion of ε-biased spaces
over Zp except that our notion assumes the linear functions have {0, 1} coefficients. As far as we
know there were no previous efficient constructions of PRGs for the ROPBPs corresponding to the
family of linear functions modulo a prime p.

Definition 1.2 A function G : {0, 1}r → {0, 1}n is said to be an ε-pseudorandom bit generator
(ε-PBG) for sums mod p, if for every v ∈ Fnp , v 6= 0 and all a ∈ Fp

|Prz∈u{0,1}r [ 〈v,G(z)〉 = a ]− Prx∈u{0,1}n [ 〈v, x〉 = a ]| ≤ ε, (1)

where the inner product is taken over Fp.

Note that the existence of an efficient ε-PBG G : {0, 1}r → {0, 1}n with r = O(log n+ log(1/ε))
does not follow from the known constructions of ε-biased spaces for Zp. (The main difference is that
ε-biased spaces mod p, by definition, take values in Zp.) We present a construction of ε-PBG with
r = O(log n + log(1/ε)) based on pseudorandom generators for low-degree polynomials obtained
in [Vio08, Lov08, BV07]. Recently, independent of our work, Lovett et al. [LRTV09] constructed
ε-PBG with better dependence on the field size p which also works for composite moduli. However,
for our intended application, the field size is always a constant and the construction below is optimal
up to constant factors.

Theorem 1.4 For all ε > 0 and primes p, there exists an efficient ε-PBG for Fp, G : {0, 1}r →
{0, 1}n, with seed length r = O(log n+ log(1/ε)).

Observe that a pseudorandom generator for width 3 read-once branching programs gives both
an ε-biased set over F2 and an ε-PBG for F3. Motivated in part by our construction of ε-biased
space for the permutation group on three elements - S3, a solvable group - we conjecture that a
weak converse of the above statement holds.
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Conjecture 1.5 Let G1 : {0, 1}r → S generate uniform samples from a ε-biased set S ⊆ {0, 1}n.
Let G2 : {0, 1}r → {0, 1}n be a ε-PBG for F3. Then, the sum G1 ⊕G2 : {0, 1}r × {0, 1}r → {0, 1}n
defined by (G1 ⊕G2)(z1, z2) = G1(z1)⊕G2(z2) is pseudorandom with respect to width 3 read-once
permutation branching programs.

We also provide an example showing that the sum of two constant-bias spaces over Z2 does not
fool linear functions mod 3; in particular, the sum of two constant-bias spaces does not fool width
3 ROPBPs. Reingold and Vadhan [RV06] had asked whether the sum of two n−O(1)-biased spaces
fools logspace. Although we do not resolve the question, we remark that previously there was no
known example ruling out the possibility that the sum of two constant-biased spaces gives a hitting
set for logspace computations.

Theorem 1.6 There exists an absolute constant α, 0 < α < 1/2, such that for all n > 0, there
exists an α-biased space S ⊆ {0, 1}n, such that the dimension of the span of S⊕S = {x⊕y : x, y ∈ S}
viewed as a subset of the vector space Fn3 is o(n). In particular, there exists a linear function f mod 3
such that f is constant on S ⊕ S.

2 Previous Work and Preliminaries

We first present the notions of pseudorandom generators for small width branching programs and
small-bias spaces over abelian groups.

Definition 2.1 A branching program (BP) of width w and length t ((w, t)-BP) is a rooted, layered
directed acyclic graph with t + 1 layers and at most w nodes at each layer. The nodes (internal
nodes) at a layer j ≤ t in the graph are labeled with a variable xi and have two outgoing edges each,
corresponding to the two possible values of xi. The nodes at the last layer (leaf nodes) are labeled
either 0 or 1. An instance x ∈ {0, 1}n defines a unique directed path through the branching program
starting at the root and following the outgoing arc from internal nodes labeled by the value of the
variable at that node. The output of the branching program is the label of the leaf node reached by
this path.

A branching program is read-once (ROBP) if no variable occurs more than once on any path
from the root to a leaf. A branching program is a permutation branching program (PBP) if any
two edges pointing to the same node have different labels.

