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Abstract. This paper presents an analysis of the following load balancing algorithm. At each
step, each node in a network examines the number of tokens at each of its neighbors and sends a
token to each neighbor with at least 2d+1 fewer tokens, where d is the maximum degree of any node
in the network. We show that within O(∆/α) steps, the algorithm reduces the maximum difference
in tokens between any two nodes to at most O((d2 logn)/α), where ∆ is the global imbalance in
tokens (i.e., the maximum difference between the number of tokens at any node initially and the
average number of tokens), n is the number of nodes in the network, and α is the edge expansion
of the network. The time bound is tight in the sense that for any graph with edge expansion α,
and for any value ∆, there exists an initial distribution of tokens with imbalance ∆ for which the
time to reduce the imbalance to even ∆/2 is at least Ω(∆/α). The bound on the final imbalance
is tight in the sense that there exists a class of networks that can be locally balanced everywhere
(i.e., the maximum difference in tokens between any two neighbors is at most 2d), while the global
imbalance remains Ω((d2 logn)/α). Furthermore, we show that upon reaching a state with a global
imbalance of O((d2 logn)/α), the time for this algorithm to locally balance the network can be as
large as Ω(n1/2). We extend our analysis to a variant of this algorithm for dynamic and asynchronous
networks. We also present tight bounds for a randomized algorithm in which each node sends at
most one token in each step.
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1. Introduction. A natural way to balance the workload in a distributed system
is to have each workstation periodically poll the other stations to which it is connected
and send some of its work to stations with less work pending. This paper analyzes
the effectiveness of this local load balancing strategy in the simplified scenario in
which each workstation has a collection of independent unit-size jobs (called tokens)
that can be executed on any other workstation. We model a distributed system as a
graph, where nodes correspond to workstations and edges correspond to connections
between stations, and we assume that in one unit of time, at most one token can be
transmitted across an edge of the graph in each direction. Our analysis addresses only
the static load balancing aspect of this problem: we assume that each processor has
an initial collection of tokens and that no tokens are created or destroyed while the
tokens are being balanced.

We analyze the algorithms in this paper in terms of the initial imbalance of tokens,
i.e., the maximum difference between the number of tokens at any node and the
average number of tokens, which we denote ∆; the number of nodes in the graph,
which we denote n; the maximum degree of the graph, d; and the node and edge
expansion of the graph. We define the node expansion µ of a graph G to be the
largest value such that every set S of n/2 or fewer nodes in G has at least µ|S|
neighbors outside of S. We define the edge expansion α of a graph G to be the largest
value such that for every set S of n/2 or fewer nodes in G, there are at least α|S|
edges in G with one endpoint in S and the other not in S.

The performance of an algorithm is characterized by the time that it takes to
balance the tokens and by the final balance that it achieves. We say that an algorithm
globally balances (or just balances) to within t tokens if the maximum difference in the
number of tokens between any two nodes in the graph is at most t. We say that an
algorithm locally balances to within t tokens if the maximum difference in the number
of tokens between any two neighboring nodes in the graph is at most t.

We analyze two different types of algorithms in this paper: single-port and multi-
port. In the single-port model, a node may send and/or receive at most one token in
one unit of time. In the multiport model, a node may send and/or receive a token
across all of its edges (there may be as many as d) in a single unit of time. Not
surprisingly, the load balancing algorithms run faster in the multiport model. In
practice, however, single-port nodes may be preferred to multiport nodes because
they are easier and less costly to build.

1.1. Our results. This paper analyzes the simplest and most natural local al-
gorithms in both the single-port and multiport models.

In the single-port algorithm, a matching is randomly chosen at each step. First,
each (undirected) edge in the network is independently selected to be a candidate
with probability 1/(4d). Then each candidate edge (u, v) for which there is another
candidate edge (u, x) or (y, v) is removed from the set of candidates. The remaining
candidates form a matching M in the graph. For each edge (u, v) in M , u sends a
token to v if at the beginning of the step node u contains at least two more tokens
than v. This algorithm was first analyzed in [14].

We analyze the performance of the single-port algorithm in terms of both the
edge expansion and the node expansion of the graph. In terms of edge expansion,
we show that the single-port algorithm balances to within O((d logn)/α) tokens in
O(d∆/α) steps with high probability. In terms of node expansion, the final imbalance
is O((logn)/µ) and the time is O(d∆/µ) with high probability. (To compare these
bounds, note that µ ≤ α ≤ dµ.) The time bounds are tight in the sense that for many
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values of n, d, α, µ, and ∆, there is a graph with n nodes, maximum degree d, edge
expansion α or node expansion µ, and an initial placement of tokens with imbalance
∆ such that the time (for any algorithm) to balance to within even ∆/2 tokens is at
least Ω(d∆/α). Similarly, in terms of node expansion, there exist classes of graphs
where the time to balance to within even ∆/2 tokens is at least Ω(d∆/µ).

The multiport algorithm is simpler and deterministic. At each step, a token is
sent from node u to node v across edge (u, v) if at the beginning of the step node u
contains at least 2d+ 1 more tokens than node v. This algorithm was first analyzed
in [2].

As in the single-port case, we analyze the multiport algorithm in terms of both
edge expansion and node expansion. In terms of edge expansion, the algorithm bal-
ances to within O((d2 logn)/α) tokens in O(∆/α) steps. This bound is tight in the
sense that for any network with edge expansion α, and any value ∆, there exists
an initial distribution of tokens with imbalance ∆ such that the time to reduce the
imbalance to even ∆/2 is Ω(∆/α). In terms of node expansion, the algorithm bal-
ances to within O((d logn)/µ) tokens in O(∆/µ) time. This bound is tight in the
sense that for many values of d, n, and µ, and any value ∆, there exists an n-node,
maximum degree d graph with node expansion µ and an initial distribution of tokens
with imbalance ∆ for which the time to balance to within ∆/2 tokens is Ω(∆/µ).

Both the single-port and the multiport algorithms will eventually locally bal-
ance the network, the single-port algorithm to within one token and the multi-
port algorithm to within 2d tokens. However, even after reducing the global im-
balance to a small value, the time for either of these algorithms to reach a locally
balanced state can be quite large. In particular, we show that after reaching a
state that is globally balanced to within O((d logn)/µ) tokens, the multiport algo-
rithm may take another Ω(n1/2) steps to reach a state that is locally balanced to
within 2d tokens. For networks with large node expansion and small degree, e.g.,
µ = Ω(1) and d = O(1), and small initial imbalance, e.g., ∆ = O((d log2 n)/µ),
the time to locally balance the network, Ω(n1/2), may be much larger than the
time, O(∆/µ) = O((d log2 n)/µ2) = O(log2 n), to reach a state that is globally bal-
anced to within O((d logn)/µ) tokens. Moreover, there exist networks with diameter
Θ(logn/µ) for which even after reducing the global imbalance to the asymptotically
best possible value of O(d logn/µ) tokens in optimal time, the multiport algorithm
can still take a long time to locally balance to within d tokens. We prove similar
bounds for the single-port algorithm.

Thus far we have described a network model in which the nodes are synchronized
by a global clock (i.e., a synchronous network) and in which the edges are assumed
not to fail. With minor modifications, however, the load balancing algorithms can be
made to work in both asynchronous and dynamic networks. In a dynamic network,
the set of edges in the network may vary at each time step. In any time step, a live
edge is one that can transmit one message in each direction. We assume that at each
time step, each node in a synchronous dynamic network knows which of its edges are
live. In an asynchronous network, the topology is fixed, but an adversary determines
the speed at which each edge operates at every instant of time. For every undirected
edge between two nodes, we allow at most two messages to be in transit at any instant
in time. These messages may travel in opposite directions across the edge, or both
may travel in one direction while no message travels in the opposite direction. An
edge is said to be live for a unit interval of time if every message that was in transit
across the edge (in either direction) at the beginning of the interval is guaranteed to
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reach the end of the edge by the end of the interval. We analyze the performance of
the multiport load balancing algorithm under the assumption that at each time step,
the set of live edges has some edge expansion α or node expansion µ.

We also study the off-line load balancing problem, in which every node has knowl-
edge of the global state of the network. This problem has been studied on static syn-
chronous networks in [29]. We use their results to obtain tight bounds on off-line load
balancing in terms of edge expansion and node expansion. For the single-port model,
we prove that any network can be balanced off-line in d(1 + µ)∆/µe steps so that
no node has more than two tokens more than the average. This result can be used
to show that any network can be balanced off-line to within three tokens in at most
2d(1 + µ)∆/µe steps in the single-port model. Moreover, there exists a network and
an initial token distribution for which any single-port off-line algorithm takes more
than d(1 + µ)∆/µe steps to balance the network to within one token. Similarly, in
the multiport model, any network can be balanced off-line in at most d∆/αe steps so
that no node contains more than d tokens more than the average. Using this result,
we show that any network can be balanced to within d+ 1 tokens in at most 2d∆/αe
steps. It is easy to observe that for any network there exists an initial token distribu-
tion such that any algorithm will take at least d∆/αe steps to balance the network to
within one token.

1.2. Previous and related work. Load balancing has been studied extensively
because it comes up in a wide variety of settings, including adaptive mesh partitioning
[17, 39], fine-grain functional programming [16], job scheduling in operating systems
[13, 25], and distributed tree searching [22, 26]. A number of models have been
proposed for load balancing, differing chiefly in the amount of global information used
by the load balancing algorithm [2, 11, 12, 14, 27, 31]. In these models, algorithms
have been proposed for specific applications; also, proposed heuristics and algorithms
have been analyzed using simulations and queueing-theoretic techniques [28, 35, 37].
In what follows, we focus on models that allow only local algorithms and on prior
work that takes an analytical approach to the load balancing problem.

