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Abstract—Informally, an error-correcting code has “nice” list-
decodability properties if every Hamming ball of “large” radius
has a “small” number of codewords in it. Here, we report linear
codes with non-trivial list-decodability: i.e., codes of large rate
that are nicely list-decodable, and codes of large distance that
are not nicely list-decodable. Specifically, on the positive side,
we show that there exist codes of rate R and block length n
that have at most ¢ codewords in every Hamming ball of radius
H (1 — R — 1/c) - n. This answers the main open question
from the work of Elias [8]. This result also has consequences
for the construction of concatenated codes of good rate that are
list decodable from a large fraction of errors, improving previous
results of [13] in this vein. Specifically, for every ¢ > 0, we present
a polynomial time constructible asymptotically good family of
binary codes of rate Q(c<*) that can be list decoded in polynomial
time grom up to a fraction (1/2 — ¢) of errors, using lists of size
O(e™?).

On the negative side, we show that for every ¢ and c, there
exists 7 < 4, ¢1 > 0 and an infinite family of linear codes
{C;}i such that if n; denotes the block length of C;, then C; has
minimum distance at least § - n; and contains more than c; - n{
codewords in some Hamming ball of radius 7-n;. While this result
is still far from known bounds on the list-decodability of linear
codes, it is the first to bound the “radius for list-decodability by
a polynomial-sized list” away from the minimum distance of the
code.

Index Terms—Error-correcting codes, List decoding, Concate-
nated codes, Reed-Solomon code.

I. INTRODUCTION

IST decoding was introduced independently by Elias [7]

and Wozencraft [24] as a relaxation of the “classical”
notion of decoding by allowing the decoder to output a list of
codewords as answers. The decoding is considered successful
as long as the correct message is included in the list. Early
work by Elias and Wozencraft [7], [24] analyzed the probabil-
ity of error in this model and used random coding arguments to
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explore the average decoding error probability of block codes
at low rates for the binary symmetric channel. List decoding
was also used by Shannon, Gallager and Berlekamp [17] in
exploring low rate average error bounds for general discrete
memoryless channels, and Ahlswede [1] showed that it enables
one to determine capacity of a wide class of communication
channels.

Research in the eighties applied this notion in a more
adversarial setting and investigated what happens if the error
is effected by an adversary or a “jammer”, as opposed to
a probabilistic channel. Works of Zyablov and Pinsker [25],
Blinovsky [3], [4], and Elias [8] applied in this setting. (The
paper by Elias [8] also gives a very good summary of the prior
work and history.) The basic question raised in this setting was:
How many errors could still be recovered from, with lists of
small size? Two basic parameters thus are the number of errors
and the allowed size of the output list. These parameters are
usually studied as a function of some of the more classical
parameters of error-correcting codes. How large can the rate
of a code be if we want small list sizes for a certain number of
errors? And how do codes of large minimum distance perform
with respect to list decoding? Recently there has been rejuve-
nated interest in this line of work thanks to the development of
some efficient algorithms for list decoding in [19], [12], [18],
[13]. These algorithms decode with polynomial sized lists (and
sometimes with constant sized lists) for much more than half
the minimum distance of the code, and investigations of the
tightness of the algorithms have led Hgholdt and Justesen [16]
to re-initiate the investigation of the combinatorial bounds on
list decoding.

In this paper we continue the investigation of bounds on
list decoding. In particular, we investigate codes that exhibit
non-trivial list decoding performance. Specifically, we report
the existence of linear codes of large rate that are nicely list-
decodable, and codes of large minimum distance which are
not nicely list-decodable (the precise quantitative versions of
these results are stated in the next section). To motivate this
study we first fix some standard notation and then define two
fundamental questions (parameters) to study in the context of
list decoding.

Our results also has consequences for the construction
of concatenated codes of good rate that are list decodable
from a large fraction of errors, improving previous results of
[13] in this vein. Specifically, for every € > 0, we present
a polynomial time constructible asymptotically good family
of binary codes of rate (e*) that can be list decoded in
polynomial time from up to a fraction (1/2 — ¢) of errors,
using lists of size O(e72).



II. DEFINITIONS AND MAIN RESULTS

For a prime power ¢, let F, denote a finite field of
cardinality g. An [n, k], (linear) code C' is a k-dimensional
vector space in 5. We refer to n as the blocklength of the
code and to k as the dimension of the code. Unless explicitly
mentioned otherwise, we will only be interested in linear codes
in this paper and will moreover restrict ourselves to the binary
case (when q = 2).

For two strings x,y of length n over an arbitrary alphabet
¥, let A(z,y) denote the Hamming distance between them,
i.e., the number of coordinates where x and y differ. Denote
by §(z,y) = W the relative (fractional) distance between
2 and y. The minimum distance of a code C, denoted dist(C),
is the quantity min, ycc 2y {A(z,y)}. The relative distance
of the code C, denoted §(C), is analogously defined.

Since the main thrust of this paper is the asymptotic
performance of the codes, we define analogs of the quantities
above for infinite families of codes. An infinite family of
(binary) codes is a family C = {C;|i € Z1} where C; is
an [n;, k;]o code with n;, > n;_1. We define the rate of an
infinite family of codes C to be

rate(C) = lim inf {kz} .

(3 ni

We define the (relative) distance of an infinite family of codes

C to be dist(C
A(C) = liminf {IS(Z)} .

n;

We now define the list decoding radius of a code. For non-
negative integer r and = € F7, let B(x,r) denote the ball of
radius r around z, i.e., B(z,r) = {y € F§|A(z,y) < r}. For
integers e, ¢, a code C' C F¥ is said to be (e, £)-list decodable
if every ball of radius e has at most £ codewords, i.e. V = € FZ,
|B(z,e)NC| < L.

Definition 1 (List Decoding Radius): For an [n,k] binary
code C, and list size ¢, the list of ¢ decoding radius of C,
denoted radius(C, ¢) is defined to be the maximum value of e
for which C' is (e, £)-list decodable.

Definition 2: (List Decoding Radius for code and function
families) For an infinite family of codes C and a function
¢ . Zt — 77, define the list of ¢ decoding radius of C,
denoted Rad(C, ¢), to be

Rad(C, £) = lim inf {radl“b(cé(”))} .

U
For an infinite family of codes C and a family of integer-valued

functions F, the list decoding radius of C w.r.t F, also denoted
Rad(C, F) by abuse of notation, is defined as

Rad(C, F) = supRad(C, ¢)
LeF

It is interesting to study the list decoding radius of infinite
families of codes as a function of their distance and rate, when
the list size is either bounded by a constant or a polynomial
in the length of the code. Within this scope the broad nature
of the two main questions are: (1) Do there exist codes of
large rate with large list decoding radius for a fixed function
£? and (2) Do there exist codes of large distance with small
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list decoding radius for a given function ¢? Note that the other
two questions are uninteresting: specifically, it is possible to
construct codes of small rate that have small list decoding
radius (for example, the linear code that is spanned by a
small number of standard basis vectors has small rate, but
the entire code is contained in a small ball around the all
zeroes codeword); and it is possible to construct codes of
small distance that have large list decoding radius even for
lists of size 2 (for example by taking a code of large minimum
distance and adding one codeword at a small distance to some
existing codeword). In what follows we introduce some formal
parameters to study the above questions.

A. List decoding radius vs. Rate of the code

Definition 3 (Upper bound on list decoding radius): For
real rate 0 < R < 1 and list size ¢ : ZT — Z™, the upper
bound on list of £ decoding radius for (binary) codes of rate
R, denoted U;(R), is defined to be

Ue(R) = sup

C | rate(C)>R

Rad(C, ().

Similarly, for a family of integer-valued functions F, one
defines the quantity
Ur(R) = supUy(R) .
eF

Note that the reason for the term “upper bound” is that
Ui(R) is the list decoding radius of the best code (i.e. one
with largest possible list decoding radius) among all codes
that have at least a certain rate. The case where the list size
function is a constant, or growing polynomially is of special
interest to us, and we consider the following definitions.