Definition 2.2 A pseudorandom generator (PRG) for width w BPs with error ε is a function
G : {0, 1}r → {0, 1}n such that for every (w, t)-BP A with t = poly(n), A(Un) is ε-close to
A(G(Ur)), where Uk denotes the uniform distribution on {0, 1}k. Pseudorandom generators for
ROBP and read-once permutation branching programs (ROPBP) are defined similarly.

Constructing pseudorandom generators for constant-width branching programs with seed length
r = O(log n + log(1/ε)) is a fundamental open problem. It is known that ε-biased spaces over F2

fool width two branching programs ([SZ], [BDVY08]). Generalizing this observation, Bogdanov
et al. [BDVY08] show that PRGs for degree k polynomials over GF(2) fool width two branching
programs that are allowed to read up to k bits at each internal node.

However, for width more than two little is known. In fact, by Barrington’s theorem ([Bar86]) con-
structing pseudorandom generators for width five branching programs would imply lower bounds
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for the circuit class NC1 - a longstanding open problem in complexity theory. In view of the above,
focus on the problem has been restricted to the class of read-once branching programs. Most
known PRGs for ROBPs are based on their relation to space-bounded computations; nonuniform
logspace computations in particular are equivalent to polynomial-width ROBPs. Even for width
three ROBPs, the best generators are the much more powerful generators for logspace machines of
Nisan [Nis92] and Impagliazzo et al. [INW94] that achieve a seed-length of O(log2 n).

Constructing pseudorandom generators for logspace-computations with logarithmic seed-length
is an outstanding open problem with progress being relatively slow. The main nontrivial results
are those of [AKS87], [NZ96], [RR99], [Rei08]. In particular, Nisan and Zuckerman [NZ96] give
a generator with seed-length O(log n) for logspace machines that use polylogarithmic randomness
and Reingold [Rei08] gives a logspace algorithm for undirected st-connectivity.

The notion of ε-biased spaces over Z2 was introduced by Naor and Naor [NN93] who also gave
efficient constructions of such spaces of size poly(n, 1/ε). Subsequently, Alon et al. [AGHP92] and
Azar et al. [AMN98] obtained efficient constructions that work for arbitrary abelian groups.

In our construction of ε-biased spaces over solvable groups we make use of the fact that for
abelian groups we can construct polynomial size sets that are strongly ε-biased in the following
sense.

Definition 2.3 Let N be an abelian group. A set S ⊆ Nn is strongly ε-biased in N if, for all
non-empty I = {i1, . . . , ik} ⊆ [n], automorphisms Φi1 , . . . ,Φik : N → N , and h ∈ N ,∣∣∣∣Prg∈uS [ Φi1(gi1)Φi2(gi2) · · ·Φik(gik) = h ]− 1

|N |

∣∣∣∣ ≤ ε.
To get intuition for the above definition, consider the case when N is the cyclic group

{1, ω, ω2, . . . , ωp−1} with ω a p’th root of unity for p prime. Then, the automorphisms of N are
functions of the form Φa : N → N defined by Φa(ωx) = ωax mod p, for a 6≡ 0 mod p. Thus strongly
ε-biased spaces for N in this case correspond to pseudorandom sets for linear functions mod p. The
explicit constructions of ε-biased spaces of Azar et al. are in fact strongly ε-biased.

Theorem 2.1 ([AMN98]) For every d > 0, there exists a deterministic algorithm running in
time poly(n, 1/ε) that takes as input n, ε and outputs a set S of size poly(n, 1/ε) that is strongly
ε-biased in Zd.

Proof: Follows from the fact that small-bias spaces of Azar et al. fool the irreducible characters
of Zd.�

As a corollary we obtain strongly ε-biased sets for all abelian groups.

Corollary 2.2 For an abelian group N , there exists a deterministic algorithm running in time
poly(n, 1/ε) that takes as input n, ε and outputs a set S of size poly(n, 1/ε) that is strongly ε-biased
in N .

