
Security Preserving Amplification of Hardness∗

Oded Goldreich†, Technion
Russell Impagliazzo‡, University of Toronto

Leonid Levin§(Lnd@cs.bu.edu), Boston University¶

Ramarathnam Venkatesan‖, Boston University
David Zuckerman∗∗, U.C. Berkeley

Abstract

We consider the task of transforming a weak one-way function (which may be easily inverted on all
but a polynomial fraction of the range) into a strong one-way function (which can be easily inverted only
on a negligible fraction of the range). The previous known transformation [Yao 82] does not preserve
the security (i.e., the running-time of the inverting algorithm) within any polynomial. Its resulting
function F (x) applies the weak one-way function to many small (of length |x|ε, ε<1) pieces of the input.
Consequently, the function can be inverted for reasonable input lengths by exhaustive search.

Using random walks on constructive expanders, we transform any regular (e.g., one-to-one) weak one-
way function into a strong one, while preserving security. The resulting function F (x) applies the weak
one-way f to strings of length Θ(|x|). Our security preserving constructions yield efficient pseudo-random
generators and signatures based on any regular one-way function.

1 Introduction
A central problem in the foundations of cryptography and other fields is that of relating various basic concepts
and primitives such as one-way functions [Diffie, Hellman 76] pseudo random generators [Blum Micali 82,
Yao 82] and signature schemes [Goldwasser Micali Yao 83]. Recently, [Hastad Impagliazzo Levin Luby 90]
and [Rompel 90], demonstrated the equivalence of these notions1. However, the constructions used in these
proofs are impractical and yield an equivalence only in a weak sense to be discussed below. We attempt here
to present efficient constructions which yield a strong equivalence.

For simplicity, we continue the discussion with respect to one-way permutations (i.e., length preserving
1-1 functions), though our results hold for a broader class.

A polynomial-time computable permutation is called weakly one-way if it is “infeasible” to invert it on
some polynomial fraction of its range (so the permutation may be easy to invert almost always). Such a
permutation is called strongly one-way if it is “infeasible” to invert it on all but a negligible fraction of its
range. [Yao 82] showed that these two notions are equivalent, if “infeasible” means non-polynomial time.
For this reason many papers make no distinction between these two notions. However, such an equivalence
allows changes in the degree of infeasibility by more than any polynomial. Say, f is hard to invert on 1/n3 of

∗FOCS-1990
†Supported by grant #86-00301 by US-Israel Binational Science Foundation, Jerusalem, Israel.
‡Supported by CCR-88-13632
§Supported by NSF grant DCR-8607492, MIT and Sun Microsystems.
¶Dept. of Computer Science, 111 Cummington Street, Boston MA 02215.
‖Supported by NSF grant DCR-8607492 and Bell Communications Research.

∗∗Supported by an NSF Graduate Fellowship.
1See also [Levin 87, Goldreich Krawczyk Luby 88, Goldreich Levin 89] for constructing pseudo random generators from

one-way functions, and [Goldwasser Micali Rivest 84, Goldreich 87, Merkle 87, Bellare Micali 88, Naor Yung 89] for signature
schemes.

1

the strings of length n. Then F (x1, ..., xn4)=f(x1)◦· · ·◦f(xn4) (where |xi|=n) is strongly one-way (proving
this is easy, but not trivial, see [Goldreich 89, pp. 20-24]). However, the difficulty of inverting F on inputs
of length n5 is comparable to the difficulty of inverting f on inputs of length n (not n5)! In this sense the
equivalence is weak. This construction allows the resulting function be inverted by exhaustive search over
smaller pieces for reasonable input lengths. In practical terms, this means that F is hard to invert only on
huge (impractical) inputs.

Several different resources determine the efficiency of a one-way function. Of obvious importance is its
running time. However, often the lengths of the inputs and outputs needed to achieve this level of security are
of equal importance. The bottleneck in cryptographic protocols is often memory or communication costs,
rather than computation costs. Consider a private-key encryption system which uses a pseudo-random
generator. The two parties agree on a seed for the generator in private, and use the pseudo-random string
generated from this seed as a one-time pad to send secret messages over a public channel. Here, private
communication is at a premium; computation is only of secondary importance. Even a relatively small
increase in the input length can cause dramatic problems here. Just to be immune from attack by exhaustive
search, at least 50 bits of input must be used. Using Yao’s method on a weak 1

n one-way function, 125,000
bits would be required to achieve this minimal level of security. Since fewer bits of message will likely be sent
between the parties, they might as well agree on a truly random one-time pad and not use any cryptography.