Definition 4: For real rate 0 < R < 1 and constant
¢, the quantity US™'(R) is defined to be Uy(R) where
{(n) = c. The quantity UP°Y(R) is defined to be Ur, (R)
where F. is the family of functions {¢, 7t —
Z* where £.,(n) = cin°}. The quantity U"*(R) (resp.
UP°Y(R)) will denote the quantity limsup,_, . {US™*(R)}
(resp. limsup,._, . {UP°Y (R)}).

Thus the quantities U®"*(R) and UP°Y(R) denote the
maximum possible value of the (relative) list decoding radius
for lists of constant and polynomial size, respectively. These
quantities are actually surprisingly well-understood. The first
to pin this quantity down were Zyablov and Pinsker [25].
Zyablov and Pinsker showed that

Uconst(R) _ UPOIY(R) = H_l(]_ — R)

Here H(-) is the binary entropy function and H~!(-) is its
inverse. Specifically,

H(z)=—zlgz — (1 —2)1g(1l — 2)

where 1g x denotes the logarithm of = to base 2. Further, for
0 <y <1, H (y) denotes the unique z in the range 0 <
z < 1/2 such that H(z) = y.

The behavior of the upper bound on list decoding radius for
lists of size c, for specific constants ¢, however, was not known
completely. This quantity has been investigated significantly in
[25], [3], [4], [8], [23], [5] and below we attempt to describe
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their results and how it motivates our study. We start by noting
that US™S'(R) is monotonic in ¢, and is thus always at least
H~'(1 — R)/2 which is the Gilbert-Varshamov bound. The
results of Zyablov and Pinsker [25], stated in our notation,
showed that

const —1 1
UL (R) > H (1—m—R), (1)

(this result implies the above-mentioned result U®st(R) =
H~1(1—R)). The dependence on c above is weaker than what
what one can hope for and so the question merited further
study. Blinovsky [3] (see also [4]) initiated a systematic study
of this quantity for specific choices of c. His focus however
was on small values of ¢ and the lower bounds in his result
were obtained using non-linear codes. In more recent work [5]
shows how the techniques from his prior work may be used to
get lower bounds on US°"*(R) for linear codes as well. Other
researchers to focus on Ut (R) for small ¢ include Wei and
Feng [23]. The results of [3], [4], [S], [23] have a complex
dependence on c and so it is hard to extract the asymptotic
behavior of US"*(R) as a function of c. The only other result
with a nice asymptotic relationship between US°"*(R) and R
and c is that of Elias [8] who shows:

2(c—1)

1
const > _ _
U™ (R) = 5 (1 \/ 1

The two results with analytic forms, specifically (1) and (2),
are incomparable to one another. Note that we are interested
in relating three parameters: the rate R, the list-size ¢, and
the list-decoding radius US™*(R). The bound (2) has a
better dependence on the list-size, but a weaker dependence
on the rate than the bound (1). A setting which brings this
incomparability out very well and also motivates our result
(Theorem 5 below) is the following. Consider binary linear
codes which have a list-of-c decoding radius (1/2—¢) for some
constant ¢ (that may depend on ¢). The bound (1) guarantees
the existence of such codes of rate Q(e?) with a list size
¢ = 207 While the rate is good (in fact, optimal up to
constant factors), the list size is very high. On the other hand,
the bound (2) guarantees the existence of such codes of rate
Q(e*) with a list size ¢ = O(1/¢?). Here we strengthen the
bounds and show the following result which, for the case for
a list decoding radius of (1/2 —¢), combines the optimal rate
Q(e?) with a list size of O(1/€?). In particular, our result
answers the main open question posed by Elias [8] on whether
the bound (1), specifically its dependence on the list size c,
can be improved.

Theorem 5: For each fixed integer ¢ > 1, and rate 0 < R <
1L, UC™Y(R)>H '(1-R— %)

To see why this is the right form for the bound US°"(R),
we survey some of the known upper bounds on this quantity.

1) Upper bounds on US™'(R): All the above results
(including ours from Theorem 5) provide lower bounds on
Uconst(.) (except for the simple upper bound US™*(R) <
UP°Y(R) < H~1(1— R)). Blinovsky [3] also gave non-trivial
upper bounds on USs'(-) for fixed constants c. Specifically,

H—l(l—R)) G

he obtains the following result:

d+2 <20’ (A1 = N))e+?

const
U (R) < A ¢ ) (¢ +2) = 2(2¢/ + DAL - A(>3)

e

where ¢/ = [¢/2] and A = H~'(1 — R). (For the special
case of ¢ = 2, the exact upper bound was later improved in
[2].) The above bound applies to non-linear codes as well.
While this form of the result is hard to parse, it does imply
the following theorem:

Theorem 6: [Follows from [3]] For every ¢ > 1 and 0 <
R < 1, we have US™Y(R) < H™'(1 — R).

A careful interpretation of the bound (3) above gives a hint
that Theorem 5 has the right behavior as a function of c. To get
this perspective, let us again focus on the case of a family of
binary codes C with Rad(C,¢) > (1/2 —¢) for some constant
€ > 0 and where / is the constant function £(n) = ¢ ¥n. Then
Theorem 5 tells us that such code families with rate Q(g2)
exist for a list size of ¢ = O(¢72). On the other hand, the
bound (3) implies that in order to have rate(C) > 0, we must
have ¢ = Q(e72). Indeed if we want Rad(C,c) > 1/2 — &,
then Equation (3) implies A > (1/2 —¢) and thus A(1— \) >
1/4 — £2. Therefore the second term in the right hand side of
Equation (3) is at least

(1 _ 462)0/-1-1
Ve s 1)
V(2 4 4ce?)
using Stirling’s approximation (25) = G)(f‘/%). On the
other hand, this term must be at most O(g), since we want
Ut (R) > 1/2 — e. Together these facts imply that ¢/ =
Q(e72), as desired.

In this sense, the result of Theorem 5 is (nearly) the best
possible, and in particular the 1/c¢ loss term in the bound for
Uconst(R) cannot be improved asymptotically (for instance,
it cannot be improved to 1/c!*” for a positive 7). In fact,
since the upper bound of Equation (3) holds even for general
codes, Theorem 5 cannot be improved substantially even if
one allows general, non-linear codes.

We remark that an account of the results discussed above in
a slightly different notation which studies the rate as a function
of list decoding radius (instead of studying the list decoding
radius as a function of the rate) appears in [10, Chap. 5]. The
presentation there also gives more detailed descriptions of the
various results in the literature and their interconnections.

B. List decoding radius vs. Distance of the code

Next we move on to lower bounds on the list decoding
radius. As mentioned earlier, it makes sense to study this as
a function of the minimum distance of the code. A large
minimum distance implies a large list decoding radius by
existing combinatorial bounds (see for example [9]), and we
want to find the smallest possible list decoding radius for a
code of (at least) a certain minimum distance. This motivates
the next definition.

Definition 7 (Lower bound on list decoding radius): For a
distance 0 < § < 1, and list size ¢ : Z+ — Z7T, the



lower bound on list-of-f decoding radius for (binary) codes
of relative distance d, denoted L,(4), is defined to be
Le(6) = ¢ 1An(fc)26Rad(C,€).

Note that both in the case of the upper bound function
U, and the lower bound function L; one could allow the
arguments, i.e., rate and distance to be functions of n, in which
case the supremum would be taken over codes C that satisfy
dim(C;) > R(n;) - n; (or in the case of the lower bound
function, we would take the infimum over codes that satisfy

As in the case of the upper bound function, we introduce
notation to study the special cases when the list size is a
constant or grows as a polynomial.

Definition 8: For real distance 0 < § < 1/2 and con-
stant ¢, the quantity LS°"*(§) is defined to be L,(5) where
{(n) = c. The quantity L2°"(4) is defined to be sup,, Ly, (6)
where £, (n) = c¢n°. The quantity L"%(§) (resp.
LP°Y(§)) will denote the quantity limsup, . {LS"(8)}
(resp. limsup,_, . {LP°Y(5)}).