Local algorithms restricted to particular networks have been studied on counting
networks [4, 23], hypercubes [20, 34], and meshes [17, 29]. Another class of networks on
which load balancing has been studied is the class of expanders. Peleg and Upfal [32]
pioneered this study by identifying certain small-degree expanders as being suitable
for load balancing. Their work has been extended in [9, 18, 33]. These algorithms
use either strong expanders to approximately balance the network or the AKS sorting
network [3] to perfectly balance the network. Thus, they do not work on networks
of arbitrary topology. Also, these algorithms work by setting up fixed paths through
the network on which load is moved and therefore cannot cope with changes in the
network topology. In contrast, our local algorithm works on any arbitrary dynamic
network that remains connected.

On arbitrary topologies, load balancing has been studied under two models. In
the first model, any amount of load can be moved across a link in any time step [8,
12, 14, 15, 19, 36]. The second model is the one that we adopt here, namely, one
in which at most one unit load can be moved across a link in each time step. Load
balancing algorithms for the second model were first proposed and analyzed in [2]
for the multiport variant and in [14] for the single-port variant. The upper bounds
established by them are suboptimal by a factor of Ω(log(n∆)) or Ω(

√
n), respectively.

We improve these results for both single-port and multiport variants.

As remarked earlier, our multiport results (and those in [2]) hold even for dynamic
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or asynchronous networks. In general, work on dynamic and asynchronous networks
has been limited. In work related to load balancing, for instance, an end-to-end com-
munication problem, namely, one in which messages are routed from a single source to
a single destination, has been studied in [1, 7] on dynamic networks. Our scenario is
substantially more involved since we are required to move load between several sources
and destinations simultaneously. Another result on dynamic networks is the recent
analysis of a local algorithm for the approximate multicommodity flow problem [5, 6].
While their result has several applications including the end-to-end communication
problem mentioned above, it does not seem to extend to load balancing. Our result
on load balancing is related to their work in the technique; however, our algorithm
and analysis are simpler and we obtain optimal bounds for our problem.

The convergence of local load balancing algorithms is related to that of random
walks on Markov chains. Indeed the convergence bounds in both cases depend on
the expansion properties of the underlying graph, and they are established using
potential function arguments. There are, however, two important differences. First,
the analysis of the rapid convergence of random walks [21, 30] relies on averaging
arbitrary probabilities across any edge. This corresponds to sending an arbitrary
(possibly nonintegral) load along an edge, which is forbidden in our model. In this
sense, the analysis in [12] (and all references in the unbounded capacity model) are
similar to the random walk analysis. Second, our argument uses an exponential
potential function. The analyses in [12, 21, 30], in contrast, use quadratic potential
functions. Our potential function and our amortized analysis were necessary, since a
number of previous attempts using quadratic potential functions yielded suboptimal
results [2, 14] for local load balancing.

As mentioned earlier, we consider only the static aspect of load balancing. For a
recent survey on the dynamic aspect of this problem (i.e., when tokens can be created
or destroyed while the tokens are being balanced), see [40].

1.3. Outline. The remainder of this paper is organized as follows. Section 2
contains some definitions. Section 3.1 analyzes the performance of the single-port
algorithm. Section 3.2 analyzes the performance of the multiport algorithm. In
section 4, we show that the time to reach a locally balanced state can be quite large,
even if the network starts in a state that is well balanced globally. Section 5 describes
extensions to dynamic and asynchronous networks. Finally, section 6 presents tight
bounds on off-line load balancing.

2. Preliminaries. For any network G = (V,E) with n nodes and edge expansion
α, we denote the number of tokens at v ∈ V by w(v). We denote the average number
of tokens by ρ, i.e., ρ = (

∑
v∈V w(v))/n. For simplicity, throughout this paper we

assume that ρ is an integer. We assign a unique rank from [1, w(v)] to every token at
v. The height of a token is its rank minus ρ. The height of a node is the maximum
among the heights of all its tokens.

Consider a partition of V given by {Si}, where the index i is any integer (positive,
negative, or zero) and Si may be empty for any i. Let S>j be ∪i>jSi. Similarly, we
define S≥j , S<j , and S≤j . We define index i to be good if |Si| ≤ α|S>i|/2d. An
index that is not good is called a bad index. Thus, index i is good if there are at
least α|S>i|/2 edges from nodes in S>i to nodes in S<i. To observe this, note that
the number of edges out of S>i is at least α|S>i|. On the other hand, the number
of edges coming out of Si is at most d|Si|, which is at most α|S>i|/2 if i is good.
Therefore, at least α|S>i|/2 edges go from nodes in S>i to nodes in S<i.
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For any bad index i, it follows from the equality |Si| = |S>i−1| − |S>i| that
|S>i| < |S>i−1|/(1 +α/(2d)). Consider the reduction in |S>i| as i increases. For each
bad index, there is a reduction by a factor of 1/(1 + α/(2d)). Hence, there can be at
most dlog(1+α/(2d)) ne bad indices because (1 + α/(2d))log(1+α/(2d)) n ≥ n. It follows
that at least half of the indices in [1, 2dlog(1+α/(2d)) ne] are good.

Finally, we note that for 0 ≤ a ≤ 1, 1+a ≥ ea−a2/2 ≥ ea/2. Thus ln(1+a) ≥ a/2,
implying log(1 + a) = Θ(a). We will use this result several times in the sections to
follow, without further justification.

3. Analysis for static synchronous networks.

3.1. The single-port model. In this section, we analyze the single-port load
balancing algorithm that is described in section 1.1.

Theorem 3.1. For an arbitrary network G with n nodes, maximum degree d,
edge expansion α, and initial imbalance ∆, the single-port algorithm balances within
O((d logn)/α) tokens in O((d∆)/α) steps, with high probability.

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes
having ρ + i tokens as Si. Consider the first T steps of the algorithm, with T to be
specified later. It holds that either |S>0| ≤ n/2 at the start of at least half the steps,
or |S≤0| ≤ n/2 at the start of at least half the steps. Without loss of generality,
assume the former is true. Thus, every subset of nodes in S>0 expands, and we will
use this expansion property to show that the number of nodes that have at least
ρ+ 2 log(1+α/(2d)) n tokens rapidly goes to zero.

Recall that at least half of the indices in [1, 2dlog(1+α/(2d)) ne] are good in any
time step. Therefore, there exists an index j in [1, 2dlog(1+α/(2d)) ne] that is good in
at least half of those time steps in which |S>0| ≤ n/2. Hence j is good in at least T/4
steps.

With every token at height x we associate a potential of φ(x), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ j,
(1 + ν)x otherwise,

(3.1)

where ν = α/(cd) and c > 1 is a real constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network. While transmitting a
token, every node sends its token with maximum height. Similarly, any token arriving
at a node with height h is assigned height h+ 1. It follows from the definition of the
potential function, and the fact that the height of a token never increases, that the
potential of the network never increases. In the following, we show that during any
step when j is good, the expected decrease in the potential of the network is at least
an εν2 fraction of the potential before the step, where ε > 0 is a real constant to be
specified later.

Before proving Theorem 3.1, we present an informal outline of the proof. For
simplicity, let us assume that G is a constant-degree expander, i.e., d = O(1) and
µ = Ω(1). Consider the scenario in which all of the indices greater than j are bad. In
this situation, for indices greater than j, the size of the set S≥i decreases exponentially
with increasing i, and hence the number of tokens with height i decreases exponentially
with increasing i. If the rate of growth of φ(x) with increasing x is smaller than the
rate of decrease of |S≥i| with increasing i, then the total potential due to tokens at
height i dominates the total potential due to tokens at height greater than i. In
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such a case the potential of S>j is essentially a constant times the potential of tokens
at height j + 1. In addition, if the potential of tokens at height at most j is zero,
then in every step when j is good, there is a constant fraction potential drop because
a constant fraction of the nodes in S>j send tokens to S<j in such a step. The
exponential function we have defined in (3.1) satisfies the properties described above
for c sufficiently large.

In general, the indices greater than j may form any sequence of good and bad
indices, provided that the upper bound on the number of bad indices is respected.
We consider the indices greater than j in reverse order and show by an amortized
analysis that for each index i we can view all indices greater than or equal to i as
bad. If i is bad, then this view is trivially preserved; otherwise, the number of edges
from S>i to S<i is at least α|S>i|/2 and hence there is a significant potential drop
across the cut (S≤i, S>i). This drop can be used to rearrange the potential of S>i in
order to maintain the view that all indices greater than i are bad. We then invoke
the argument for the case in which all indices greater than j are bad, and complete
the proof.

Consider step t of the algorithm. Let Φt denote the potential of the network after
step t > 0. Let Mi be the set of tokens that are sent from a node in S>i to a node
in S<i. Note that a token may appear in several different sets Mi. Let mi = |Mi|.
We say that a token p has an i-drop of φ(i+ 1)− φ(i) if p moves from a node in S>i
to a node in S<i. Thus, the potential drop due to a token moving on an edge from
node u ∈ Si to node v ∈ Si′ , i > i′ + 1, can be expressed as the sum of k-drops for
i′ < k < i. In Lemma 3.2, we use this notion of i-drops to relate the total potential
drop in step t, Ψ, to the mi’s.