Proof: Follows from Theorem 2.1 and the fact that abelian groups are isomorphic to direct prod-
ucts of cyclic groups.�
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3 Constant-Bias Spaces for Arbitrary Groups

We now give a construction that achieves constant bias and works for arbitrary finite groups. We
use the efficient constructions of small-bias spaces for Z|G| given by Azar et al.

Proof of Theorem 1.2: Let S ⊆ [|G|]n be a 1/(2|G|)-biased space in Z|G| of size poly(n) as given
by setting ε = 1/(2|G|) in Theorem 2.1. Consider the set

T = {(gx1 , gx2 , . . . , gxn) : g ∈ G, (x1, . . . , xn) ∈ S}. (2)

We claim that the set T is α-biased for a constant α < 1/|G|. We will use the following lemma.

Lemma 3.1 For any l with gcd(l, |G|) = 1, the random variable X = gl, where g is uniform in G,
is uniformly distributed in G.

Proof of lemma: The lemma follows from the fact that the map φ : G→ G, φ(x) = xl is bijective.
For, if gl1 = gl2, then for a, b such that al + b|G| = 1, g1 = g

al+b|G|
1 = g

al+b|G|
2 = g2.�

Fix a sequence b1, . . . , bn ∈ {0, 1} and let I = {i1, . . . , ik} = {i : bi 6= 0} ⊆ [n]. Let Y (g, x) =
gxi1

+...+xik . Note that for a fixed x = (x1, . . . , xn), if gcd(xi1 +. . .+xik , |G|) = 1, then by Lemma 3.1
Y (UG, x) is uniformly distributed in G, where UG is the uniform distribution over G. Further, since
x ∈u S and S is 1/2|G|-biased, Pr[gcd(xi1 + . . .+ xik , |G|) = 1] ≥ φ(|G|)(1/|G| − 1/2|G|), where φ
is the Euler function. Thus, for a fixed h ∈ G,

Prg∈uG,x∈uS [Y (g, x) = h] ≥ β

|G|
,

where β = φ(|G|)/2|G|. Therefore T is α-biased in G, where α = (1 − β)/|G| < 1/|G| and
|T | = |G||S| = poly(n).�

For abelian groups G, given a set that achieves constant bias, we can combine several independent
copies of the constant bias space to obtain a space with smaller bias. The construction of ε-biased
spaces in [NN93], at a high level, takes this approach. However, for non-abelian groups it is not
clear how to perform such amplification. In particular, we ask the following question:

Question 3.2 Let T be α-biased over G. Define

T k = {(g11g21 · · · gk1, g12g22 · · · gk2, . . . , g1ng2n · · · gkn) : gi = (gi1, gi2, . . . , gin) ∈ T, 1 ≤ i ≤ k}.

Then, is T k ε-biased over G for ε = αΩ(k)?

For abelian groups the answer to the above question is yes, but the answer is not clear for non-
abelian groups. An answer to the question even for the specific constant-bias space of equation (2)
would be very interesting.
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4 Small-Bias Spaces for Solvable Groups

We now address the case of solvable groups and prove Theorem 1.3. Our construction of ε-biased
spaces is recursive, by using the fact that every solvable group G has a nontrivial abelian subgroup,
say N , that is normal in the group G. We use the known constructions of ε-biased spaces for the
abelian group N and combine them with an ε-biased space for the factor group G/N which can be
obtained recursively, since G/N is also solvable. We first present some preliminaries from group
theory.

Let N be a nontrivial normal subgroup of G and let H = G/N be the factor group of N in G.
Without loss of generality assume that the factor group H is given by elements of G which are in
distinct cosets of N in G. Note that the representatives of H may not form a subgroup in G. In
case of ambiguity in group operations we will denote multiplication in H by ◦.

Lemma 4.1 Every g ∈ G can be written uniquely as g = nh, where n ∈ N and h ∈ H.

The following lemma gives us a way to separate a mixed product n1h1n2h2 . . . nkhk with ni ∈ N ,
hi ∈ H into products of elements in N and H respectively.