Note that we restrict § < 1/2 since binary codes with
relative distance § > 1/2 have at most a linear number of
codewords and are thus not very interesting. It is clear that
Ly(8) = /2. It is also easy to see that LP°Y(§) < § (since
there exist codes of relative distance § with super-polynomially
many codewords in ball of radius close to the minimum
distance.) Thus all lower bounds of interest lie in the range
[0/2,0]. The exact values are, however, mostly unknown. The
main motivation for our work is the following conjecture.

Conjecture 9: For every 0 < § < 1/2, LO™'(§) =
Lroly(§) = 1. (1—v/1-26).

Evidence in support of the conjecture comes piecemeal.
Firstly, it is known that

LP (5) > L2V (8) > % : (1 Vio 25)

and 1
const > . 7 \/77
L™ (8) > 5 (1 1 25+25/c)

(see, for example, [9], [14] for a proof of these facts). Upper
bounds on LP°Y and L¢°"* are not as well studied. Justesen
and Hgholdt [16] demonstrate some MDS code families C of
distance ¢ with Rad(C, ¢) < (1—+/1 — 0) for every constant ¢
for certain values of ¢, but this does not apply for codes over
any fixed size alphabet, and in particular for binary codes.

The quantity LP°Y(§) is even less well understood. When
J is either very large (of the form 1/2 — o(1)) or very small
(of the form o(1)), there is some evidence confirming this
bound. In particular, Dumer et al. [6] construct a family of
linear codes C, for any £ > 0, for which §(n) = n°~! and
LPY(§) < §/(2 — &) which matches the conjecture above
reasonably closely. We give a simple probabilistic argument
to show the following:

Theorem 10: For every € > 0, there exists an infinite family
of binary codes C and a function ¢ : Z* — Z7% that grows
faster than any polynomial such that every member of C' € C
with block length n satisfies

(n/2 - A(C))
(n/2 — radius(C, £(n)))

< 3e.
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This seems to show that the tangent of the curve LP°Y(§)
has infinite slope as 6 — 1/2, which is consistent with
the conjecture above (and thus mild evidence in favor of
the conjecture). One additional reason for believing in the
conjecture is that if the definition of codes is extended to allow
non-linear codes, then indeed it is known that the conjecture
is true (see for example [9]). All this evidence adds support
to the conjecture, however remains far from proving it. In fact
until this paper it was not even known if LP°Y(§) < §. The
following theorem resolves this question.

Theorem 11: For every integer ¢ > 1 and every 6, 0 < 6 <
1/2, we have LP°Y () < 6.

Further, for the case § = 3 - (1 — o(1)), we actually get close
to proving the above conjecture. This is done in the theorem
below which informally states that if

5(n) = 3 (1~ ©((logn)*™)),

then

LPOY(§) < Z[1 — (1 — 26)Y/2%2),

N =

for arbitrarily small €. (Of course, the above does not make
sense formally since LP°Y (§) was defined as a limit of a series
and not a function of n. The following theorem makes the
assertion formally, in slightly more cumbersome detail.) The
theorem below follows from Lemma 14 which is stated and
proved in Section III-C.

Theorem 12: For every ¢, 0 < ¢ < 1/2, for some 0 :
Z+ — Z7T satistying 6(n) = 1(1—O((logn)°~')) and some
superpolynomial function £ : Z+ — 7%, there exists an infinite
family of codes C such that for every C' € C of block length n,
the relative minimum distance of C'is at least §(n) and the list
of £(n) decoding radius of C is at most 1[1 — (1 —26)1/2+=].

In a recent result, Guruswami [11] has made significant
progress towards resolving Conjecture 9 — he resolves this
conjecture assuming a well-known number-theoretic conjec-
ture. We discuss this result further in Section VI.

Remark: For codes over an alphabet of size g for large enough
q, it turns out that LP°Y(q,§) < § for certain values of § can
be easily deduced from existing results on codes that beat
the Gilbert-Varshamov bound (here LP°Y(q,d) denotes the
quantity analogous to LP°Y(§) for the case of g-ary codes).
Indeed, it is easy to show that for any code that lies above the
GV bound, the expected number of codewords at a Hamming
distance of at most d from a random received word, where
d is the minimum distance of the code, is exponential. Since
g-ary codes that beat the GV bound are known for all square
prime powers g > 49 (specifically certain algebraic-geometric
codes achieve this [21]), it follows that for certain ¢ > 49 and
certain values of &, we indeed have LP°Y(q,§) < §. However,
our focus is on binary codes, and since the GV bound is the
best current asymptotic trade-off between rate and distance
known for binary codes, the above approach does not give
anything for binary codes.

C. Organization of the Paper

We study the lower bound functions LP°Y (§) and LP°Y (§)
in Section III and prove Theorems 10, 11, and 12. In Sec-
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tion IV, we study the function US™*(R) and prove Theo-
rem 5. We then prove an adaptation of Theorem 5 (Lemma 22)
in Section V, and then use it to construct binary linear codes
with very high (algorithmic) list decodability.

III. LIST DECODING RADIUS AND MINIMUM DISTANCE

We now prove upper bounds on the function LP°Y(§)
claimed in Theorems 11 and 12. We will first prove Theo-
rem 12 which shows that when § = -(1—o0(1)), one “almost”
has a proof of Conjecture 9. A modification of this proof will
also yield the proof of Theorem 11. We first review the basic
definitions and concepts from (Discrete) Fourier analysis that
will be used in some of our proofs.

A. Fourier analysis and Group characters

For this section, it will be convenient to represent Boolean
values by {1,—1} with 1 standing for FALSE and —1 for
TRUE. This has the nice feature that XOR just becomes multi-
plication. Thus a binary code of blocklength m will be a subset
of {1, —1}™. There are 2 functions x, : {0,1}* — {1,-1}
on t-variables, one for each a € {0,1}'. The function x,
is defined by yo(z) = (—1)** = (—1)2 % Fixing some
representation of the field GF(2?) as elements of {0, 1}, the
functions x,, are the additive characters of the field GF(2¢),
and can also be indexed by elements o € GF(2"). We will do
so in the rest of the paper. We also have, for each y € GF(2),
> o Xa(y) equals 0 if y # 0 and 2" if y = 0, where the
summation is over all « € GF(2").

We can define an inner product (f,g) for functions f,g :
GF(2") - R as

(f.9)=27""3" flx)g(x).

We call this inner product the normalized inner product, in
contrast to the unnormalized inner product ) f(x)g(x). The
functions Y, form an orthonormal basis for the space of real-
valued functions on GF(2') with respect to the normalized
inner product. Thus every real-valued function on GF(2!), and
in particular every Boolean function f : GF(2!) — {1,-1}
can be written in terms of the x,’s as:

@)= > faxal®). @)
aEGF(2t)

The coefficient f, is called the Fourier coefficient of f with
respect to « and satisfies

f(x = <f’ X<x> =2 Z f(.Z‘)Xa(Z(’)

If we define the distance between functions f, g as
A(f,9) = Pr [f(z) # g(x)],

then

fa =1- QA(fv on)'
The Fourier coefficients of a Boolean function also satisfy
Plancherel’s identity > f2 = 1.
Hadamard code: For any integer ¢, the Hadamard code
Had; of dimension ¢ maps ¢ bits (or equivalently elements
of GF(2?%)) into {1,—1}? as follows: For any z € GF(2!),
Hadt(x) = <Xa($)>aeGF(2t)-

B. Idea behind the Construction

Since our aim is to prove lower bounds on the list de-
coding radius we must construct codes with large minimum
distance with a large number of codewords in a ball of
desired radius. The specific codes we construct are obtained
by concatenating an outer extended Reed-Solomon code over
a finite field F' = GF(2') with the Hadamard code Had;
of blocklength 2¢ and dimension t. Thus the messages of
this code will be degree ¢ polynomials over GF(2!) for
some ¢, and such a polynomial P is mapped into the code-
word (Had:(P(z1)),...,Had:(P(z2¢))) where z1, 23, . ..
is some enumeration of the elements in GF(2?).

Let n = 2%, It is easy to see that this code has blocklength
2% and minimum distance % (1— £)2%.1f ¢ = (1—26)n, then
the relative minimum distance is 4, and for future reference
we denote this code by RS-HAD,(9).