Lemma 3.2.

Ψ =

∑
i>j

miν(1 + ν)i

+mj(1 + ν)j+1.

Proof. Let M be the set of tokens that are moved from a node in S>j . (Note that
tokens that start from and end at nodes in S>j also belong to M .) For any token p,
let a(p) (resp., b(p)) be the height of p after (resp., before) step t.

Ψ =
∑
p∈M

(φ(b(p))− φ(a(p)))

=
∑
p∈M

∑
a(p)≤i<b(p)

(φ(i+ 1)− φ(i))

=
∑
i≥j

∑
p∈Mi

(φ(i+ 1)− φ(i))

=

∑
i>j

∑
p∈Mi

(φ(i+ 1)− φ(i))

+
∑
p∈Mj

(φ(j + 1)− φ(j))

=

∑
i>j

∑
p∈Mi

ν(1 + ν)i

+
∑
p∈Mj

(1 + ν)j+1

=

∑
i>j

miν(1 + ν)i

+mj(1 + ν)j+1.
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(The second equation holds since the sum of φ(i+ 1)−φ(i) over i telescopes. For the
third equation, we interchange the order of summation and use the fact that φ(i) is
zero for all i ≤ j. The fourth equation is obtained by separating the case i ≥ j into
two cases i > j and i = j. For deriving the fifth equation, we use (i) for all i > j,
φ(i + 1) − φ(i) = ν(1 + ν)i, and (ii) φ(j) = 0. The last equation follows from the
definition of mi.)

We now describe the amortized analysis, which we alluded to earlier in this section,
that we use to prove Theorem 3.1. We associate a charge of εν2φ(h) with each token
at height h. We show that we can pay for all of the charges using the expected
potential drop E[Ψ], which implies a lower bound on E[Ψ]. We consider the indices
in [j + 1, `] in reverse order, where ` is the maximum token height. For every i in
[j, `], we maintain a “debt” term, given by Γi below, which is the difference between
the charges due to tokens at height greater than i and the sum of i′-drops for i′ > i.
We will place an upper bound on E[Γi] that lets us view all of the indices in [i+ 1, `]
as bad indices. In other words, we upper bound E[Γi] by εν|S≥i|(1 + ν)i. It follows
from this upper bound and the informal argument outlined earlier in this section that
the expected total debt can be paid for by the expected drop across index j.

Formally, for any i > j, we define

Ψi =
∑
k≥i

mkν(1 + ν)k,

Γi = (εν2)

 ∑
p:b(p)≥i

(1 + ν)b(p)

−Ψi.

We also define

Γ = (εν2)

 ∑
p:b(p)>j

(1 + ν)b(p)

−Ψ.

Note that Φt−1 =
∑
p:b(p)>j(1 + ν)b(p) is the total potential of S>j prior to step t.

In order to prove the upper bound on E[Γi], we place a lower bound on E[mi]
that is obtained from the following lemma of [14].

Lemma 3.3 (see [14]). For any edge e ∈ E, the probability that e is selected in
the matching is at least 1/(8d).

Lemma 3.4. There exists a real constant ε > 0 such that for all i > j, we have
E[Γi] ≤ (εν)|S≥i|(1 + ν)i.

Proof. The proof is by reverse induction on i. If i > `, then the claim holds
trivially since Γi and |S≥i| are both equal to zero. (Recall that ` denotes the maximum
token height.) Therefore, for the base case we consider i = `. Since m` = 0, we have
Ψ` = 0. Thus, Γ` = (εν2)|S`|(1 + ν)` ≤ (εν)|S≥`|(1 + ν)`, since ν = α/(cd) ≤ 1/c ≤ 1
by our choice of c.

For the induction step we consider two cases, depending on whether i is good or
bad. We begin with the case when i is good. By the definition of a good index, we
have |Si| ≤ α|S>i|/2d. Since each node has at most d adjacent edges, there are at
most α|S>i|/2 edges adjacent to nodes in Si. Therefore, there are at most α|S>i|/2
edges from S>i to Si. By the expansion property of the graph, S<i has at least α|S<i|
edges to nodes in S≥i, so there are at least α|S>i|/2 edges from S>i to S<i. By
Lemma 3.3, we have E[mi] ≥ α|S>i|/(16d).
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We are now ready to place a bound on E[Γi]. By definition, Γi can be calculated
by subtracting the sum of i-drops from Γi+1 and adding the charges due to tokens at
height i. Therefore, we have

E[Γi] = E[Γi+1] + (εν2)|S≥i|(1 + ν)i − E[mi]ν(1 + ν)i

≤ E[Γi+1] + (εν2)|S≥i|(1 + ν)i − cν2|S>i|(1 + ν)i/16

≤ E[Γi+1]− (ν2)|S≥i|(1 + ν)i(f(c, α, d)− ε)
≤ (εν)|S>i|(1 + ν)i+1 − (ν2)|S≥i|(1 + ν)i(f(c, α, d)− ε)
≤ (εν)|S≥i|(1 + ν)i((1 + ν)− ν(f(c, α, d)− ε)/ε),

where f(c, α, d) = c/(16(1 + α/(2d))). (In the first equation, we use the fact the
number of tokens p such that b(p) = i is |S≥i|. The second equation follows from
the lower bound on E[mi]. The third equation follows from the fact that |S>i| ≥
|S≥i|/(1 + α/(2d)) whenever i is a good index. The fourth equation follows from the
induction hypothesis. The last equation follows from the fact that |S>i| ≤ |S≥i|.)

The second case is when i is bad. Thus |Si| > α|S>i|/(2d). We now place an
upper bound on E[Γi] as follows.

E[Γi] ≤ E[Γi+1] + (εν2)|S≥i|(1 + ν)i

≤ (εν)|S>i|(1 + ν)i+1 + (εν2)|S≥i|(1 + ν)i

≤ (εν)|S≥i|(1 + ν)i((1 + ν)/(1 + cν/2) + ν).

(In the first equation, we use the fact the number of tokens p such that b(p) = i is
|S≥i|. The second equation follows from the induction hypothesis. The third equation
follows from the fact that |S≥i| > (1 + α/(2d))|S>i| whenever i is a bad index.)

We now complete the induction step by determining values for c and ε such that
the following equations hold:

((1 + ν)− ν(f(c, α, d)− ε)/ε) ≤ 1,(3.2)

(1 + ν)/(1 + cν/2) + ν ≤ 1.(3.3)

We set c to be any constant greater than or equal to (α/d) + 4 (e.g., c = 5). For this
choice of c, ν = α/(cd) ≤ (c− 4)/c, and hence 2ν+ cν2/2 ≤ cν/2. Therefore, we have

(1 + ν)/(1 + cν/2) + ν = (1 + 2ν + cν2/2)/(1 + cν/2)

≤ (1 + cν/2)/(1 + cν/2)

= 1.

Thus, (3.3) is satisfied. Since α ≤ d, we find that f(c, α, d) ≥ c/24. We now set
ε = c/48 to establish (3.2). (For example, c = 5 and ε = 5/48.)

We are now in a position to bound E[Γ] on those steps in which j is good. By
applying Lemma 3.4 with i = j + 1, we obtain that E[Γj+1] ≤ (εν)|S≥j+1|(1 + ν)j+1.
If j is good, then by the definitions of Γ, Γj+1, and Ψ, we have

E[Γ] = E[Γj+1]− E[mj ](1 + ν)j+1

≤ E[Γj+1]− α|S>j |(1 + ν)j+1/(16d)

≤ (εν)|S>j |(1 + ν)j+1 − α|S>j |(1 + ν)j+1/(16d)

= ν|S>j |(1 + ν)j+1(ε− c/16)

≤ 0.
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(The second equation follows from the fact that E[mj ] ≥ α|S>j |/16d whenever j
is good. The third equation follows from the upper bound on E[Γj+1]. The fifth
equation holds since c/16 ≥ ε.)

We now derive a lower bound on the expected drop in the potential of the network
during a sequence of T steps. By the definitions of Ψ and Γ, we have Φt = Φt−1 −Ψ
and Γ = εν2Φt−1 − Ψ. If j is good during step t, we have E[Γ] ≤ 0, and therefore
E[Φt] ≤ Φt−1(1 − εν2), where the expectation is taken over the random matching
selected in step t. Since j is good in at least T/4 steps, we obtain that E[Φt+T ] ≤
Φt(1− εν2)T/4, where the expectation is taken over all the random matchings in the
T steps. By setting T = d(4 ln 4)/(εν2)e, we obtain E[Φt+T ] ≤ Φt/4. By Markov’s
inequality, the probability that Φt+T ≥ Φt/2 is at most 1/2. Therefore, using standard
Chernoff bounds [10], we can show that in T ′ = 8aT d(log Φ0 + log n)e steps, ΦT ′ > 1
with probability at most O(1/(Φ0)a + 1/na) for any constant a > 0.

If ∆ is at most 2 log(1+α/(2d)) n, then the claim of the theorem holds trivially.
Accordingly, we assume that ∆ is greater than 2 log(1+α/(2d)) n in what follows. Since

Φ0 is at least (1+ν)∆, Φ0 is at least n2/c. Therefore, 1/(Φ0)a is inverse-polynomial in
n. Since Φ0 ≤ n(1 + ν)∆+1/ν, we have log Φ0 ≤ (∆ + 1)(ν) + logn− log ν. Therefore,
for T ′ = O(∆d/α+d2 logn/α2), we have ΦT ′ < 1 with high probability, which implies
that after T ′ steps |S>2 log(1+α/(2d)) n| = 0 with high probability.