Another situation with both input and output lengths crucial is in protocols (say, for zero-knowledge)
which use one-way permutations for bit commitment. Here, each bit committed to might require sending
the value of the one-way function on a random input, and later revealing the input. Since the number
of bits committed during the protocol might be large, the communication cost of one commitment is very
important. Our constructions of strong one-way functions from weak ones dramatically improves the lengths
involved to achieve a given level of security without affecting the running time.

This discussion can be further clarified by specifying a lower bound (called security) on the time considered
infeasible2. [Yao 82] transforms a weakly one-way f with security s(n), into a strong one-way function F
with security s(nε), 0<ε<1, which is smaller than any constant power of s.

Our main result gets a strong one-way permutation with security s(n)/nO(1) out of any weak one-way
permutation with comparable security s(n + O(log s(n))). The result extends to regular one-way functions
(defined in Section 5). Our simple techniques yield efficient pseudo random generators and signature schemes
from any regular one-way function. Only inefficient constructions were known before.

We use random walks on expanders, as in [Ajtai Komlos Szemeredi 87, Cohen Wigderson 89, Impagliazzo
Zuckerman 89], and hence rely on their explicit constructions (see [Margulis 73, Gabber Galil 81, Lubotsky
Sarnak Philips 86]). Expanders have found applications in many concrete algorithms. [Levin 88] noticed that
expanders yield general results in the theory of computation as well. This paper provides further evidence
of this.

2 Results
Definition 1 (one-wayness) : A polynomial time computable function f is α(n)-one-way (OW) with
security s(n) if every randomized algorithm inverts f in time t(|x|)|x|O(1) on fraction <1−α+t/s of inputs
f(x) and internal coin flips. Security is strict if the degree of the above polynomial nO(1) is fixed (normally
to 0).

Taking the fraction α of hard instances as n−O(1), 1/2, or 1, we get weak, frequent or strong OW, respec-
tively.

2Polynomial time is an excellent formalization of feasibility: high degree polynomials are rare and unlikely to be the intrinsic
complexity of fundamental problems. But super-polynomial time is an unreasonable notion of infeasibility. Say, k(ln ln k)/3 is
quite simple and may be the intrinsic complexity of a fundamental problem (like primality). While super-polynomial, it is less
than k2, for k up to the number of particles in the Universe. Reductions should preserve the security within a polynomial
overhead rather than just preserve its super-polynomiality.

2

Security reflects the time required to verify by sampling the frequency of hard instances. Since we ignore
polynomial factors in the definition of security, the underlying machine model is not crucial.

Permutations are length preserving 1-1 (one-to-one) functions.
We call s(n) and s(n)Θ(1) comparable. We take the security function to be monotone and smooth:

s(n+1)=O(s(n)) or s(2n)=s(n)O(1). Then, s(n) is the same security as s(n + O(log n)) and comparable to
s(Θ(n)). These smoothness conditions are unnecessary but natural and simplify the statement of our main
results:

Theorem 1 (weak→frequent): For any n−O(1)-OW permutation f , there exists a 1/2-OW permutation
F with the same security.

Theorem 2 (frequent→strong): For any 1/2-OW permutation f with security s(n) = s′(n+10 log s(n)),
there exists a 1-OW permutation with security s′(n).

Note that for non-increasing log s(n)/
√

n, s(n + O(log s(n))) = O(s(n)).
We generalize the above result to regular one-way functions used in [Goldreich Krawczyk Luby 88] for

constructing pseudo-random generators. Many known candidates for one-way functions are regular: each
point in the range of the function has the same number of inverses.

If a property holds for all except ≤1/s fraction of instances, we say it holds almost everywhere (abbreviated
a.e.). We relax the definition of regular functions: one-way f is regular if there is a polynomial time
computable upperbound m(x) such that |f−1(f(x))| ≤ 2m(x) a.e. and |f−1(f(x))| ≥ 2m(x)/s(|x|)o(1), on a
polynomial fraction of hard-instances3.