To construct the received word (which will be the center
of the Hamming ball with a lot of codewords), consider the
following. Suppose we could pick an appropriate subset .S
of GF(2') and construct a Boolean function f : GF(2!) —
{1, —1} that has large Fourier coefficient f., with respect to
aforaeS. Let v e {1,—1}% be the 2{-dimensional vector
consisting of the values of f on GF(2!). The word viFl ie.,
v repeated |F'| times will be the “received word” (the center
of the Hamming ball which we want to show has several
codewords). Since f has large Fourier support on S, vI¥| will
have good agreement with all codewords that correspond to
messages (polynomials) P that satisfy P(z;) € S for many
field elements z;. By picking for the set S a multiplicative
subgroup of GF(2%) of suitable size, we can ensure that there
are several such polynomials, and hence several codewords in
the concatenated code with good agreement with vI!.

The main technical component of our construction and
analysis is the following Theorem which asserts the existence
of Boolean functions f with large support on subgroups
S of GF(2'). We will defer the proof of the theorem to
Section III-E, and first use it to prove Theorems 12 and 11.

Theorem 13: There exist infinitely many integers s with the
following property: For infinitely many integers ¢, there exists
a multiplicative subgroup S of GF(2?) of size s such that the
following holds: For every 8 # 0 in GF(2!) there exists a
function f: GF(2') — {1,—1} with

, 2ot

Here (3 - S denotes the coset {Sz : x € S} of S.

Remarks: Our proof of the above theorem in fact gives the
following additional features which we make use of in our
applications of the theorem.

1) The integers s exists with good density; in particular for
any integer k > 4, there exists an s, with k < s < 3k,
that satisfies the requirements of Theorem 13.

2) We can also add the condition that there exist infinitely
many ¢ including one that lies in the range s/2 <t < s,
and the theorem still holds.

For any subset S C GF(2!), one can show that Y acs fa

is at most |S|'/? using Plancherel’s identity and Cauchy-



Schwartz, and Theorem 13 shows that we can achieve a
sum of (|S|'/2) infinitely often for appropriate multiplicative
subgroups S.

C. Proof of Theorem 12

We now employ Theorem 13 to prove Theorem 12. We
in fact prove the following Lemma which clearly establishes
Theorem 12.

Lemma 14: For every ¢, 0 < e < 1/2, there exist
infinitely many integers ¢ such that the following holds:
Let N = 2%, There exists a vector r € {1,—1}" and
§ = 3(1-O((log N)=~1)), such that the number of codewords
C of the code RS-HAD;(d) with

Ar,0) < —(1— (1 —28)Y/%%9)

|

is at least N©(og" N)

Proof: Let s,t be any pair of integers guaranteed by
Theorem 13 with ¢ < s < 2t (we are using one of the
remarks following Theorem 13 here). Let S be a multiplicative
subgroup of GF(2') of size s and f : GF(2!) — {1,—1} a
function such that

S fazy/s 5)

3
a€eS

Let n = 2!, N = 22 and p = (n — 1)/s. Note that s =
O(log N) since we have ¢t < s < 2t. Then SU{0} consists of
all elements in GF(2!) which are p’th powers of some element
of GF(2%).

We first fix the “received word” r. Let v € {1, —1}" be the
vector (f(z))zeqr(2t) of all values of f. Then r = v", ie.
the vector v repeated n = 2! times, one for each position of
the outer Reed-Solomon code.

Let § be a parameter to be specified later and ¢ = (1—2d)n.
Consider the binary code C = RS-HAD;(d) obtained by
concatenating an extended Reed-Solomon code of dimension
¢+ 1 = (1 —20)n+ 1 over GF(2") with Had;. C has
blocklength N and minimum distance 6 N. We now want to
demonstrate several codewords in C that are “close” to r.
We prove this picking codewords in C at random from some
distribution and showing that the agreement with r is “large”
with good probability.

Let m = |¢/p| and consider a message (degree ¢ polyno-
mial over GF(2")) P of C which is of the form P(z) = R(z)?
for a random polynomial R of degree at most m over GF(2?).
The Reed-Solomon encoding (b1, bs,...,b,) of P satisfies
b; € SU {0} for every i, 1 < ¢ < n. It is easy to see that
for each i and each a € S, we have Pr[b; = a] = p/n, and
Pr[b, = 0] = 1/n. Moreover, the choices of b; are pairwise
independent.

Now, by definition of the Fourier coefficient, for each ¢, the
Hadamard codeword Had(b;) and the vector v we constructed

above have an unnormalized inner product equal to n - fp, (or

1+ fo,

equivalently, agree on a fraction —5~= of positions). For any
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1, 1 < ¢ < n, the expected value of fp, satisfies

.1, =1 =; 1 _le=, 2
%Zfoﬂrﬁfo > nTZfa*EZEZfa*ﬁ

aeS a€ES a€eS
1 2
> =, (6)
V3s n

where the last inequality follows from Equation (5). Let X
denote the random variable which is the unnormalized inner
product of the codeword (encoding the message R(x)P for a
random polynomial R of degree at most m) with the received
vector r = v". By linearity of expectation and using (6), we
have

S ; N LIN
E[X] = ;E[nfbi] > = 2V/N > vl

for large enough N (since s = O(log N)). Now, for each ¢,
1<1<n, )
i21< P 2 < =
E[fbi]—n Z I < 3
aeSU{0}

Since the b;’s are evaluations of the polynomial R(z)? at the n
field elements for a random R, they are pairwise independent.
Thus the variance of the random variable X is bounded from
above by

N3/2
s

E[X?] =) El(nfy)* < ®)
i=1

We now use Chebyshev’s inequality to prove that the inner

product X is greater than N/+/4s with probability at least

1/2. Indeed

N N
Pr[X < < Pr[X-E[X]< -
N e TV
N
< Pr[|X —-E|X]|| >
< PrlX ~EBIX)| > ;o)
400s E[X?] _ 400
< /e
- N2 -~ VN
1
< 3 (for large enough N),

where we have used the lower bound on E[X] from Equation
(7) and the upper bound on E[X?] from Equation (8).
Hence the codewords encoding at least % - n™ of the
polynomials of the form R(x)? where R is a polynomial of
. . 1 1
degree at most m, differ from r in at most (5 — 3 \/E)N
codeword positions.
We now pick parameters (namely m, §) suitably to conclude
the result. Recall that s = ©(log N). Picking m = s¢, we have
l 14 m
1-28)=—=0(—)=0(—)=0((logN)*"") .
(1-20)= - =0(-) = 6(") = O((10g X))
Thus the minimum distance § (for our choice of m) satisfies
§=1(1-0((logN)="1)).
Also we have

(1 _ 25)1/2+5 ~ gle=1)(1/24¢) < (45)71/2

for large enough N (since ¢ < 1/2). Thus there exist
Q(n™) = N2og" N) codewords of RS-HAD,(d) all of which
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lie in a Hamming ball of radius & (1 — (1 —2§)!/2+<). Since
Theorem 13 implies that there are infinitely many choices for
t that we could use, we also have infinitely many choices of
blocklengths N available for the above construction, and the
proof is thus complete. ]

D. Proof of Theorem 11

We now turn to obtaining upper bounds on LE°Y¥(§) for a
fixed constant c. One way to achieve this would be to pick
m =~ 2c¢ in the above proof, and then pick s ~ 2¢/(1 — 26)

and this would give (roughly) L2 () < 3 (1 — (163? )
However this upper bound is better than § only for § large
enough, specifically for § > % — i We thus have to modify
the construction of Lemma 14 in order to prove Theorem 11.
We prove the following lemma which will in turn imply
Theorem 11. Since our goal was only to establish Theorem 11,
we have not attempted to optimize the exact bounds in the
lemma below.

Lemma 15: For every c and every §, we have

{(5 +a)(l- (ﬁ)uz)}.