Lemma 4.2 Let g1 = n1h1, g2 = n2h2, . . . , gk = nkhk, with ni ∈ N and hi ∈ H. Let h =
(h1, . . . , hk). Then,

g1g2 . . . gk = (n1h1)(n2h2) . . . (nkhk) = n1 Φ1,h(n2) Φ2,h(n3) . . . Φk−1,h(nk) ah (h1 ◦ h2 ◦ · · · ◦ hk),

where Φi,h : N → N is an automorphism for 1 ≤ i ≤ k−1, and ah ∈ N depends only on h1, . . . , hk.

Proof: For 1 ≤ i ≤ k − 1, define Φi,h : N → N by Φi,h(n) = (h1 . . . hi) n (h1 . . . hi)−1. Since N is
a normal subgroup of G, Φi,h are automorphisms on N . Observe that,

(n1h1)(n2h2) . . . (nkhk) = n1 Φ1,h(n2) Φ2,h(n3) . . . Φk−1,h(nk) (h1h2 . . . hk).

Further, h1h2 . . . hk and h1 ◦ h2 ◦ · · · ◦ hk (as elements of G) lie in the same coset of N . Thus, there
exists ah ∈ N depending only on h1, h2, . . . , hk such that h1h2 . . . hk = ah (h1 ◦ h2 ◦ · · · ◦ hk). The
lemma now follows. �

Definition 4.1 A group G is said to be solvable if there exist subgroups G = N0 ⊃ N1 ⊃ N2 ⊃
. . . ⊃ Nr = (e) such that each Ni is normal in Ni−1 and Ni−1/Ni is abelian.

The following properties of solvable groups can be found, for instance, in [Her75].

Lemma 4.3 ([Her75]) Let G be a solvable group. Then,

• For a normal subgroup N ⊆ G, the factor group G/N is solvable.

• G contains a nontrivial abelian subgroup N which is normal in G.

Proof of Theorem 1.3: Let G be a solvable group. Let N be a nontrivial abelian subgroup of G
that is also normal and let H = G/N . Such an N is guaranteed to exist by Lemma 4.3. As before,
we assume that the factor group H is given by elements of G which are in distinct cosets of N in
G, with group operation of H denoted by ◦.
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Lemma 4.4 Let S ⊆ Nn be strongly ε-biased in N and let T ⊆ Hn be ε-biased in H. Let

S × T = {(n1h1, . . . , nnhn) : (n1, . . . nn) ∈ S, (h1, h2, . . . , hn) ∈ T} ⊆ Gn. (3)

Then, the set S × T is ε-biased in G.

Given the above lemma, Theorem 1.3 follows from Corollary 2.2 and induction, as H is a solvable
group with |H| < |G|. We now calculate the exact dependence of the size of the small-bias space
on n, ε, |G|.

For an abelian group N , and sufficiently large n, Azar et al. give a strongly ε-biased set of size
(cn/ε)2 log |N |, where c is an absolute constant independent of n, ε, |N |. Combining the above with
Lemma 4.4, for sufficiently large n, we get an ε-biased space for G of size (cn/ε)2 log |G|. In general,
using a similar estimate of Azar et al. we get a bound of (n/ε)O(log |G|). �

Proof of Lemma 4.4: Fix b1, . . . , bn ∈ {0, 1} and let I = {i : bi 6= 0}. Without loss of generality,
let I = {1, . . . , k}. For n = (n1, . . . , nn) ∈ Nn and h = (h1, . . . , hn) ∈ Hn, let X(n,h) =
(n1h1)(n2h2) . . . (nkhk). Using the notation of Lemma 4.2, let X(n,h) = Yh(n)Z(h), where

Yh(n) = n1Φ1,h(n2)Φ2,h(n3) . . .Φk−1,h(nk)ah ∈ N,
Z(h) = (h1 ◦ h2 ◦ · · · ◦ hk) ∈ H.