To establish balance in the number of tokens below the average, we use an av-
eraging argument to show that after T ′ steps |S<−2 log(1+α/(2d)) n| ≤ n/2 with high
probability and then repeat the above arguments with the potential redefined appro-
priately. This proves Theorem 3.1.

3.2. The multiport model. In this section, we analyze the deterministic multi-
port algorithm described in section 1.1.

Theorem 3.5. For an arbitrary network G with n nodes, maximum degree d,
edge expansion α, and initial imbalance ∆, the multiport algorithm load balances to
within O((d2 logn)/α) tokens in O(∆/α) steps.

The proof of Theorem 3.5 is similar to that of Theorem 3.1. We assign a potential
to every token, where the potential is exponential in the height of the token. We then
show by means of an amortized analysis that a suitable rearrangement of the potential
reduces every instance of the problem to a special instance that we understand well.

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes
having between ρ − d + 2id and ρ + d − 1 + 2id tokens as Si. (Recall that ρ is the
average number of tokens per node.) Consider the first T steps of the algorithm
with T to be specified later. Without loss of generality, we assume that |S>0| ≤ n/2
holds in at least half of these steps. As shown in section 2, there exists an index j in
[1, 2dlog(1+α/(2d)) ne] that is good in at least half of those steps in which |S>0| ≤ n/2.
Hence in T steps of the algorithm, j is good in at least T/4 steps.

With every token at height h we associate a potential of φ(h), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ 2jd,
(1 + ν)x otherwise,

where ν = α/(cd2) and c > 0 is a constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network.

While transmitting some number (say, m) of tokens in a particular step, a node
sends the m highest-ranked tokens. Similarly, if m tokens arrive at a node during a
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step, they are assigned the m highest ranks within the node. Thus, tokens that do
not move retain their ranks after the step. We now describe what specific ranks we
assign to tokens that move during any step t. Let u be a node in S<i with height h
at the start of step t. Let A (resp., B) be the set of tokens that u receives from nodes
in S>i (resp., S≤i). We assign new ranks to tokens in A and B such that the rank of
every token in A is less than that of every token in B. Let C be the set of tokens in
A that attain height at most h+ (d/2) after the step. Since |A| ≤ d, by the choice of
our ranking, we have |C| ≥ |A|/2. We call C the set of primary tokens. We also note
that for any node v with height h all tokens leaving v during a step are at height at
least h− d+ 1 prior to the step.

It follows from the definition of the potential function and the fact that the height
of a token never increases that the network potential never increases. In the following
we show that whenever j is good the potential of S>j decreases by a factor of εν2d2,
where ε > 0 is a real constant to be specified later. (For the sake of simplicity, we
assume that d is even. If d is odd, we can replace d by d+ 1 in our argument without
affecting the bounds by more than constant factors.)

For any token p, let a(p) (resp., b(p)) be the index i such that Si contains p after
(resp., before) the step. (Note that the indexing is done prior to the step.) Let Mi

be the set of primary tokens received by nodes in S<i. Let mi = |Mi|. Note that mi

is at least half the number of edges connecting nodes in S<i and nodes in S>i. This
is because a token is sent along every one of the edges connecting S<i and S>i and
at least half the tokens received by any node in S<i from nodes in S>i are primary
tokens. Lemma 3.6 establishes the relationship between the total potential drop Ψ in
step t and the mi’s.

Lemma 3.6.

Ψ ≥
1

2

∑
i>j

miνd(1 + ν)(2i−1)d

+mj(1 + ν)2jd+1.

Proof. Let M be the set of primary tokens that are moved from nodes in S>j .
(Note that primary tokens that start from a node in S>j and end at a node in S>j
are in M .) Let p be a token in M . By the definition of a primary token, the height of
p prior to the step is at least 2b(p)d− 2d+ 1 and the height after the step is at most
2a(p)d+ 3d/2. Moreover, p belongs to Mi for all i such that a(p) < i < b(p).

Ψ ≥
∑
p∈M

[φ(2b(p)d− 2d+ 1)− φ(2a(p)d+ 3d/2)]

≥
∑
p∈M

∑
a(p)<i<b(p)

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

=
∑
i≥j

∑
p∈Mi

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

=
∑
i>j

∑
p∈Mi

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

+
∑
p∈Mj

[φ(2(j + 1)d− 2d+ 1)− φ(2(j − 1)d+ 3d/2)]

≥
1

2

∑
i>j

∑
p∈Mi

νd(1 + ν)2id−d

+
∑
p∈Mj

(1 + ν)2jd+1
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≥
1

2

∑
i>j

miνd(1 + ν)2id−d

+mj(1 + ν)2jd+1.

(The first equation follows from the lower bound (resp., upper bound) on the height
of a token p in M before (resp., after) the step. For the second equation, note that
2id − 2d + 1 ≤ 2(i − 1)d + 3d/2. Therefore, φ(2id − 2d + 1) ≤ φ(2(i − 1)d + 3d/2).
The second equation now follows since the sum telescopes. The third equation is
obtained by interchanging the sums and noting that φ(x) is 0 for x ≤ 2jd. The fourth
equation is obtained by partitioning M into the subsets M \Mj and Mj . The fifth
equation is derived using the following calculations: (i) φ(2id + 1) − φ(2id − d/2) ≥
((1 + ν)d/2 − 1)(1 + ν)2id−d/2 ≥ νd(1 + ν)2id−d/2, (ii) φ(2jd+ 1) = (1 + ν)2jd+1, and
(iii) φ(2jd− d/2) = 0. The last equation follows from the definition of mi.)

We establish Theorem 3.5 by means of an amortized analysis similar to the one
used in section 3.1. We associate a charge of εν2d2φ(h) with every token at height h.
We show that we can pay for all of the charges using the potential drop Ψ and thus
place a lower bound on Ψ. We consider the sets Si in reverse order and maintain a
“debt” term Γi for each i. Informally, Γi indicates the difference between the total
charges due to tokens at height at least 2id− d and the current upper bound on the
potential drop. Our amortized analysis terminates by showing that the total debt Γ
is at most zero.

We now formally define Γi and Γ. For any token p, let h(p) denote the height of
p prior to the step. Thus 2b(p)d − d ≤ h(p) ≤ 2b(p)d + d − 1. For i > j and for a
suitable constant ε > 0 to be specified later, we define

Ψi =
1

2

∑
k≥i

mkνd(1 + ν)2kd−d and

Γi = (εν2d2)

 ∑
p:h(p)≥2id−d

(1 + ν)h(p)

−Ψi.

We also define

Γ = (εν2d2)

 ∑
p:h(p)>2jd

(1 + ν)h(p)

−Ψ.

For any step t′, let Φt′ denote the total potential after step t′. Thus, Φt−1 =∑
p:h(p)>2jd(1 + ν)h(p) is the total potential prior to step t.

Lemma 3.7. There exists a real constant δ > 0 such that for all i > j, we have

Γi ≤ (δνd2)|S≥i|(1 + ν)2id−d.

Proof. The proof is by reverse induction on i. Let ` be the maximum token
height. Consider first the case when i > b(` + d)/2dc. Since 2id − d > `, there is no
token with height at least 2id − d. Hence Γi ≤ 0 and |S≥i| = 0. Thus, the desired
claim holds. We now consider i = b(`+ d)/2dc. Since Ψi = 0, we have

Γi ≤ (2εν2d3)|S≥i|(1 + ν)`

≤ (2εν2d3)|S≥i|(1 + ν)2d(i+1)−d

≤ (δνd2)|S≥i|(1 + ν)2id−d.
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(The first equation holds because (i) each node in Si has at most 2d tokens with height
at least 2id− d, and (ii) h(p) ≤ ` for each token p. The second equation follows from
the fact that ` < 2(i + 1)d − d. The third equation is obtained by choosing δ and ε
such that δ > 2ενd(1 + ν)2d. Note that for c sufficiently large, (1 + ν)2d can be set to
an arbitrarily small constant.)

For the induction step we consider two cases. If i is good, then |Si| ≤ α|S>i|/(2d)
and mi ≥ α|S>i|/4. Therefore, we have

Γi ≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1 −miνd(1 + ν)2id−d/2
≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1 − cν2d3|S>i|(1 + ν)2id−d/8
≤ Γi+1 − (ν2d3)|S≥i|(1 + ν)2id−d(f(c, α, d)− 2ε(1 + ν)2d)

≤ (δνd2)|S>i|(1 + ν)2(i+1)d−d − (ν2d3)|S≥i|(1 + ν)2id−d(f(c, α, d)− 4ε)

≤ (δνd2)|S≥i|(1 + ν)2id−d((1 + ν)2d − νd(f(c, α, d)− 4ε)/δ),

where f(c, α, d) = c/(8(1 + α/(2d))). (The first equation holds because (i) each node
in Si has at most 2d tokens with height at least 2id − d, and (ii) h(p) ≤ 2id + d − 1
for each token p that contributes to Γi and not to Γi+1. The third equation follows
from the fact that |S>i| ≥ |S≥i|/(1 + α/(2d)). The fourth equation follows from the
induction hypothesis and the equation (1 + ν)2d ≤ 2 for c sufficiently large. The last
equation is derived using straightforward algebra.)