Proof: To prove the claimed upper bound on LP°Y(§),
we will closely follow the construction from the proof of
Lemma 14. Let 0 < § < 1/2, 0 < a < (1/2 —9), and ¢
be given. Define o’ = 2« and pick an integer s,

2(2c+1)/a/ <s<6(2c+1)/d

LPY(§) < min
0<a<1/2-6

such that the conditions of Theorem 13 are met (we know
such an s exists by the remarks following Theorem 13). Let
t be any integer for which a subgroup S of GF(2!) exists
as guaranteed by Theorem 13 (there are once again infinitely
many such values of ?).

Now we describe the actual construction for a particular
5,/ s,t. Let n =2, N =n? and p = (n — 1)/s. As in the
proof of Lemma 14, the code will again be RS-HAD;(J) (the
messages of the code will thus be polynomials over GF(2!) of
degree at most £ = (1—2§)n and the code has blocklength N).
The only change will be in the construction of the received
word r. Now, instead of using as received word the vector v"
(recall that v was the table of values of the Boolean function
f with large Fourier support on a multiplicative subgroup .S of
GF(2")), we will set the first B = ({—a'n) = (1-26—a/)n
blocks of r to be all zeroes. The last (n — B) blocks of r will
be vectors v, B < i < n, which will be specified shortly.

Let m = 2c + 1. We will consider the messages corre-
sponding to polynomials of the form P(z) = (x —z21) -+ (v —
zp)R(z)P where z1,...,zp of GF(2") are the B elements of
GF(n) that correspond to the first B positions of the Reed-
Solomon code and R is a random degree m polynomial. Note
that

-1
degree(P) = B+pm=/{—a'n+ L(Qc—i—l) </
s

since we picked s > 2(2¢ + 1)/a/. By the choice of P, the
codeword (by, b, . .., b,) corresponding to P (which we abuse
notation and also denote by P) will agree with r in the first nB
positions (as both begin with a string of nB zeroes). At each

of the remaining (n — B) blocks, we will have b; € S; U {0}
where .S; is a coset S (recall that .S is s-element multiplicative
subgroup of GF(2!) consisting of all the p’th powers). Specif-
ically S; = f3;S where [5; = (z; — z1) - - - (2, — zB). Now, for
B < i < n, define vV € {1, —1}275 to the value of the
functions f() where f() : GF(2") — {1,—1} is a function
with )7 o s, fc(f) > \/% as guaranteed by Theorem 13.

Using arguments similar to those in the proof of Lemma 14,
one can show that with probability at least 1/2, the codeword
corresponding to the polynomial P differs from r in at most
E=(n-B)(3- ﬁ)n positions. Thus there are at least
£n™ codewords of RS-HAD,(9) that lie within a ball of radius
FE around r. Since N = n?, m = 2c+1and s < 6(2c+1)/c/,
we have w(NN°¢) codewords in a Hamming ball of radius

O[/

N+ /2)(1 - m),

and recalling that o/ = 2q, the claimed result follows. To
conclude, we just reiterate that by Theorem 13, for the picked
value of s, there are infinitely many values of ¢ (and therefore
the blocklength N) for which the code RS-HAD,(9) has the
claimed properties. Thus we get an infinite family of codes
with the requisite property, and the proof is complete. [ ]
We now turn to the proof of of Theorem 11.
Proof: (of Theorem 11) We want to prove LP°Y(§) < 6.

Note that when5>%—m, setting o = 1/2 — § gives
1 1-26
LPY(§) < (1 = (=——)V/? 4.

When 6 < 5 — qgmery)» setting o = 6%/48(2c + 1) (this is a
valid setting since it is less than 1/2 — §), we have
LY () <o+ a— ()2 <4
et ot a= ey TS
Thus we have LP°Y(§) < § in either case. [ |

E. Proof of Theorem 13

The proof proceeds in several steps. We first prove the
following Lemma which shows that if a subset S of GF(2¢)
satisfies a certain property, then there exists a Boolean function
f:GF(2%) — {1, —1} such that 3" f,, is large when summed
over a € S.

Lemma 16: For any integer ¢, let S be an arbitrary subset
of elements of the field GF(2!) such that no four (distinct)
elements of S sum up to 0. Then there exists a function f :
GF(2!) — {1,~1} with 3 g fo > \/@

Proof: For any set S, the following simple claim identifies
the “best” function f for our purposes.

Claim: Define the function g : GF(2') — R by g(z) =
> acs Xa (). Then the maximum value of ) o fo achieved
by a boolean function f is exactly 273" |g(x)].

Proof: Indeed
23 fa = D f@xal@) =D f@) Y xala)
z, €S T a€eS

a€esS
S f@)g@) < 3 lg(a)]



with equality holding when f is defined as f(x) = sign(g(x)).
|

Thus the above claim “removes” the issue of searching for an
f by presenting the “best” choice of f, and one only needs to
analyze the behavior of the above character sum function g,
and specifically prove a lower bound on ) |g(z)|.!

To get a lower bound on ) _|g(x)|, we employ Holder’s
inequality which states that

1/p 1/q
Zhl(fﬂ)hz(x)l<<2|h1(x)lp> (Zlhz(w)lq> ;

for every positive p and ¢ that satisfy  + ¢ = 1. Applying
this with hy(z) = |g(z)|*/3, ho(x) = |g(x)|*/3, p = 3/2 and
q = 3 gives

2/3 1/3
(an) <Zg<x)‘*> >Y @), O

This inequality is also a consequence of log convexity of the
power means (see Hardy, Littlewood, Polya [15]; Theorem
18).

Now 3, 0%(2) = Yo, 0y Sy Xarsas (z) which equals
S| - 2¢ (the inner sum equals 2¢ whenever a; = vy and 0
otherwise, and there are |S| pairs (a1, as) with a1 = as).
Note that this also follows from Plancherel’s identity.

Similarly
294($) = Z ZXQ1+C¥2+(¥3+O¢4($)
r a1,az,a3,04€8 @

equals Ny g - 2t where Ny s is the number of 4-tuples in
(a1, 0,a3,a4) € S* that sum up to 0. But the property
satisfied by S, no four distinct elements of S sum up to 0,
and hence the only such 4-tuples which sum up to 0 are those
which have two of the a’s equal. There are at most 3|S|? such
4-tuples (aq, g, a3, q) with two of the o’s equal. Hence
Nys < 3|S)?, and hence Y, ¢*(z) < 3|5|*2". Plugging this
into Equation (9) we get, when f(z) = sign(g(z

(@)
. 1 S|P3 S
S fum i Slawz [ B0 - 1

a€eS T

Given the statement of Lemma 16, we next turn to con-
structing subgroups of GF(2!) with the property that no four
(or fewer) distinct elements of the subgroup sum up to 0.
To construct such subgroups, we make use of the following
simple lemma about the existence of certain kinds of cyclic
codes. For completeness sake, we quickly review the necessary
facts about cyclic codes. A binary cyclic code of blocklength
n is an ideal in the ring

R =F,y[X]/(X" —1).

'Tt can be shown that the representation of the field (as a vector space of
dimension ¢ over GF(2)) does not affect the value distribution of g, and thus
we can pick an arbitrary representation of the field, and the result will be the
same.
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It is characterized by its generator polynomial g(X) where
g(X)|(X™—1). The codewords correspond to polynomials in
R that are multiples of g(X) (the n coefficients of each such
polynomial form the codeword symbols). A (binary) cyclic
code is said to be maximal if its generator polynomial is
irreducible over GF(2). A BCH code is a special kind of
cyclic code whose generator polynomial is defined to be the
minimal polynomial that has roots 3,32, ...,3% 1. Here 3
is a primitive n’th root of unity over GF(2), and d is the
“designed distance” of the code.

Lemma 17: Let k > 4 be any integer. Then there exists an
integer s in the interval [k,3k) such that a maximal binary
BCH code of blocklength s and minimum distance at least 5
exists.