Let g0 = n0h0 ∈ G with n0 ∈ N,h0 ∈ H. Then, for a fixed h, since S is strongly ε-biased in N ,

|Prn∈uS [Yh(n) = n0]− 1
|N |
| ≤ ε. (4)

Further, since T is ε-biased in H,

|Prh∈uT [Z(h) = h0]− 1
|H|
| ≤ ε. (5)

Therefore,

Prn∈uS,h∈uT [X(n,h) = g0] = Prn∈uS,h∈uT [Yh(n) = n0 ∧ Z(h) = h0]

=
∑

h:Z(h)=h0

1
|T |

Prn∈uS [Yh(n) = n0]

≥
∑

h:Z(h)=h0

1
|T |

(
1
|N |
− ε
)

from equation (4)

≥
(

1
|N |
− ε
)

Prh∈uT [Z(h) = h0]

≥
(

1
|N |
− ε
)(

1
|H|
− ε
)

from equation (5)

≥ 1
|G|
− β,

where β = ε/|N |+ε/|H|−ε2/|G|. As the above argument is applicable for all non-empty I ⊆ [n],
and β < ε for |N |, |H| ≥ 2, we get that S × T is ε-biased in G.�
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4.1 Width 3 Branching Programs

We now study the particular case of width 3 ROPBPs and present some motivation for our Con-
jecture 1.5. Let S3 be the symmetric group on three elements {1, 2, 3}. Let a ∈ S3 be the trans-
position (12), b ∈ S3 be the cyclic-shift (123), and e be the identity permutation. Then, the group
N = {1, b, b2} ∼= Z3 is an abelian subgroup of S3 that is also normal. The factor group S3/N is
isomorphic to the group {1, a} ∼= Z2. Thus, for the special case of S3, the construction presented
in the previous section becomes,

S × T = {(ax1by1 , ax2by2 , . . . , axnbyn) : (x1, . . . , xn) ∈ S, (y1, . . . , yn) ∈ T},

where S ⊆ {0, 1}n is ε-biased over Z2 and T ⊆ {0, 1, 2}n is ε-biased over Z3. This provides some
motivation for Conjecture 1.5. Also, note that any pseudorandom generator for width three per-
mutation branching programs must be pseudorandom with respect to linear functions mod 2 and
mod 3 - a property satisfied by the generator of (1.5).

5 Pseudorandom Bit Generators for Modular Sums

As the existence of ε-PBG as required in Conjecture 1.5 does not follow directly from known
constructions of ε-biased spaces, we provide an efficient construction of ε-PBG of size poly(n, 1/ε)
below. Our construction is based on the pseudorandom-generators for low-degree polynomials
obtained by Viola [Vio08].

Proof of Theorem 1.4: Suppose that p is an odd prime; for p = 2, ε-PBG can be obtained from
ε-biased spaces straightforwardly. For the rest of this section, the arithmetic is over Fp and let ⊕
denote addition mod 2. To motivate our construction, let v ∈ Fnp , v 6= 0. We consider two cases
depending on the support size of v. Let C be a large enough constant depending on p such that
for all v ∈ Fp with |support(v)| ≥ C log(1/ε)

|Prx∈u{0,1}n [ 〈v, x〉 = a ]− 1
p
| ≤ ε

3
, (6)

|Pry∈uFn
p

[
∑
i

viy
p−1
i = a ]− 1

p
| ≤ ε

3
.

Case 1: |support(v)| ≤ C log(1/ε). This case can be handled by a generator H1 : {0, 1}r →
{0, 1}n that generates a ε-almost C log(1/ε)-wise independent distribution. Such generators with
r = O(log n+ log(1/ε)) are given in [NN93].

Case 2: |support(v)| > C log(1/ε). Let H : {0, 1}r → Fnp be such that for every degree at most
p− 1 polynomial P : Fnp → Fp, and a ∈ Fp,

|Prz∈u{0,1}r [P (H(z)) = a ]− Pry∈uFn
p

[P (y) = a ]| ≤ ε

3
. (7)

Pseudorandom generators for low-degree polynomials as above with r = O(log n + log(1/ε))
were given by Viola building on the works of Bogdanov and Viola [BV07], Lovett [Lov08]. Define
H2 : {0, 1}r :→ {0, 1}n by H2(z) = (yp−1