The second case is when i is bad. Thus |Si| > α|S>i|/(2d). We have

Γi ≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1

≤ (δνd2)|S>i|(1 + ν)2(i+1)d−d + 2εν2d3|S≥i|(1 + ν)2id+d−1

≤ (δνd2)|S≥i|(1 + ν)2id−d((1 + ν)2d/(1 + α/(2d)) + 2ενd(1 + ν)2d/δ).

We now set c, δ, and ε such that c > 4, c/12−4ε ≥ 4δ, and c/4−2ε/δ ≥ 4. (One set of
choices is c = 50, δ = 1, and ε = 1/24.) Since α ≤ d, we have f(c, α, d) ≥ c/12. Since
c > 4, we have 2νd < 1/2, and hence (1+ν)2d ≤ 1+

∑
i>0(2νd)i = 1+2νd/(1−2νd) ≤

1 + 4νd. Thus,

((1 + ν)2d − νd(f(c, α, d)− 4ε)/δ) ≤ 1 + 4νd− 4νd ≤ 1.

Since α/(2d) ≤ 1/2, we have 1/(1 +α/(2d)) ≤ 1−α/2d+ (α/2d)2 ≤ 1−α/(2d) +
α/(4d) = 1− α/(4d), and hence

(1 + ν)2d/(1 + α/(2d)) + 2ενd(1 + ν)2d/δ = (1 + ν)2d(1/(1 + α/(2d)) + 2ενd/δ)

≤ (1 + ν)2d(1− α/4d+ 2ενd/δ)

= (1 + ν)2d(1− cνd/4 + 2ενd/δ)

≤ (1 + 4νd)(1− 4νd) < 1.

(The second equation follows from the upper bound on 1/(1 + α/(2d)). The fourth
equation follows from the upper bound of (1 + 4νd) on (1 + ν)2d.)

Thus, in both cases, Γi ≤ (δνd2)|S≥i|(1 + ν)2id−d. This completes the induction
step.

Corollary 3.8. If j is good in step t, then we have Ψ ≥ εν2d2Φt−1.
Proof. Applying Lemma 3.7 with i = j+1, it follows that Γj+1 ≤ (δνd2)|S≥j+1|(1+

ν)2(j+1)d−d. If j is good, then |S≥j | ≤ (1 + α/(2d))|S>j | ≤ 3|S>j |/2 and mj ≥
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α|S>j |/2. Therefore,

Γ ≤ Γj+1 + εν2d3|S≥j |(1 + ν)2jd+d−1 − α|S>j |(1 + ν)2jd+1/2

≤ (δνd2)|S>j |(1 + ν)2(j+1)d−d

+ (3εν2d3)|S>j |(1 + ν)2jd+d−1/2− α|S>j |(1 + ν)2jd+1/2

≤ (νd2)|S>j |(1 + ν)2(j+1)d−d(δ + 3εα/(2cd)− c/4)

≤ 0

for c, δ, and ε as chosen in the proof of Lemma 3.7. (In the first equation, the term
εν2d3|S≥j |(1 + ν)2jd+d−1 is an upper bound on the contribution to Γj by tokens in
S≥j since (i) tokens with height at least 2jd+d contribute to Γj+1, and (ii) each node
in S≥j has d − 2 ≤ d tokens with height in the interval [2jd + 1, 2jd + d − 1]. Also,
the third term in the first equation is the second term in the right-hand side of the
equation of Lemma 3.6. In the second equation, we use the upper bounds on Γj+1 and
|S≥j |. The third equation follows from the choice of c, δ, and ε and the fact that for
c > 4, we have (1 + ν)d ≤ (1 +α/(cd2))d ≤ (1 + 1/(cd))d < (1 + 1/(4d))d ≤ e1/4 ≤ 2.)

By the definitions of Γ and Ψ, we have Φt ≤ Φt−1 −Ψ and Γ = εν2d2Φt−1 −Ψ.
If j is good during step t, then Γ ≤ 0 and the desired claim follows.

By Corollary 3.8, if j is good during step t, then we have

Φt ≤ Φt−1(1− εν2d2).

After T = d4 ln Φ0/(εν
2d2)e steps, we have ΦT ≤ Φ0(1 − εν2d2)T/4 < 1. Since the

height of each node is at most ∆ initially, Φ0 ≤ n
∑

2jd<i≤∆(1+ν)i ≤ n(1+ν)∆+1/ν,

ln Φ0 = O(∆ν + logn). Substituting α/(cd2) for ν, we obtain that within O(∆/α +
d2 lnn/α2) steps, |S>2 log(1+α/(2d)) n| ≤ |S>j | = 0.

We use an averaging argument to show that after T steps, |S<−2 log(1+α/(2d)) n| ≤
n/2. By redefining the potential function and repeating the above analysis in the
other direction, we obtain that in another T steps |S<−4 log(1+α/(2d)) n| = 0. This
completes the proof of Theorem 3.5.

3.3. Results in terms of node expansion. The proofs of Theorems 3.1 and 3.5
can be easily modified to analyze the algorithm in terms of the node expansion µ of
the graph instead of the edge expansion α. Recall that µ and α are related by the
following inequalities: α/d ≤ µ ≤ α. The primary modifications that need to be done
to obtain bounds in terms of node expansion are to change the definition of a good
index and to set ν appropriately. We call index i good if |Si| ≤ µ|S>i|/2. We set
ν = µ/c (resp., ν = µ/(cd)) for the single-port model (resp., multiport model).

By an argument similar to the one used in section 2, we obtain that the number of
bad indices is at most dlog(1+µ) ne. (In fact, the argument in section 2 uses α/d as a
lower bound on µ.) This bound on the number of bad indices leads to an upper bound
of O((logn)/µ) (resp., O(d(logn)/µ)) on the final imbalance obtained by the single-
port algorithm (resp., multiport algorithm). For a bound on the number of steps, note
that while deriving a bound on the potential drop in sections 3.1 and 3.2, we use the
edge expansion α to obtain a lower bound on the number of tokens leaving sets S>i.
Since the best lower bound on α in terms of node expansion is µ, our time bounds
here are obtained by substituting µ for α in the time bounds of Theorems 3.1 and 3.5,
respectively. We thus obtain Theorems 3.9 and 3.11. Finally, Corollary 3.10 (resp.,
Corollary 3.12) follows from Theorems 3.1 and 3.9 (resp., Theorems 3.5 and 3.11).
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Theorem 3.9. For an arbitrary network G with n nodes, maximum degree d,
node expansion µ, and initial imbalance ∆, the single-port algorithm balances to within
O((logn)/µ) tokens in O(d∆/µ) steps with high probability.

Corollary 3.10. If ∆ ≥ (d logn)/µ, the single-port algorithm balances to within
O(logn/µ) tokens in O((d∆)/α) steps with high probability. If ∆ < (d logn)/µ, the
single-port algorithm balances to within O(logn/µ) tokens in O((d∆)/µ) steps with
high probability.

Theorem 3.11. For an arbitrary network G with n nodes, maximum degree d,
node expansion µ, and initial imbalance ∆, the multiport algorithm balances to within
O((d logn)/µ) tokens in O(∆/µ) steps.

Corollary 3.12. If ∆ ≥ (d2 logn)/µ, the multiport algorithm balances to within
O((d logn)/µ) tokens in O(∆/α) steps. If ∆ < (d2 logn)/µ, the multiport algorithm
balances to within O((d logn)/µ) tokens in O(∆/µ) steps.

4. Local load balancing can be expensive. Here we show that upon reaching
a state with small global imbalance, the algorithms presented in this paper may
still take many steps until they reach a locally balanced state. More specifically,
in section 4.1, we show that locally load balancing to within 2d tokens using the
multiport algorithm of [2] described in section 1.1 can take Ω(

√
n) more time than

globally load balancing to within O((d logn)/µ) tokens. We extend this bound to
the single-port algorithm presented in [14]; i.e., upon reaching a state where the
network is globally balanced to within O((logn)/µ) tokens, the expected number of
additional steps this algorithm may take to perform local balancing to within one
token is Ω(d

√
n). Furthermore, in section 4.2, we show that in the single-port case,

the network may be one step away from being locally balanced to within one token
but have an expected running time of Ω(µ

√
n) for reaching a locally balanced state.

Finally, we prove upper bounds on the time each algorithm takes to reach a locally
balanced state in section 4.3.

All results in this section are stated in terms of the node expansion of the network,
rather than in terms of its edge expansion. This is done for the sake of making our
arguments more intuitive and clear. Similar bounds can be derived in terms of edge
expansion.

For any positive n and any µ, 0 < µ < 1/72, we present an example of a graph
G = (V,E) on n nodes with node expansion at least µ and with maximum degree d
that depends on µ, where, given some initial distribution of tokens, locally balancing
is difficult.

First, we define the node set V of G. Let µ0 be equal to
√

8µ (note that 0 <
µ0 < 1/3). Let V be equal to (∪ki=0Li) ∪ (∪k−1

i=0 Ri), where Li and Ri are disjoint sets
of (1 + µ0)i nodes each and k will be specified shortly. For simplicity, we shall ignore
integrality constraints on the number of nodes in each set. We could be more formal
by setting the size of each set Li or Ri to be d(1+µ0)ie, but this would only make the
calculations in this section more involved without changing the asymptotic results. For
convenience, let L−1 (resp., R−1) denote R0 (resp., L0) and Rk denote Lk. Note that

each Li and each Ri has size (1+µ0)i = µ0(
∑i−1
j=0 |Lj |)+1 = µ0(

∑i−1
j=0 |Rj |)+1. Thus,

setting n =
∑k
j=0 |Lj |+

∑k−1
j=0 |Rj | and solving for k, we have k = Θ((logn)/ log(1 +

µ0)) = Θ((logn)/ log(1 + µ)) = Θ((logn)/µ). For simplicity, we assume that k =
(logn)/ log(1 + µ) and that k is even.