Let Hn,m denote a class of universal hash functions [Carter, Wegman 79] mapping n-bit strings into m-bit
strings. It is important for our use that each h∈Hn,m has a description (denoted h) of length O(n+m) and
h(x) is polynomial time computable on input h and x. An example of such a class is the set of all m-by-n
Toeplitz matrices on GF (2) (a Toeplitz matrix A={ai,j} satisfies ai,j =ai+1,j+1 and is specified by its first
row and first column).

We take our regular functions to be length preserving within a constant factor. Otherwise, one can make
them so using hashing as follows: f(x, h) = h(f(x)), h. We call a one-way function f with security s almost
length preserving if |f(x)|= |x| + O(log s(n)).

Theorem 3 If a regular n−O(1)-OW function of security s(n)=s′(n +Θ(log(s(n)))2) exists, then there is a
1-OW a.e. one-to-one function of security comparable to s′.

Note that s(n+O(log s(n))2) = s(n)O(1), when log s(n)<
√

n.
Corollaries: Given a regular one-way function, one can construct a pseudo-random generator of comparable
security. Similarly using the results of [Naor Yung 89] one can construct an efficient signature scheme.

3 The Construction
We use constructive expanders, i.e. a family of fixed (say, d) degree expander graphs on an exponential
size vertex set with a polynomial-time algorithm that on input a node outputs its adjacency list. Also, we
require that the ordering of these incident lists induces d (disjoint) perfect matchings of the expander. Such
expander families do exist. For simplicity, assume that the expander has 2n nodes.

These explicit constructions enable us to perform a random walk on the expander. Such random walks
rapidly (i.e. within O(n) steps) reach a nearly uniform distribution on the vertices. The key property we need
is that the adjacency matrix of the expanders have their second eigenvalue at most cd, for some constant
c < 1 (see [Alon 86]). If we add a self-loop at each node, the second largest (in absolute value) eigenvalue
will be well-separated from the first. We can achieve any constant ratio between the second eigenvalue and
first, simply by raising the adjacency matrix to an appropriate power.

3There is an optimal (within constant factor) inversion algorithm and hard-instances are those on which it runs slowly. (See
[Levin 85])

3

To amplify a one-way function f we would like to apply it iteratively many times. This will not help if
easy instances for the inverting algorithm keep being mapped to themselves. The idea is to use randomization
between successive applications of f . One may try using universal2 hash functions as in [Goldreich Krawcyk
Luby 88]. If one applies the same hash function between successive applications, the random path induced
is not guaranteed to reach uniformly distributed locations and the same holds if a fixed number of random
universal2 hash functions are applied4. Instead we randomize the arguments to the different iterations of the
one-way permutation by taking one random step on an expander. Namely, we associate the domain of the
given one-way permutation with the vertex set of the expander. Our construction alternatively applies the
one-way permutation and moves at random from the node reached to one of its neighbors. This requires very
little randomization. A key observation is that the composition of an expander with any permutation on its
vertex set yields an expander (with the same eigenvalues). Using a Random Walk Lemma and a simulation
argument, the construction is showed to amplify the one-wayness of the given permutation while preserving
security.

Let G be an explicit undirected d-regular expander with vertex set {0, 1}n with the second largest (in
absolute value) eigenvalue λ2 < d/2. For example, [Lubotsky Philips Sarnak 86] proposed an expander
family with d=18, λ2≤2

√
17 for some graph sizes. Other expander families exist, for graphs of size n2.

Consider a labeling of the edges incident to each node (using the labels 1, 2, ..., d) so that the mapping
corresponding to each label induces a permutation on the vertex set. Let g(x, l) be the node reachable
from x by following the edge labeled l. For any permutation f on {0, 1}n and every k ≥ 1, x ∈ {0, 1}n,
σ1, ..., σk ∈{1, 2, ..., d}, let Fk(x, σ1...σk)def= σ1 ◦ Fk−1(g(f(x), σ1), σ2...σk) (and F0(x, ∅) def= x) and Gf be the
expander induced by gf (x, l)=g(f(x), l).

4 Proofs
Proposition 1 : Let Gf be an expander as above, µ(n) ≥ 1/2 and f be 1−µ(n)-OW with strict security
s(n)=s′(n + k(n) log2 d). Then, Fk(n) is (1−µk/2)-OW with strict security s′(n)/k(n).