Proof: Let s be an integer of the form 2/ — 3 in the
range [k,3k) (such an integer clearly exists). Let 3 be the
primitive s’th root of unity over GF(2) and let h be the
minimal polynomial of 3 over GF(2). Clearly, h(3%) = 0
for all 4 > 1, and hence h(3?) = h(B*) = 0. Since B = @3,
we also have h((3%) = 0. Now the consider the cyclic code
C}, of blocklength s with generator polynomial h. It is clearly
maximal since h, being the minimal polynomial of [, is
irreducible over GF(2). Also h(3%) = 0 for i = 1,2,3,4.
Using the BCH bound on designed distance (see, for example,
Section 6.6 of [22]), this implies that the minimum distance
of C}, is at least 5, as desired. |

Lemma 18: Let k > 4 be any integer. Then there exists an
integer s in the interval [k, 3k) with the following property.
For infinitely many integers ¢, including some integer which
lies in the range s/2 < t < s, there exists a multiplicative
subgroup S of GF(2%) of size s such that no four or fewer
distinct elements of .S sum up to 0 (in GF(2")). Moreover, for
any non-zero 3 € GF(2!) this property holds for the coset 5.5
as well.

Proof: Given k, let k < s < 3k be an integer for
which there exists a binary BCH code C' of blocklength s
as guaranteed by Lemma 17 exists. Such a code is generated
by an irreducible polynomial h where h(z)|(z® — 1). Let
t = degree(h); clearly t < s. Consider the finite field
F = Fs[X]/(h(X)) which is isomorphic to GF(2!), and
consider the subgroup S of size s of F comprising of
{1, X, X2 X3 ..., X571}, The fact that C has distance at
least 5 implies that ), _, X" is not divisible by h(X) for any
set GG of size at most 4, and thus no four or fewer distinct
elements of .S sum up to O in the field F'. This gives us one
value of ¢ < s for which the conditions of Lemma 18 are met,
but it is easy to see that any multiple of ¢ also works, since
the same S is also a (multiplicative) subgroup of GF(2**) for
all k > 1. In particular we can repeatedly double ¢ until it
lies in the range s/2 < ¢t < s (note that we had ¢ < s to
begin with). The claim about the cosets also follows easily,
since if a; + as + ag + a4 = 0 where each a; € (35, then
B~ ray + p7tas + B taz + B tay = 0 as well, and since
B~ ta; € S, this contradicts the property of S. ]

We now have all the ingredients necessary to easily deduce
Theorem 13.
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Proof: (of Theorem 13) Theorem 13 now follows from
Lemma 16 and Lemma 18. Note also that the statement of
Lemma 18 implies the remarks made after the statement of
Theorem 13. [ |

FE. Proof of Theorem 10

We begin by bounding the expected number of codewords
in a random ball of an MDS code. Recall that an MDS code is
an [n, k] code whose minimum distance equals (the optimum
value of) (n — k + 1).

Lemma 19: For any MDS [n, k], code C' and a > F,

L) < BB —ancp < (1)e

e\a

Proof: The upper bound follows from the claim that for
any set S, of a positions, the expected number of codewords
which agree with x on S, is at most qk_a. To show this claim,
first fix a subset S C S, of k of these positions. For each
x, there is a unique codeword w, that agrees with = on S.
The probability that w, agrees with = on S, therefore equals
qk'—a.

The lower bound follows from a similar claim: that for any
set S, of a positions, the probability that a codeword agrees
with « on S, and disagrees with x outside of S, is at least
¢"=?/e. This claim is true because the probability that w,
above agrees with = on S, and disagrees with z outside of S,
equals ¢"~%(1 —1/¢)"~°. For an MDS code, n < q+ k — 1,
son—a<n—k<g—1s0o(1-1/¢)" %> 1/e. [ |

Corollary 20: For any constants ¢, > 0, for large enough
n, LY (1—n"1) <1—(1—7)n°"! /e, where LP°Y denotes
the analog of LP°Y for g-ary codes.

Proof: Use an MDS [n, k], code with n = ¢ and k = n®,
such as a Reed-Solomon code. Then

k
n qkfa > (ﬁ)ankfa —_ TLf
a ~ \a a®

Letting a = (1 — y)n®/e, for large enough n we have a® <
n(1=7/27° "and the expected number of codewords in a ball
of radius n — a is Q(n2™"), yielding the corollary. [ |

Proof: (of Theorem 10) We show that the family of codes
C that we construct satisfies the property that every member
C € C with block length n satisfies

1) The relative minimum distance of C is at least

1 (1—n="1/2).

2) The list-of-¢(n) decoding radius of C' is at most
1 (1 o Lnafl/Z)
2 3e '

This suffices to prove the theorem.

The codes C' in our family are concatenations of Reed-
Solomon codes with Hadamard codes. For such a concatenated
code C' to have block length n, the RS code must have block
length /7, and the relative minimum distance of C'is half the
relative minimum distance of the RS code. The theorem then
follows from Corollary 20 for ¢(n) growing exponentially in
n. |

IV. LIST DECODING RADIUS VS. RATE

We now prove Theorem 5.

Proof: (of Theorem 5) For each fixed integer ¢ > 1 and
0 < p < 1/2, we use the probabilistic method to guarantee
the existence of a binary linear code C of blocklength n, with
at most ¢ codewords in any ball of radius e = pn, and whose
dimension is k = |(1 — H(p) — 1/¢)n], for all large enough
n. This clearly implies the lower bound on US°"t claimed in
the statement of the Theorem.

The code C = C}, will be built iteratively in %k steps by
randomly picking the k basis vectors in turn. Initially the code
Cy will just consist of the all-zeroes codeword by = 0™. The
code C;, 1 < i < k, will be successively built by picking a
random (non-zero) basis vector b; that is linearly independent
of by,...,b;—1, and setting C; = span(by,...,b;). Thus C =
C} is an [n, k]2 linear code. We will now analyze the list of ¢
decoding radius of the codes C;, and the goal is to prove that
the list of ¢ decoding radius of C is at least e.

The key to analyzing the list of ¢ decoding radius is the
following potential function S¢o defined for a code C of
blocklength n:

1 .|B(z,e)NC
So = o Z 9% 1B(z,e)nC|
ze{0,1}"

(10)

For notational convenience, we denote S¢, be S;. Also denote
by T the quantity | B(z, e)NC;|, so that S; = 277 3" 2nTa/c,

Let B = |B(0,¢)| = |B(0,pn)|; then B < 2H®n \where
H(p) is the binary entropy function of p (see for example
Theorem (1.4.5) in [22, Chapter 1]). Clearly

So=1—B/2" + B2"/¢/2" < 1 + gr(Hm-141/e) ()

Now once C; has been picked with the potential function
S; taking on some value, say S;, the potential function S;1
for C;y1 = span(C; U {b;11}) is a random variable depend-
ing upon the choice of b;11. We consider the expectation
E[Si+1]S: = 5‘1] taken over the random choice of b; 1 chosen
uniformly from outside span(b,...,b;).

—n njc - i+l
E[Si] = 27") B2V ]

2 E[2n/c~(lB(m,e)ﬂCi|+|B(z,e)ﬁ(C7‘,+b,~,+1)|)]

x

—n n/c T n/c 'T;+bi+1

2 ZK: (2 bEI[z ]) (12)
where in the second and third steps we used the fact that
if z € B(x,e) N Cy11, then either z € B(x,e) N C;, or
z+b;11 € B(x, e)NC;. To estimate the quantity (12), first note
that if we did not have the condition that b;;; was chosen from
outside span(by,...,b;) (12) would simply equal S2. This
follows from the fact that z and = + b;y; are independent
and the definition of S;. Now we use the simple fact that
the expectation of a positive random variable taken over b; 1
chosen randomly from outside span(bi,...,b;) is at most
(1 —2°=")~! times the expectation taken over b;y; chosen
uniformly at random from {0, 1}". Hence, we get that
Eh

E[Sit1] < A—2ny

(13)



Applying (13) repeatedly for i = 0,1,...,k— 1, we conclude
that there exists an [n, k] binary linear code C with
k

< 56
T2

k k
. % st
= (I—2k )k = 1 f2kon
since (1 — z)* > 1 — ax for z,a > 0. Combining (14) with
(11), we have

Sc =Sk

(14)

k
Sp<(1—k2F) 7M1+ 2"(H(R)—l+l/c))2
and using (1 + z)® < (1 + 2az) for ax < 1, this gives

Sk < 2(1 +9. 2k+(H(p)—1+1/c)n) <6, (15)

where the last inequality follows since k = [(1 — H(p) —
1/¢)n]. By the definition of the potential Sy, (10), this implies

that
2n/c~\B(a:,e)ﬁC\ <6-2" < 2n+3

or 5
|B(x,e)NC| < (14 E)c

for every x € {0,1}"™. If n > 3c, this implies |B(z,e) NC| <
c+ 1 for every x, implying that the list of ¢ decoding radius
of C is at least e, as desired. [ |

Remark: One can also prove Theorem 5 with the additional
property that the relative minimum distance A(R) of the code
(in addition to its list decoding radius for list size c¢) also
satisfies A(R) > H~'(1 — R — 1/c). This can be done, for
example, by conditioning the choice of the random basis vector
b;+1 in the above proof so that span(by, ba, . .., b;+1) does not
contain any vector of weight less than pn. It is easy to see
that with this modification, Equation (13) becomes
eh
(1 _ 2i+H(p)n—n) :

E[Siy1] <

Using exactly similar calculations as in the above proof, we
can then guarantee a code C of dimension k = | (1 — H(p) —
1/c¢)n] and minimum distance at least pn such that S¢ =

o(1).