Given µ, we can choose the maximum degree d of G, independent of n, such that
the following construction of the edges in G is possible. We obtain a similar structure
for the Ri’s by replacing Lj by Rj below. Let the only node in L0 be adjacent to
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Fig. 4.1. The initial distribution of tokens on G for the first case.

every node in L1. For all i, 0 ≤ i ≤ k, we insert the edges between nodes in Li such
that (i) there are at most d/2 such edges adjacent to any node in Li, and (ii) every
subset S of Li of size less than or equal to 2|Li|/3 has at least µ0|S| neighbors in
Li \ S (see [24, 38] for a proof that such a construction is possible). Also, let each
node in Li have d(1 + µ0)/(2(2 + µ0)) neighbors in Li+1 and each node in Li+1 have
d/(2(2+µ0)) neighbors in Li, 0 < i ≤ k−1. For simplicity, we again ignore integrality
constraints. Let S be any subset of Li. There are (|S|d(1 + µ0))/(2(2 + µ0)) edges
between S and Li+1, and each node in Li+1 has d/(2(2 + µ0) neighbors in Li. Thus,
S has at least (1 + µ0)|S| neighbors in Li+1.

Now we consider how Li+1 “expands” into Li. We can use an approach similar to
that of [24, 38] to show that we can choose the edges between Li and Li+1, respecting
the degree constraints, such that any subset S of Li+1 of size less than or equal to
3|Li+1|/(4(1 + µ0)) has at least (1 + µ0)|S| neighbors in Li. This construction is
possible since (1+µ0)3|Li+1|/(4(1+µ0)) = 3(1+µ0)|Li|/4 < |Li|. The same analysis
as in [24], but for a bipartite graph with node sets of sizes |Li+1| and |Li+1|/(1 + µ0)
and of regular node degrees d/(2(2 + µ0)) and d(1 + µ0)/(2(2 + µ0)), respectively,
applies here.

To complete the edge construction of G, let u be the only node in L0, let v be the
only node in R0, and add the edge e = (u, v) to the set E. Note that the diameter of
G is Θ(k) = Θ((logn)/µ).

We give a pictorial representation of the sets Ri’s and Li’s in Figure 4.1. The
initial distribution of tokens in Figure 4.1 (given by the quantities above the ovals
representing each set Li or Ri) may be ignored for the moment.

We still need to show that the graph G has node expansion at least µ, as claimed.

Theorem 4.1. The graph G, constructed as described, has node expansion at
least µ.

Proof. We will show how to account for the node expansion of any subset of G of
at most n/2 nodes. Let U be a subset of V of size at most n/2. We will show that
there exists a set of at least µ|U | = µ2

0|U |/8 nodes outside of U that are all adjacent
to nodes in U . For any subsets X and Y of V , we define the neighborhood of X in
Y , NY (X), as the subset of nodes in Y , but not in X, that are adjacent to some node
in X, i.e., NY (X) = {y ∈ (Y \X) : (x, y) ∈ E, x ∈ X}. If the set Y is not specified,
assume Y = V . Let ULi = U ∩ Li and URi = U ∩ Ri for all 0 ≤ i ≤ k. We consider
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two cases, according to whether the size of ULk is greater than 2|Lk|/3 or not.
Case 1. If |ULk | > 2|Lk|/3, then let WL (resp., WR) be the union of the sets

ULj (resp., URj ) of size greater than 2|Lj |/3 (resp., 2|Rj |/3) such that there is no ULq
(resp., URq ), q > j, of size less than or equal to 2|Lq|/3 (resp., 2|Rq|/3). Let ` (resp.,

r) be the minimum index of a set ULj in WL (resp., URt in WR). In case no such j

(resp., t) exists, let ` = 0 (resp., r = 0). Let S denote (∪kj=`Lj) ∪ (∪k−1
j=rRj), and let

W = WL ∪WR. Note that since |ULj | > 2|Lj |/3 for all j ≥ ` and |URj | > 2|Rj |/3
for all j ≥ r, there are at most 3|W |/2 nodes in S. Furthermore, since the set U
has at most n/2 nodes, there are at most 3n/4 nodes in S. Hence, there are at

least n/4 nodes that are not in S, and so we must have either
∑`−1
i=0 |Li| ≥ n/8 or∑r−1

i=0 |Ri| ≥ n/8. Assume without loss of generality that the former is true. This
implies that |L`| > µ0n/8.

We will account for the node expansion of U using the neighborhood of UL` in
L`−1 \ UL`−1. If |UL` | < 3|L`|/(4(1 + µ0)) (implying that µ0 < 1/8, since |UL` | >
2|L`|/3), then

|NL`−1
(UL` ) \ UL`−1| ≥

(1 + µ0)2|L`|
3

− 2|L`−1|
3

=
2|L`|

3

(
(1 + µ0)− 1

(1 + µ0)

)
>

2|L`|µ0(2 + µ0)

3(1 + µ0)
> µ0|L`| > µ2

0n

8

(the second-to-last inequality follows from (2 + µ0)/(1 + µ0) > 3/2). Otherwise, any
subset of |UL` | of size 3|L`|/(4(1+µ0)) has at least (1+µ0)3|L`|/(4(1+µ0)) neighbors
in L`−1. Thus

|NL`−1
(UL` ) \ UL`−1| ≥

(1 + µ0)3|L`|
4(1 + µ0)

− 2|L`−1|
3

= |L`|
(

3

4
− 2

3(1 + µ0)

)
>

9µ0|L`|
12(1 + µ0)

>
µ0|L`|

2
>
µ2

0n

16
.

We obtained the second-to-last inequality by substituting 1 + µ0 by 4/3 in the de-
nominator of the left-hand side of the inequality.

Hence, in Case 1 we have at least µ2
0n/16 ≥ µ2

0|U |/8 nodes not in U that are
adjacent to the nodes in U .

Case 2. If |ULk | ≤ 2|Lk|/3, then each set ULi and each set URj is considered in
exactly one of the following subcases. We prove the results that follow for the sets
ULj ’s only. Similar results hold if we replace ULj by URj and Lj by Rj in the two
subcases below.

Case 2.1. Let i be the maximum index such that |ULi | > 2|Li|/3 and |ULi+1| ≤
2|Li+1|/3. If |ULi+1| ≤ |Li+1|/3, then the neighbors of ULi in Li+1 that are

not in ULi+1 can account for the node expansion of ∪i+1
j=0U

L
j , because

|NLi+1
(ULi ) \ ULi+1| >

(1 + µ0)2|Li|
3

− |Li+1|
3

=
|Li+1|

3

>
µ0

3

 i∑
j=0

|Lj |
 ≥ µ0

4

 i∑
j=0

|Lj |
+ |Li+1| − 1


≥ µ0

4

i+1∑
j=0

|ULj |

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(the second-to-last inequality follows from the fact that |Li+1|=µ0(
∑i
j=0 |Lj |)

+ 1 ≤ [(
∑i
j=0 |Lj |)/3] + 1, since µ0 < 1/3). Otherwise, |Li+1|/3 < |ULi+1| ≤

2|Li+1|/3, and the neighborhood of ULi+1 in Li+1 can account for the node

expansion of ∪i+1
j=0U

L
j , since

|NLi+1
(ULi+1)| ≥ µ0|ULi+1| >

µ0|Li+1|
3

>
µ2

0

3

 i∑
j=0

|Lj |


≥ µ2
0

4

 i∑
j=0

|Lj |+ |Li+1| − 1

 ≥ µ2
0

4

i+1∑
j=0

|ULj |
 .

Case 2.2. Now we consider every ULj , i+ 2 ≤ j ≤ k, that we did not account for

in Case 2.1. Any set ULj that was not considered in Case 2.1 has size less than
or equal to 2|Lj |/3 by the choice of i in Case 2.1. Thus the neighborhood of
each ULj in Lj , i < j ≤ k, has size at least µ0|ULj |, and so it accounts for the

node expansion of ULj .

It follows from Cases 1 and 2 that U has at least (µ2
0|U |)/8 = µ|U | neighbors

outside of U in G.
We group the sets Ri’s and Li’s into L and R, groups of k/2 consecutive sets, and

M, a group of k+1 consecutive sets (note that we have 2k+1 distinct sets). Let L =
{L0, L1, . . . , Lk/2−1}, R = {R0, R1, . . . , Rk/2−1}, and M = {Lk/2, Lk/2+1, . . . , Lk−1,
Lk (= Rk), Rk−1, . . . , Rk/2}. Our choice for L, M, and R is such that the number of
sets in L is close to half the number of sets in M.

4.1. It may be expensive to locally balance G. We give an initial distri-
bution of tokens on G that has global imbalance of Θ((d logn)/µ). Then we show
that the multiport algorithm will take Ω(

√
n) steps to locally balance G to within 2d

tokens. Suppose we have the following initial distribution of tokens on G: For every
node z inR, w(z) = m+1, where m is an integer such that m ≥ 2kd; for all z in Ri, Ri
inM, let w(z) = m−2(i−k/2)d; for all z in Li, Li inM, let w(z) = m−2(3k/2−i)d;
for all z in Li, Li in L, let w(z) = m− 2(i+ k/2 + 1)d. Then w is globally balanced
to within Θ(dk) = Θ((d logn)/µ) tokens, but it is not locally balanced to within 2d
tokens, since w(v)− w(u) = (k + 2)d+ 1 ≥ 2d+ 1. See Figure 4.1.