Proof of Theorems 1 and 2: Theorem 1 follows by applying this proposition iteratively l = O(log n)
times: Use k(n) = O(1) length walks such that each iteration converts a (1−µ(n))-OW function to a 1−µk-
OW function. Note that the finally resulting function is 1−µkl

-OW. Each iteration adds O(1) to the input
length and multiplies the time of computation and inverting time by Θ(1).

To prove Theorem 2, apply the proposition with k(n)=2 log s(n).
Proposition 1 is based on the following

Lemma 1 (Random walk): Let G be an expander graph with λ2≤d/2. Let W be a subset of measure µ≥1/2
of the expander’s nodes. Then fraction ≤ µk/2 of random walks of length k on G are contained in W .

Lemma 1 generalizes the statement appearing in [Ajtai Komlos Szemeredi 86]. A proof of Lemma 1 is
given in the Section 6.

The performance of any inversion algorithm A(ω, y) has two aspects: the running time TA(ω, y) and the
probability of success in finding an inverse. We now combine these two measures into a single one:

W.l.o.g, now we consider and call inverters algorithms A(ω, x) which for every x, run in expected (over
its internal coin flips ω) polynomial time. (We assume this includes the time required to compute f on the
result to check that the inversion is correct.) Any algorithm can be modified to satisfy this requirement.
For this purpose, A can use its power of flipping coins to abort its computation so that for each x it runs 2t

steps with probability, say, 2−t/t2. This will decrease the probability of success nearly proportionally to A’s
original running time.

Then probability of inversion by this algorithm accounts for both running time and probability of success:
A runs t steps only with probability n−O(1)/t and the following are equivalent:

4Proving that in general (i.e. on every d-regular graph), such a path reaches uniform distribution would imply that
Rlogspace=Dlogspace [Naor 89].

4

1. f is 1−µ-OW with security s.

2. Every inverter A has a set H of measure 1−µ, s.t. the fraction of {(ω, x) : f(A(ω, x)) = x ∈ H}, is
< 1/s.

We will now use the second form of this definition and for strict security require a fixed degree (e.g., 0)
of the polynomial expected running time of the inverters.

Now let H∗ be the set of paths (x, p) which intersect with H . By lemma 1, the measure of H∗ is 1−µk/2.

Proof of Proposition 1 : For contradiction, let A(ω, y, p) be an inverter for F . Then an Inverter a for f
is as follows: To invert at a given point x choose at random i ∈ {1 · · ·k}, and a random walk p = σ1 · · ·σk of
length k. Compute the path (y, p) so that x is in position i in the path (and y is the last point). Compute
z = A(y, p). Tracing the path from z compute f−1(x).

We show that H∗ a hard set for A, if H is a hard set for a. Indeed, let A succeed in inverting with
probability k/s′ for instances in H∗. With 1/k chance i will point to a hard point in the path. So, a succeeds
with probability 1/s′ for instances in H .

5 Regular functions
Lemma 2 (regular → a.e. 1 − 1) For any regular α(n)-one-way function f there exists an almost every-
where 1-1, α(n)-one-way function g with comparable security.

Proof Outline: Let g(x, h) = h(x) ◦ h ◦ f(x) where h ∈ Hn,m(n)+ε log s. Clearly, g is a.e. 1-1. Using a
simulation argument the security can be shown to be as stated.

Lemma 3 Let f be an a.e. 1-1 α-OW function with security s(n) and |f(x)| = Θ(|x|). Then there is an
almost length preserving a.e. 1-1 α-OW function with security s(Θ(n)).

Proof outline: Let g(x, h)=h(f(x)) ◦ h, where h∈H|f(x)|,n+log s.

Proof of Theorem 3 : By Lemma 3, we can assume w.l.o.g. that f is a.e. 1-1. We need to modify the
construction of Section 3 in two respects.

First if |f(x)| ≥ 2|x| modify f according to Lemma 3 to make it almost length preserving. Second make
σi ∈ {1, . . . , d}log s(n) rather than σi ∈ {1, . . . , d} in the definition of F , so that log s(n) random expander
steps are taken between every two applications of f (instead of one random step).

This gives a modification of Proposition 1, where the argument to F has length n + Θ(k(n) · log s(n))
(instead of n +Θ(k(n))).