V. APPLICATION TO HIGHLY LIST DECODABLE CODES

We now apply the proof technique from the previous
section to give constructions of concatenated codes that are
list decodable from very high noise and yet have good rate.
We first describe the setting that we are interested in, which
is the same as the one that was considered in [13].

Given ¢ > 0, we are interested in asymptotically good
family of binary linear codes C. that can be list decoded
efficiently for up to a fraction (1/2 —¢) of errors. The goal is
to give explicit (polynomial time) constructions of such code
families with a reasonable rate. Such codes have a variety
of applications some of which are discussed in [13], [20].
The best earlier result, due to [13], gives constructions with a
rate of Q(£%) (the construction is an algebraic-geometric code
concatenated with any inner code like the Hadamard code that
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has large minimum distance). Note that if we did not care
about efficient constructibility or efficient list decoding, then
Theorem 5 guarantees that such code families exist with rate
Q(e?), and this is the best possible asymptotically.

Using the codes guaranteed by Theorem 5 as inner codes
in a concatenation scheme with outer Reed-Solomon code,
we can show that a rate of (%) can be achieved without
relying on algebraic-geometric codes, thus “simplifying” the
construction in [13]. This does not, however, improve the
quantitative aspects of the earlier result. Instead we prove
an adaptation of Theorem 5 that guarantees the existence
of codes that have certain properties tailor-made for the
weighted list decoding algorithm for Reed-Solomon codes
from [12] to work well. Using such codes as inner codes in a
concatenation scheme with outer Reed-Solomon code, gives us
code families of rate (2(c*) that are efficiently list decodable
from a (1/2 —¢) fraction of errors. This is summarized in the
following theorem, which is the main result of this section.

Theorem 21: There exist absolute constants b,d > 0 such
that for each fixed € > 0, there exists a polynomial time
constructible code family C with the following properties:

1) rate(C) > %

2) Rad(C,de~?) >

3) A(C) > (5 —¢)

4) There is a polynomial time list decoding algorithm for

C that corrects up to a fraction (1/2 — ¢) of errors.

— &

N|—=

The above theorem will follow from Theorem 24, which is
stated and proved in Section V-B.

A. An “inner code” construction

1) Existence of a good code: We now prove the existence
of codes that will serve as excellent inner codes in our later
concatenated code construction. The proof is an adaptation of
that of Theorem 5. We will then show how such a code can be
constructed in 2°(") time (where n is the blocklength) using
an iterative greedy procedure.

Lemma 22: There exist absolute constants o, A > 0 such
that for any € > 0 there exists a binary linear code family C
with the following properties:

1) rate(C) = oe?

2) For every code C' € C and every = € {0,1}" where n

is the blocklength of C, we have

>

ceC
§(xz,c)<(1/2—¢)

(1-25(z,c))*<A.  (16)

Proof: For every large enough n, we will prove the
existence of a binary linear code C} of blocklength n and
dimension k > oe?n which satisfies Condition (16) for every
x € {0,1}".

The proof will follow very closely the proof of Theorem 5
and in particular we will again build the code C}, iteratively in
k steps by randomly picking the k basis vectors by, bs, ..., by
in turn. Define C; = span(by,...,b;) for 0 <4 < k. The key
to our proof is the following potential function W defined
for a code C of blocklength n (compare with the potential



COMBINATORIAL BOUNDS FOR LIST DECODING

function (10) from the proof of Theorem 5):

1 E 9% Yecos(a.e)< 12—y (1—28(z,e))? )

WC:%

(17)
z€{0,1}"

(The constant A will be fixed later in the proof, and we
assume that A > In4.) Denote the random variable W¢, by
the shorthand W;, and for = € {0,1}", define

Rair = Z (1 - 26('7“"(;))2 )

ceC,
5(@,0)<(1/2—¢)

so that W; =27 "% 2% 7, }
Now, exactly as in the proof of Theorem 5, we have RiF! =
R+ Rl Hbisa? and using this it is straightforward to show that
E Win|W; = Wi} = Wf over the choice of b; 1 uniformly

i1
at random from {0, 1}", and it is therefore easy to argue that
. w?

EWi1|[W; =W,] < 1_oi-n "
when the expectation is taken over a random choice of b; 1
outside span(by,...,b;). Applying (19) repeatedly for i =

(18)

19)

0,1,...,k — 1, we conclude that there exists an [n, k] binary
linear code C' = C}, with
we*
We=Wp < —2%— . 20
c RS T ok (20)

If we could prove, for example, that W = O(1), then this
would imply, using (17), that R¥ < A for every z € {0,1}"
and thus C' would satisfy Condition (16), as desired. To show
this, we need an estimate (upper bound) on Wy, to which we
turn next.

Define A = (1/2 — &)n. Since Cy consists of only the all-
zeroes codeword, we have RY = (1 —2wt(x)/n)? if wt(z) <
a and RY = 0 otherwise (here we use wt(z) = A(x,0)
to denote the Hamming weight of z). Let us denote 2% by
exps(x). We now have

Wo = 277 Z epr(%Rg)
z€{0,1}"
A n 212
< 142 ;(Jepr(A@_n))
. i dn 1 o
< Loy ((max {H(n+ (-7} )
< 14 n2un 1)
where

def 41 2
v ogygl(?;(zfe){H(y) 1+ A(Q y) } :

We now claim that for every y, 0 < y < 1/2, we have H(y) <

— 25 (2 — y)%. One way to prove this is to consider the
Taylor expansion around 1/2 of H(y), which is valid for the
range 0 < y < 1/2. We have H'(1/2) = 0 and H"(1/2) =
—4/1In2. Also it is easy to check that all odd derivatives of
H(y) at y = 1/2 are zero while the even derivatives are non-
positive. Thus

a2—y? 2 1 o

Hy) < H(1/2) - H'(1/2) = - (G-

Therefore

. (4 2 )(1
max ——— )z
0<y<(1/2-e)\A In2/\2

- -3

since A > In4. Combining (20), (21) and (22), it is now
easy to argue that we have W¢o = Wy, = O(1) as long as
k < —un, which will be satisfied if ¥ < 4(33; — % )e?n. Thus
the statement of the lemma holds, for example, with A = 2
and o = 0.85. [ ]

_y>2

IN

u

(22)

Remark: Arguing exactly as in the remark following the
proof of Theorem 5, one can also add the condition A(C) >
(1/2 — ¢) to the claim of Lemma 22. The proof will
then pick b;4; randomly from among all choices such that
span(bl, bg, ceey bi+1) N B(O7 (% - e)n) = (b

2) A greedy construction of the “inner” code: We now
discuss how a code guaranteed by Lemma 22 can be con-
structed in a greedy fashion. We will refer to some notation
that was used in the proof of Lemma 22. The algorithm works
as follows:

Algorithm GREEDY-INNER:

Parameters: Dimension k; ¢, A > 0 (where A is the absolute
constant from Lemma 22)

Output: A binary linear code C' = GREEDY(k,e) with
dimension k, blocklength n = O(k/<?) and minimum distance
(1/2 — €)n such that for every x € {0,1}", Condition (16)
holds.
1) Start with by = 0.
2) Fori=1,2,...,k:
e Let U; = {x € {0,1}"™ : span(by, b, . ..
B(0,(1/2—¢)n) =0 }.
o Pick b; € U, that minimizes the potential function
W; = 27y 2% F: where R. is as defined in
Equation (18) (break ties arbitrarily)
3) Output C = span(by,ba,...,bg).
The following result easily follows from the proof of
Lemma 22 and since each of the k iterations of the for loop
above can be implemented to run in 2°(") time.
Lemma 23: Algorithm GREEDY-INNER constructs a code
GREEDY (k, ¢) with the desired properties in & - 2°(") time.