We will maintain the invariant that at any step of the multiport algorithm, every
node in Li (resp., Ri) has the same number of tokens for all 0 ≤ i ≤ k. The following
lemma shows that this invariant holds.

Lemma 4.2. Suppose every node in Li (resp., Ri) had the same number of tokens
at the start of the multiport algorithm for all 0 ≤ i ≤ k. Then every node in Li (resp.,
Ri) has the same number of tokens at any step of the algorithm for all 0 ≤ i ≤ k.

Proof. We prove this lemma using induction, and without loss of generality, we
will prove it for the sets Li only. Suppose that every node in Li had the same number
of tokens at time step t − 1. A node x in Li sends a token to one of its neighbors y
in Li+1 only if it has at least 2d + 1 more tokens than y. Thus if at time t, x sends
a token to some y in Li+1, then it sends a token to all of its neighbors in Li+1, since
all of them had the same number of tokens at time t − 1. Note that x has at least
2d+ 1 tokens and x has at most d neighbors. Hence at time t, every edge between Li
and Li+1 is traversed by a token. Since every node in Li+1 is adjacent to the same
number of nodes in Li, they all receive the same number of tokens from Li. We can
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use a similar argument for tokens that move from Li to Li−1. For i = k, consider
only tokens moving from Lk (= Rk) to Lk−1 (and Rk−1). No token moves between
any two nodes in Li, since all nodes in Li had the same number of tokens at time
t− 1 (thus we can ignore the edges inside each set Li and Ri).

Now we prove the main theorem in this section for the multiport model.

Theorem 4.3. The multiport algorithm may take Ω(
√
n) steps to locally balance

G, even if G is globally balanced to within Θ((d logn)/µ) tokens initially.

Proof. Assume we have a initial token distribution on G as defined above. The
number of nodes in R, as well as in L, is proportional to |Rk/2−1| = (1 + µ0)k/2−1 =

(1 +µ0)
logn

2 log(1+µ)
−1 >

√
n/(1 +µ0) >

√
n/2. We claim that in order for G to be locally

balanced to within 2d tokens, we need to move at least
√
n/2 tokens from R to L

across edge e. Since at most one token at a time can traverse e, this will require time
Ω(
√
n). Our proof proceeds as follows.

(1) Since every node in Rj (resp., Lj) for 0 ≤ j ≤ k/2−1 is identical with respect
to both the number of tokens it has (by Lemma 4.2) and the number of neighbors it
sees in Rj−1 and Rj+1 (resp., Lj−1 and Lj+1), we observe that the tokens in G flow as
follows. Tokens will be sent from v to u across edge e until u has 2d+ 1 more tokens
than a node in L1. Then, every node in L1 receives a token from u. This process
continues until the nodes in L1 each have at least 2d + 1 more tokens than a node
in L2. Then every node in L1 will send a token to each of its neighbors in L2 (by
Lemma 4.2, every node in L2 receives the same number of tokens from the nodes in
L1). Continuing in this fashion, the flow of tokens in L will proceed only from left to
right, i.e., tokens never move from Li to Li−1, or inside Li, for all Li in L. In parallel,
as the number of tokens in v gets small, the nodes in R1 will all send a token to v.
When the nodes in R1 have each sent 2d+ 1 tokens to v, the nodes in R2 will all send
a token to each of its neighbors in R1, etc. Thus, as in L, the tokens also flow only
from left to right in R (i.e., tokens never move from Ri to Ri+1, or inside Ri, for all
Ri in R). Thus, no token ever moves from R to M or from M to L.

(2) Now we show that only after
√
n/2 steps have elapsed can we have (i) w(x)−

w(y) ≤ 2d for all x in Li for all y in Li+1 for all Li in L, i.e., L is locally balanced,
and (ii) w(u) > m − (k + 2)d. Suppose we reach such a configuration at some time
t. Then every node in L has at least one more token than it had initially (since
w(u) = m − (k + 2)d and w(x) − w(y) = 2d for all x in Li, y in Li+1, and Li in L,
initially). That is, we have at least |L| ≥ √n/2 “extra” tokens in L at time t, all of
which have reached L by traversing e from v to u, since no token moves from M to
L. Hence t ≥ √n/2.

(3) We also show that only after
√
n/2 steps have elapsed can we have (i) w(y)−

w(x) ≤ 2d for all x in Ri for all y in Ri+1 for all Ri inR, i.e., R is locally balanced, and
(ii) w(v) ≤ m − kd. A counting argument (similar to the one above) on the number
of tokens in R and the fact that no token is ever sent from R to M is sufficient to
show this.

From (2) and (3), we conclude that on each of the first
√
n/2 steps the following

holds: Either w(u) ≤ m − (k + 2)d and w(v) > m − kd, and so v sends a token to
u, or the subnetwork induced by L ∪ R is not 2d-locally balanced. Thus G is not
locally balanced before the first

√
n/2 steps. Hence the algorithm takes Ω(

√
n) time

to locally balance G.

A similar result holds for the single-port model. Assume we have the following
initial distribution of tokens: for every node z in R, w(z) = m + 1, where m is an
integer such that m ≥ k; for all z in Ri, Ri inM, let w(z) = m+k/2−i; for all z in Li,
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Li inM, let w(z) = m−(3k/2−i); for all z in Li, Li in L, let w(z) = m−(i+k/2+1).

The arguments used in the proof of Theorem 4.3 can be easily modified to hold
for the single-port model with the initial distribution of tokens defined above, since
the lower bound on the number of steps required to reach a locally balanced state is
given only in terms of how many tokens traverse the edge e. Lemma 4.2, which is used
to show that no token moves fromM to L without traversing edge e, no longer holds
in the single-port model. Instead, we prove Lemma 4.4, which implies that no token
moves fromM to L without traversing edge e, as stated in Corollary 4.5. Recall that
in the single-port algorithm, a token moves from node x to node y at some step only
if edge (x, y) is selected to be in the matching, and x has at least two more tokens
than y, at that step.

We first prove Lemma 4.4, from which we derive Corollary 4.5. Let M denote
the set of tokens in M either that were initially in M or that moved from R to M
without using the edge e (i.e., tokens that moved from R to M through some node
in Rk/2) at any step of the single-port algorithm. Without loss of generality, assume
that if a node inM sends a token at step t of the algorithm, it will send a token that
is not in M if it has one for all t.

Lemma 4.4. At any step of the single-port algorithm for any node x in M, the
number of tokens on x that belong to M is at most the total number of tokens on x
initially.

Proof. By definition, a token in M is either a token that was in M initially or
a token that moved from R to M through some node in Rk/2. Suppose, for the
sake of contradiction, that at step t, a node x in M has one more token in M than
it had initially. Assume x had b tokens initially. There exists a sequence of nodes
x = x1, . . . , xp such that (i) xi is adjacent to xi+1 in G, (ii) xi had at least b+ i tokens
at time ti, (iii) tp < · · · < t1 = t, and (iv) xp is in Rk/2 and xi, i 6= p, is not in Rk/2.
There are two cases to consider.

(1) If no xi is in L (i.e., every node xi is in M), then let q be the distance in M
from x to xp. Thus xp has at least b+p ≥ b+ q+1 = m+1 tokens at time tp. But no
node in Rk/2 can have m+ 1 tokens, since m+ 1 is the maximum number of tokens
in G initially, and no node in Rk/2 had that many tokens initially.

(2) Otherwise, let xj (resp., xj′) be the first (resp., last) node in the sequence
that is not in M. Then xj−1 and xj′+1 belong to Lk/2. Let q be the distance from v
to xj−1 in M. Then xj′+1 has at least b+ p ≥ b+ q + 2 ≥ (m− k) + q + 1 tokens at
step tj′+1. Thus xp has at least b+ q + k + 2 ≥ m+ q + 1 ≥ m+ 1 tokens at step tp,
a contradiction (see item (1)).

Corollary 4.5. No token initially in M∪R ever moves from M to L without
traversing edge e.

Proof. By Lemma 4.4, no node x in Lk/2 will ever have more tokens in M than
it had initially. Since the number of tokens on x at the beginning of the algorithm,
m− k, is minimal (over the entire network), it follows that x will have exactly m− k
tokens that belong to M at any step of the algorithm. Thus x will never send a token
that belongs to M to any other node in G. Since a token can move fromM to L only
through some node in Lk/2, the corollary follows.

Any edge is selected independently with probability O(1/d) at each iteration of
the single-port algorithm. Thus an edge e is selected, on average, an O(1/d) fraction
of the time. Hence, we can show that it will take Ω(d

√
n) expected time for G to be

locally balanced to within one token in the single-port model, even if initially G is
globally balanced to within O((logn)/µ) tokens, as stated in the theorem below.
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Fig. 4.2. The initial distribution of tokens on G for the second case.

Theorem 4.6. The single-port algorithm may take Ω(d
√
n) expected number of

steps to locally balance G to within one token, even if G is globally balanced to within
O((logn)/µ) tokens initially.