1 , . . . , yp−1
n ), where (y1, . . . , yn) = H(z). We will show

9



that H2 satisfies the conditions of ε-PBG. For z ∈ {0, 1}r, we have 〈v,H2(z)〉 =
∑

i vi(H(z)i)p−1 =
Pv(H(z)), where Pv is the degree p− 1 polynomial Pv(y) =

∑
i viy

p−1
i . Since H fools degree p− 1

polynomials over Fnp ,

|Prz∈u{0,1}r [ 〈v,H2(z)〉 = a ]− Pry∈uFn
p

[Pv(y) = a ]| =

|Prz∈u{0,1}r [Pv(H(z)) = a ]− Pry∈uFn
p

[Pv(y) = a ]| ≤ ε

3
. (8)

From equations (6), (8), for v ∈ Fnp with |support(v)| > C log(1/ε),

|Prz∈u{0,1}r [ 〈v,H2(z)〉 = a ]− 1
p
| ≤ 2ε

3
. (9)

We now combine the generators H1, H2 from the above cases to obtain (H1 ⊕H2) : {0, 1}2r →
{0, 1}n by defining (H1 ⊕ H2)(z1, z2) = H1(z1) ⊕ H2(z2). Observe that for b, c ∈ {0, 1}, b ⊕ c =
b+ c+ (p− 2)bc mod p. Let v ∈ Fnp , v 6= 0. Then,

〈v, (H1 ⊕H2)(z1, z2)〉 =
∑
i

vi(H1(z1)i ⊕H2(z2)i)

=
∑
i

vi (H1(z1)i +H2(z2)i + (p− 2)H1(z1)iH2(z2)i)

=
∑
i

viH1(z1)i +
∑
i

vi(1 + (p− 2)H1(z1)i)H2(z2)i

= 〈v,H1(z1)〉+ 〈v(z1), H2(z2)〉,

where v(z1) is the vector defined by v(z1)i = vi(1 + (p − 2)H1(z1)i). Note that |support(v)| =
|support(v(z1))|. Fix a ∈ Fp and suppose |support(v)| > C log(1/ε). Then, for a fixed z1, by
equation (9)

|Prz2∈u{0,1}r [ 〈v(z1), H2(z2)〉 = a ]− 1
p
| ≤ 2ε

3
.

Since z1, z2 are chosen independently, from the above equation and equation (6)

|Prz1,z2∈u{0,1}r [ 〈v, (H1 ⊕H2)(z1, z2)〉 = a ]− Prx∈u{0,1}n [ 〈v, x〉 = a ]| ≤ ε.

Proceeding similarly for the case |support(v)| ≤ C log(1/ε), it follows that the above inequality
holds for all v ∈ Fnp , v 6= 0 and a ∈ Fp. Hence H1 ⊕H2 is an ε-PBG for sums mod p.�

6 Relation to Branching Programs

Here we prove that PRGs for constant-width ROPBP imply small-bias spaces for finite groups.

Proof of Theorem (1.1): Assume we are given a PRG fooling constant-width ROPBPs. We want
to construct an ε-biased space for a group H. Since finite groups are isomorphic to subgroups of the
permutation groups, we can assume H to be a subgroup of the symmetric group Sw on w elements.
Let G : {0, 1}r → {0, 1}n fool width w ROPBPs of length n with error at most ε. Consider the
following procedure for generating a sequence in Hn:

10



1. Generate ε-almost k-wise independent sequences (g1, . . . , gn), (h1, . . . , hn) ∈ Hn for k =
O(log(1/ε)) to be chosen later. For k = O(log n), Naor and Naor [NN93], Alon et al. [AGHP92]
give efficient constructions of almost k-wise independent sequences using O(log n+ log(1/ε))
bits of randomness.

2. Choose y ∈u {0, 1}r and output the sequence (g1h
G(y)1
1 , g2h

G(y)2
2 , . . . , gnh

G(y)n
n ).

Note that the procedure uses O(log n+ log(1/ε)) + r bits of randomness. We will show that the
multi-set of sequences generated by the above procedure is a O(ε)-biased space over H. We need
the following lemmas.