7bi—1a'r) N

B. A concatenated code construction

The statement of Theorem 21 follows immediately from the
concatenated code construction guaranteed by the following
theorem.

Theorem 24: There exist absolute constants b,d > 0 such
that for every integer K and every € > 0, there exists a

concatenated code Cx < RS® GREEDY(m,e/2) (for a

suitable parameter m) that has the following properties:

1) Ck is a linear code of dimension K, blocklength N <
%, and minimum distance at least (1 —¢)N.
2) The generator matrix of C' can be constructed in

NOE™) time.



3) Ckis ((§—€)N,d/e?)-list decodable; i.e. any Hamming
ball of radius (1/2—¢)N has at most O(¢~2) codewords
of CK.

4) There exists a polynomial time list decoding algorithm
for C'k that can correct up to (1/2 — )N errors.

Proof: The code C'; is constructed by concatenating an
outer Reed-Solomon code over GF(2™) of blocklength ng =
2™ and dimension ko = K /m (for some integer m which will
be specified later in the proof) with an inner code Cipner =
GREEDY(m,¢/2) (as guaranteed by Lemma 23). Since the
blocklength of Cinner is m1 = O(Z3), the concatenated code
Ck has dimension K and blocklength

N=o0("") (23)
€
and minimum distance D at least
K 1 ¢
>(1—-—)(=-2).
bz (1 mno)(2 2) @4

For ease of notation, we often hide constants using the big-
Oh notation in what follows, but in all these cases the hidden
constants will be absolute constants that do not depend upon &.
Note that since Ciypner is constructible in 20(m) —= 20(m/=?)
time, and m = logng, the generator matrix for C'xc can be
constructed in N°C ) time. This proves Property 2 claimed
in the theorem.

We will now present a polynomial time list decoding
algorithm for C' to recover from a fraction (1/2—¢) of errors
with a small (O(¢7?)) list size. This will clearly establish both
Properties 3 and 4 claimed in the theorem.

Let y € {0,1}" be any received word. We wish to find a
list of all codewords ¢ € Ck such that A(y,c) < 1/2 —e.
For 1 < i < nyg, denote by y; (resp. c;) the portion of y (resp.
c) that corresponds to the i*? codeword position of the outer
Reed-Solomon code. For 1 < i < ng and o € GF(2™), define

Wj o = Max { (% - g — Ay, Cinncr[oz])),O}

(here Ciyper[a] denotes the inner encoding of « interpreted
as an m-bit string). By the property of Ci,,e; guaranteed by
Lemmas 22 and 23, we have, for each 7, 1 < i < ny,

>

a€GF(2m)

(25)

wl, <B', (26)

for some absolute constant B’'.

Now, consider the following decoding algorithm for C.
First, the inner codes are decoded by a brute force procedure
that goes over all codewords. Specifically, for each position @
of the outer Reed-Solomon code, the inner decoder passes a
list of all field elements « with the respective weights w; o
defined in Equation (25). The weight w; , may be interpreted
as the reliability information for the possibility that the ¢’th
symbol of the outer codeword was the field element «. The
inner decoding takes O(2™) = O(nyg) time for each of the ng
inner codes, and thus the total time required to perform this
step is poly(/N). We now have to perform decoding of the
outer Reed-Solomon code taking into account these weights.
For this we use a weighted (or “soft-decision”) list decoding
algorithm for Reed-Solomon codes from [12], similar to its
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use in [13] for decoding the Reed-Solomon concatenated with
the Hadamard code. This algorithm guarantees to find, in time
polynomial in ng and 1/~, a list of all codewords ¢ € Ck
that satisfy

0
§ Wi, c; Z (no
=1

where v > 0 is a parameter to be set later, and by abuse
of notation w; ¢, = w; o, Where o; € GF(2™) is such that
Cinner[ai;] = ¢;. Moreover, it is also known that there will be
at most (14 1/7) codewords c that satisfy Condition (27) for
any choice of weights w; , and thus the algorithm will output
a list of at most O(1/v) codewords.

Using (25) and (26), we have that Condition (27) will be
satisfied if

26520 2 (o ) o

nOfK/m+1> 9
S et A E , 27
1+y cs e @7

1 K
Aly,c) < N[=—-Z_— B’( 7) 28
wosn(3-5-\Fhras)) e
and, as long as we pick v < 85—; and m such that mffl - =
% < 85—;, we can hence conclude that Condition (27) is

satisfied provided

Aly,c) < (% —s)N.

Thus we have a decoding algorithm that outputs a list of
all O(1/7) = O(e~?2) codewords that differ from y in at most
(1/2 — )N positions. Finally, by our choice of m, we have
mng = O(K/e?), and plugging this into (23) and (24), we
have that the blocklength N of Ck satisfies N = O(K /&%)
and the distance D satisfies D > (1/2 — ¢)N, as desired. W

Discussion: The time required to construct a code with the
properties claimed in Theorem 24, though polynomial for
every fixed e, grows as N O(™). Thus these codes are not
uniformly constructive (i.e. are constructible in O(f(g)n°®)
time for a fixed constant ¢, independent of €, for some arbitrary
function f). If one uses the best known algebraic-geometric
codes (which in particular beat the Gilbert-Varshamov bound)
as the outer code instead of Reed-Solomon codes, one
can carry out the code construction of Theorem 24 in
90(s"*log(1/2)) N¢ time for a fixed constant ¢ (the constant
c will depend upon the time required to construct the outer
algebraic-geometric code). This is not entirely satisfying since
the construction complexity of such algebraic-geometric codes
that beat the Gilbert-Varshamov bound is still quite high. It
is an interesting open question to find an alternative, simpler
construction of uniformly constructive codes which meet the
requirements of Theorem 24.

VI. CONCLUDING REMARKS

In this paper, we reported codes with non-trivial list decod-
ing properties. One of our results was to show the existence of
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linear codes that have an arbitrarily large polynomial number
of codewords in a Hamming ball of relative radius strictly
less than the relative distance. While it is easy to show that
non-linear codes with this property exist (by a simple random
coding argument), the situation for linear codes is more tricky.
Recently, the techniques used in Section III of this paper
were used together with some new ideas to prove that, under
a widely believed number-theoretic conjecture, the result of
Conjecture 9 holds [11] (see also [10, Chap. 4]). However,
this does not subsume the result of Theorem 11 in this paper,
since our result holds unconditionally without the need for any
unproven number-theoretic conjecture.

We also demonstrated the existence of codes of good rate
with a small number of codewords in a Hamming ball of
large radius (Theorem 5). Our proof, however, was highly non-
constructive and does not even give a high probability result.
It is an open question whether a random linear code satisfies
the property claimed in Theorem 5 with high probability.

We then showed that the statement of Theorem 5 can be
adapted to guarantee the existence of certain linear codes
which serve as good (for purposes of list decoding) inner
codes in a concatenation scheme with an outer Reed-Solomon
code. This in turn gave us an efficiently constructible family
of binary linear codes of rate Q(¢?) and relative distance at
least (1/2 — €), which can be efficiently list decoded from
up to a (3 — ¢) fraction of errors, using lists of size O(e72).
This improves upon the results claimed in [13] (the best rate
achieved by [13] for such families of codes was 2(°)). The
time required to construct such a code, though polynomial
for every fixed e, grows exponentially in 1/e, and it will be
desirable to, if possible, bring this down to polynomial in both
N and 1/e.
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