Now Theorem 3 follows by iterating the modified Proposition 1 similar to derivation of Theorems 1 and
2.

It seems redundant to increase the length at every iteration of f . Also it seems possible to use O(| log µ|)
rather than O(log s) random walks in these constructions. We shall explore this in the journal version.

Efficient construction of pseudorandom generators: W.l.o.g. let f be a.e. 1-1, strong one-way of
security s(n) and |f(x)|= O(|x|). The following pseudo-random generator has security sΘ(1) and produces
Θ(log s) extra bits per evaluation: f ′(x, h1, h2) = h1(x), h2(f(x)), h1, h2, where |x| = n, 0 < ε < 1, h1 ∈
Hn,2ε log s, h2∈H|f(x)|,n−ε log s. This generates a pseudorandom string, slightly longer than the random seed.
Construction of a pseudo-random generator which doubles the length of the seed from one which is just
length increasing, and the pseudo-random function construction of [Goldreich Goldwasser Micali 86] are
then used. These constructions preserve security.

5

6 Proof of Lemma 1
Modify the the adjacency matrix of G by dividing the entries by d (the degree) and let A be the resulting
N -by-N matrix. Let λ1 ≥ λ2 . . . ≥ λn and e1, e2, . . . , en be its eigenvalues and corresponding eigenvectors.
By Perron-Frobenius Theorem, non-negative A has λ1=1. By our assumptions on A, 1/2≥λ2≥ |λn|. The
space V0 spanned by e2, . . . , eN is orthogonal to the space V1 spanned by e1=(1, 1, . . . , 1) , and A leaves
invariant these subspaces of RN . Any X ∈RN can be written as X=X0 + X1 where X0 ∈V0 and X1 ∈V1.
Let ‖X‖ be the L2 (Euclidean) norm and ‖X‖1 the L1 norm (sum of the absolute values). It is well known
that ‖AX0‖≤λ2‖X0‖.

Let P be a projection matrix such that PX=Y with Yi=Xi, if i∈W and zero otherwise. Then P 2=P
and ‖PY ‖≤‖Y ‖ (for every Y).

We show below that
‖PAX‖≤µ1/2‖X‖.

From this it follows that if Y =(PA)2kX then ‖Y ‖≤µk‖X‖. Note that for X = e1/N , the ith component
of Y is the probability that after 2k steps, the random walk ends up at i without ever leaving W . Thus the
total probability that the random walk never visits an element outside of W in 2k steps is ‖Y ‖1≤√

N‖Y ‖≤
√

Nµk‖e1/N‖=µk.

It is left to show that ‖PAX‖ ≤ µ1/2‖X‖. To do this, let X=X0 + X1, so ‖X‖=(‖X0‖2 + ‖X1‖2)1/2.
The basic idea is that A will reduce the norm of X0, and P will reduce the norm of X1. However, PX1 is
no longer perpendicular to X0 (or AX0), so we must bound the angle between these vectors.

Using P 2=P and AX1=X1, ‖PAX‖=‖P (AX0 + PX1)‖≤‖AX0 + PX1‖. Observe that AX0 and X1 are
perpendicular, and let θ denote the angle between X1 and PX1. Then

cos θ=
X1 · PX1

‖X1‖‖PX1‖
=

µN√
N
√

µN
=
√

µ.

Now if we put the vector PX1 at the tail of the vector AX0 in order to form the sum AX0 + PX1, then the
angle between these vectors (where they meet) is at most π/2 + θ. Therefore, using the law of cosines and
that−cos(π/2 + θ)=sin θ=

√
1−cos2 θ=

√
1−µ, we have ‖AX0 + PX1‖2≤

‖AX0‖2 + ‖PX1‖2−2‖AX0‖‖PX1‖ cos(π/2 + θ)

=‖AX0‖2 + ‖PX1‖2 + 2‖AX0‖‖PX1‖
√

1−µ≤

λ2
2‖X0‖2+µ2‖X1‖2+ 2λ2µ

√
1−µ‖X0‖‖X1‖.

But because the geometric mean is always at most the arithmetic mean for non-negative numbers, 2λ2‖X0‖µ
√

1−µ‖X1‖≤
λ2

2‖X0‖2+µ2(1−µ)‖X1‖2. Substituting in above and using µ2 + µ2(1−µ)≤µ, we deduce

‖AX0 + PX1‖2≤2λ2
2‖X0‖2 + µ‖X1‖2

≤max(2λ2
2, µ)‖X‖2.