Let g1, . . . , gl ∈ H, for l to be chosen later. Call a sequence of group elements (h1, . . . , hl)
complete if {g1h

x1
1 g2h

x2
2 · · · glh

xl
l : xi ∈ {0, 1}} = H.

Lemma 6.1 There exists a constant c such that for l = c|H|2, a sequence (h1, . . . , hl) ∈u H l is
complete with probability at least 1/2.

Proof For 1 ≤ i ≤ l, let Si = {g1h
x1
1 · · · gih

xi
i : xj ∈ {0, 1}} and let random variable Xi = |Si|.

Note that given h1, . . . , hi and a g ∈ H, g /∈ Si, Prhi+1∈uH [g ∈ Si+1 | h1, . . . , hi] = Xi/|H| ≥ 1/|H|.
Thus, if Xi < |H|, then Pr[Xi+1 ≥ Xi + 1 | Xi] ≥ 1/|H|. The lemma now follows.�

Lemma 6.2 For any group H and 0 < ε < 1/2, there exists k = O(log(1/ε)), such that for all
t > k and g1, . . . , gt ∈ H the following holds. For (x1, . . . , xt) ∈u {0, 1}t and h1, . . . , ht ∈ H chosen
from an ε-almost k-wise independent distribution, the distribution of g1h

x1
1 g2h

x2
2 . . . gth

xt
t is 4ε-close

in variation distance to the uniform distribution on H.

Proof Let l = c|H|2 be as in Lemma 6.1. Let k = 4ml log(1/ε), for m to be chosen later, and
partition (h1, . . . , hk) into 4m log(1/ε) blocks of length l each. Then, by Lemma 6.1 and Chernoff
bounds, for (h1, . . . , hk) ∈ Hk chosen from an ε-almost k-wise independent distribution, with
probability at least 1 − (exp(−Ω(m log(1/ε)) + ε), m log(1/ε) of the 4m log(1/ε) blocks will be
complete for g1, . . . , gk.

Note that for any complete sequence (hi1 , . . . , hil) the distribution of gi1h
x1
i1
gi2h

x2
i2
. . . gilh

xl
il

for
x ∈u {0, 1}l is at least α = (1− 1/2l)-close in variation distance to the uniform distribution on H.
Thus, with probability at least 1−(exp(−Ω(m log(1/ε)))+ε), the distribution of g1h

x1
1 g2h

x2
2 . . . gth

xk
k

with xi ∈u {0, 1} is (1− 1/2l)m log(1/ε)-close in variation distance to the uniform distribution on H.
The lemma now follows by taking m = O(2l).�

Let k = O(log(1/ε)) be such that the above lemma holds for H. Let I = {i1, . . . , it} = {i : bi 6=
0} ⊆ [n]. We consider two cases.

(a) |I| = t ≤ k: Since, (g1, . . . , gn) is chosen independently of (h1, . . . , hn) and is ε-almost k-wise
independent, the distribution of gi1h

G(y)i1
i1

gi2h
G(y)i2
i2

. . . gith
G(y)it
it

is ε-close to the uniform distribu-
tion on H.

(b) |I| > k: By relabeling the nodes according to the gi, we can construct a width w ROPBP of
length at most n such that on input x1, . . . , xt, . . . , xn the output is gi1h

xi1
i1
gi2h

xi2
i2

. . . gith
xit
it
∈ Sw.

Since G fools ROPBPs of width w and length at most n, we have for every π ∈ Sw,∣∣∣Pry∈u{0,1}r [gi1h
G(y)i1
i1

gi2h
G(y)i2
i2

. . . gith
G(y)it
it

= π]− Prx∈u{0,1}n [gi1h
xi1
i1
gi2h

xi2
i2

. . . gith
xit
it

= π]
∣∣∣ ≤ ε.
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Now, by lemma 6.2 when x ∈u {0, 1}n, the distribution of gi1h
x1
i1
gi2h

x2
i2
. . . gith

xt
it

is 4ε-close to the
uniform distribution on H. Therefore, for every π ∈ Sw,∣∣∣∣Pry∈u{0,1}r [gi1h

G(y)i1
i1

gi2h
G(y)i2
i2

. . . gith
G(y)it
it

= π]− 1
|H|

∣∣∣∣ ≤ 5ε.

It follows that the generator defined above is O(ε)-biased over H.�

7 Sum of Constant-Bias Spaces Does Not Fool Width 3

We now show that the sum of two constant-bias spaces over Z2 does not fool width 3 branching
programs and prove Theorem 1.6. We do this by constructing a constant-bias space S over Z2 such
that S ⊕ S is contained in a subspace of dimension o(n) in Fn3 . To avoid confusion in the following
let + denote addition in F3 and ⊕ denote addition in F2. For a set T ⊆ Fn3 , let d3(T ) denote the
dimension of span of T in Fn3 and let T � T = {x � y = (x1y1, . . . , xnyn) : x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ T}. We’ll use the following lemmas.

Lemma 7.1 For any T ⊆ Fn3 , d3(T � T ) ≤ d3(T )2.

Proof: If u1, . . . , uk ∈ Fn3 span T , then the
(
k
2

)
+ k vectors ui � uj span T � T . �

Lemma 7.2 Let T ⊆ {0, 1}n. Then d3(T ⊕ T ) ≤ 2d3(T ) + d3(T )2.

Proof: Observe that for x, y ∈ {0, 1}, x ⊕ y = x + y + xy. Therefore the dimension of span of
T1⊕T2 is at most the dimension of span of T +T +T �T . The lemma now follows from Lemma 7.1.
�

Proof of Theorem 1.6: Let n =
(
d
5

)
. We will denote vectors x ∈ Fn3 , by (xI)I∈C , where C =

(
[d]
5

)
is the collection of subsets of [d] of size 5. Let p : F5

3 → F3 be the degree two multi-variate
polynomial defined by

p(y1, y2, y3, y4, y5) = (y1 + y2 + y3 + y4 + y5)2.

Let q : F5
2 → F2 be the degree five multi-variate polynomial defined by

q(y1, y2, y3, y4, y5) =
⊕
i

yi ⊕
⊕
i 6=j

yiyj ⊕
⊕

i,j,k,l distinct

yiyjykyl ⊕ y1y2y3y4y5.

Our construction is based on the observation - which can be verified by direct computation - that
evaluated over the set {0, 1}5 the polynomials p and q are identical. That is, for all (y1, . . . , y5) ∈
{0, 1}5, p(y1, . . . , y5) = q(y1, . . . , y5). Now, let

S = {(p(yi1 , yi2 , yi3 , yi4 , yi5)){i1,i2,i3,i4,i5}∈C : (y1, . . . , yd) ∈ {0, 1}d}.

Let T = {(yi1 + yi2 + yi3 + yi4 + yi5){i1,i2,i3,i4,i5}∈C : (y1, . . . , yd) ∈ {0, 1}d}. Now, d3(T ) ≤ d and
S ⊆ T � T . Therefore, by Lemma 7.1 d3(S) ≤ d2. However, the dimension of the span of S viewed
as a subset of Fn2 is n =

(
d
5

)
. In fact, for any non-zero α ∈ Fn2 , {〈α, x〉 : x ∈ S} = {qα(y) : y ∈ Fd2},

where qα : Fd2 → F2 is a non-constant polynomial of degree 5. For,

qα(y) =
∑
I∈C

αI
∏
i∈I

yi +Rα(y),
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where Rα is a degree at most four polynomial. Since α 6= 0, qα has degree five. Using the fact
that the minimum distance of the Reed Muller code of degree 5 over F2 is 1/32, we get that for
a ∈ {0, 1},

Prx∈uS [〈α, x〉 = a] = Pry∈uFd
2
[ qα(y) = a ] ≤ 31

32
.

Thus, S is ε-biased over F2 for ε = 15/32. Further, from Lemma 7.2 d3(S ⊕ S) ≤ 2d2 + d4 = o(n).
�
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