Using λ2≤1/2 and µ≥1/2 yields ‖PAX‖≤µ1/2‖X‖ and the lemma.

Acknowledgements

Oded Goldreich would like to thank Amir Herzberg for collaboration in the early stages of this work, and Nati
Linial, David Peleg, Eli Upfal and Avi Wigderson for discussions concerning random walks on expanders.
R.Venkatesan thanks Raf Ostrovsky for valuable discussions.

6

References
[1] N. Alon. Eigenvalues and Expanders. Combinatorica, 1986.

[2] M. Ajtai, J. Komlos, E. Szemeredi. Deterministic Simulation in LOGSPACE, STOC 87

[3] Blum, M. Micali, S. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.
SIAM J. on Computing 5:850-864 (1984). Early version in FOCS 1982.

[4] Bellare, M., S. Micali.How to Sign Given any Trapdoor Function STOC 1988.

[5] S. Ben-David, B. Chor, O. Goldreich, M. Luby, On the Theory of Average Case Complexity. Proc. 21st
STOC, 1989.

[6] J. Carter and M. Wegman. Universal Classes of Hash Functions. JCSS 18:143-154, 1979.

[7] A. Cohen, A. Wigderson, Dispensers, Deterministic Amplification, and Weak Random Sources. 30th
FOCS, 1989.

[8] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE transactions on Info. Theory, IT-22:
644-654, 1976.

[9] O. Gabber, Z. Galil. Explicit Constructions of Linear Size Superconcentrators. JCSS 22: 407-420, 1981

[10] O. Goldreich, Two Remarks concerning the Goldwasser-Micali-Rivest Signature Scheme. Crypto86, pro-
ceedings, Springer-Verlag, Lecture Notes in Computer Science 263:104-110, 1987.

[11] O. Goldreich, Foundations of Cryptography - Class notes, Computer Science Dept., Technion, Haifa,
Israel, 1989.

[12] O. Goldreich, H. Krawczyk, M. Luby, On the Existence of Pseudorandom Generators. FOCS 88.

[13] O.Goldreich, L.A. Levin, Hard-core Predicate for any One-way Function. STOC 89.

[14] O. Goldreich, S. Goldwasser, S. Micali, How to Construct Random Functions. J. ACM, 33/4: 792-807,
1986.

[15] S. Goldwasser, S. Micali, and R.L. Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen
Message Attacks. SIAM J on Comput.17(2):281-308, 1988.

[16] S. Goldwasser, S. Micali, A.C. Yao, Strong Signature Schemes. 15th STOC, 1983.

[17] J. Hastad, R. Impagliazzo, L. Levin, M. Luby. Pseudo-Random Generators from Any One-way Function.
To be published. Preliminary versions in STOC 1989 pp. 12-24, and 1990 pp. 395-404.

[18] R. Impagliazzo, and D. Zuckerman, How to Recycle Random Bits. 30th FOCS, 1989.

[19] R.M. Karp, N. Pippinger, and M. Sipser, A Time-Randomness Tradeoff. AMS Conf. on Probabilistic
Compuational Complexity, Durham, 1985.

[20] A. Lubotzky, R. Phillips, P. Sarnak, Explicit Expanders and the Ramanujan Conjectures. STOC 86.

[21] L.A. Levin, One-Way Function and Pseudorandom Generators, Combinatorica 7(4):357-363, 1987.
Early version in 17th STOC, 1985.

[22] L.A. Levin, Homogeneous Measures and Polynomial Time Invariants, FOCS 88.

[23] G.A. Margulis, Explicit Construction of Concentrators. Probl. of Inf. Transm., 9(4), (1973).

7

[24] R. Merkle, A Certified Digital Signature. unpublished manuscript, 1987.

[25] M. Naor, M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. 21st
STOC, 1989.

[26] N. Nisan. Pseudo random generators for space-bounded computation. STOC 90.

[27] J. Rompel. One-way functions are necessary and sufficient for secure signatures. STOC 90

[28] A. C. Yao, Theory and Applications of Trapdoor Functions. FOCS 1982.

8