4.2. The single-port algorithm may diverge from an almost locally bal-
anced state. In this section we consider the single-port model only. Suppose we
have the following distribution of tokens on G: for all z in Rk/2−1, let w(z) = m+ 1
(where m is an integer such that m ≥ k), and for all z in Ri, i ≤ k/2− 2 (note that
Ri ∈ R), let w(z) = m− (k/2− i− 1); for all z in Rk/2, let w(z) = m− 1; for all z in
Ri, i ≥ k/2 + 1 (note that Ri ∈ M), let w(z) = m − (i − k/2); for all z in Li, Li in
M, let w(z) = m− (3k/2− i); for all z in Li, Li in L, let w(z) = m− (k/2 + i). Thus
w is globally balanced to within O((logn)/µ) tokens but it is not locally balanced to
within one token, since w(x)−w(y) = 2, for any x in Rk/2−1 and y in Rk/2 ∪Rk/2−2.
See Figure 4.2.

The intuition for this case is that if all tokens move in the “right direction”
initially, we reach a locally balanced state in a single time step. Otherwise, if a large
number of tokens move in the “wrong direction” in the first step, it will take many
steps until we reach such a state. If every node in Rk/2−1 is matched with some node
in Rk/2 (we can construct G such that every node in Rk/2−1 has a distinct neighbor in
Rk/2), G reaches local balance in a single time step. On the other hand, if some tokens
move across a matching between the nodes in Rk/2−1 and Rk/2−2, then these tokens
will continue moving “down” (nondecreasing indices of Ri) and will never move “up.”
The expected size of such a matching will be Ω(|Rk/2−1|/d) (each node in Rk/2−1

has d/(2(2 + µ0)) ≥ d/5 neighbors in Rk/2−2). Using an analysis similar to that of
section 4.1 for the single-port model, we see that no token that was initially inM∪R
moves from M to L without traversing edge e and that either w(v) > m − k/2 + 1
and w(u) ≤ m − k/2 or L ∪ R is not locally balanced for each of the Ω(|Rk/2−1|/d)
initial steps. Thus, once any of the tokens that moved from Rk/2−1 to Rk/2−2 in the
first step reaches v, it will eventually traverse e onto u.

Hence, eventually all tokens that moved from Rk/2−1 to Rk/2−2 in the initial step
will reach u. Since |Rk/2−1| ≥ µ

√
n/((1 + µ0)2) and 1 < (1 + µ0)2 < 2, the expected

number of edges between nodes in Rk/2−1 and nodes in Rk/2−2 in a selected matching
is Ω(|Rk/2−1|/d) = Ω(µ

√
n/d). The expected time for edge e to be in a selected

matching is at least d. Thus the expected time for G to be locally balanced to within
one token is Ω(µ

√
n). This result is stated in the following theorem.
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Theorem 4.7. There exists an initial distribution of tokens from which the net-
work G can be locally balanced to within one token in one step, but for which the
expected number of steps required by the single-port algorithm to locally balance G to
within one token is Ω(µ

√
n).

4.3. Convergence to a locally balanced state. We now prove that if the
graph G is globally balanced to within ∆ tokens, in O(n∆2/d) subsequent steps the
multiport algorithm locally balances G to within 2d tokens. Define the potential Φ
of the network as

∑
v∈V (w(v) − ρ)2. If the network is globally balanced to within

∆ tokens, then Φ = O(n∆2). At any step, if there exists an edge (u, v) such that
|w(u)−w(v)| ≥ 2d+1, then a token is transmitted along (u, v) resulting in a potential
drop of at least d. Thus, within O(n∆2/d) steps the network is globally balanced.
Similarly, it is not difficult to show that if the graph G is globally balanced to within ∆
tokens, then the single-port algorithm locally balances to within one token in O(nd∆2)
subsequent steps with high probability, since a token transmitted along an edge results
in a potential drop of at least one and an edge is selected with probability at least
1/(8d).

5. Extension to dynamic and asynchronous networks. In this section, we
extend our results of section 3.2 for the multiport model to dynamic and asynchronous
networks. We first prove that a variant of the local multiport algorithm is optimal on
dynamic synchronous networks in the same sense as for static synchronous networks.
We then use a result of [2] that relates the dynamic synchronous and asynchronous
models to extend our results to asynchronous networks.

In the dynamic synchronous model, the edges of the network may fail or succeed
dynamically. An edge e ∈ E is live during step t if e can transmit a message in each
direction during step t. We assume that in each step each node knows which of its
adjacent edges are live. The local load balancing algorithm for static synchronous
networks can be modified to work on dynamic synchronous networks. The algorithm
presented here is essentially the same as in [2].

Since edges may fail dynamically, a node u may have no knowledge of the height
of a neighboring node v and hence may be unable to decide whether to send a token
to v. In our algorithm, which we call DS, every node u maintains an estimate eu(v)
of the number of tokens at v for every neighbor v of u. (The value of eu(v) at the start
of the algorithm is arbitrary.) In every step of the algorithm, each node u performs
the following operations:

(1) For each live neighbor v of u, if w(u) − eu(v) > 12d, u sends a message
consisting of w(u) and a token; otherwise, u sends a message consisting only of w(u).
Next, w(u) is decreased by the number of tokens sent.

(2) For each message received from a live neighbor v, eu(v) is updated according
to the message, and if the message contains a token, w(u) is increased by one.

Unlike the algorithm for static networks, the above algorithm may (temporarily)
worsen the imbalance since a node may have an old estimate of the height of one of its
neighbors. Two anomalies may occur while executing DS: (i) a token sent by u to v
may gain height as it is possible for w(u)−eu(v) to be greater than 12d even if w(u) is
at most w(v), and (ii) node u may not send a token to v as it is possible for w(u)−eu(v)
to be at most 12d even if w(u) − w(v) is much larger than 12d. Consequently, the
analysis for dynamic networks is more difficult than for static networks. We employ
a more complicated amortized analysis to account for the above anomalies.

For every integer i, let Si denote the set of nodes that have at least ρ−12d+24id
and at most ρ+ 12d− 1 + 24id tokens. Consider T steps of DS. We assume without
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loss of generality that |S>0| ≤ n/2 at the start of at least T/2 steps. As shown in
section 2, there exists an index j in [1, 2dlog(1+α/(2d)) ne] that is good in at least half
of those steps in which |S>0| ≤ n/2. (Recall that index i is good if |Si| ≤ α|S>i|/2d.)
If index j is good at the start of step t, we call t a good step. For any token p, let
ht(p) denote the height of p after step t, t > 0. For convenience, we denote the height
of p at the start of DS by h0(p). Similarly, for t ≥ 0, we define ht(u) for every node
u and eut (v) for every edge (u, v).

With every token at height h, we associate a potential of φ(h), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ 24jd− 11d,
(1 + ν)x otherwise,

where ν = α/(cd2) and c > 0 is a constant to be specified later. Let Φt denote the
total potential of the network after step t. Let Ψt denote the potential drop during
step t.

We analyze DS by means of an amortized analysis over the steps of the algo-
rithm. Let Et be the set {(u, v) : (u, v) is live during step t, u ∈ S>j , and ht−1(u)−
ht−1(v) ≥ 24d}. For every step t, we assign an amortized potential drop of

Ψ̂t =
1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

(φ(ht−1(u)− d)− φ(ht−1(v) + d)).

The definition of Ψ̂t is analogous to the amount of potential drop that we use in step t
in the argument of section 3.2 for the static case. By modifying that argument slightly
and choosing appropriate values for the constants c and ε, we show the following
lemma.

Lemma 5.1. If the live edges of G have an edge expansion of α during every step
of DS, then for every good step t we have Ψ̂t ≥ εν2d2Φt−1, where ε is an appropriately
chosen constant.

Proof (sketch). Let Mi denote the set of live edges between nodes in S<i and
nodes in S>i. Let mi = |Mi|. For any node u, let g(u) represent the group to which
u belongs prior to step t. We now place a lower bound on Ψ̂t which is analogous to
that on Ψ in Lemma 3.6 of section 3.2. By the definition of Ψ̂t, we have

Ψ̂t =
1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

(φ(ht−1(u)− d)− φ(ht−1(v) + d))

≥ 1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

∑
g(v)<i<g(u)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

=
1

50

∑
i≥j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

=
1

50

∑
i>j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

+
1

50

∑
(u,v)∈Mj

ht−1(u)>ht−1(v)

φ(24(j + 1)d− 13d)
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≥ 22

50

∑
i>j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

νd(1 + ν)24id−11d +
1

50

∑
(u,v)∈Mj

ht−1(u)>ht−1(v)

(1 + ν)24jd+11d

≥ 22

50

∑
i>j

miνd(1 + ν)24id−11d +
1

50
mj(1 + ν)24jd+11d.

(For the second equation, note that 24id−13d ≤ 24(i−1)d+13d. Therefore, φ(24id−
13d) ≤ φ(24(i−1)d+13d). The second equation now follows since the sum telescopes.
The third equation is obtained by interchanging the sums and noting that φ(x) is
zero for x ≤ 24jd − 11d. The fourth equation is obtained by partitioning the set M
into subsets M \Mj and Mj . The fifth equation uses the following calculations: (i)
φ(24id+ 11d)− φ(24id− 11d) ≥ ((1 + ν)22d − 1)(1 + ν)24id−11d ≥ 22d(1 + ν)24id−11d,
(ii) φ(24jd + 11d) = (1 + ν)24jd+11d, and (iii) φ(24jd − 11d) = 0. The last equation
follows from the definition of mi.)

We next establish claims similar to Lemma 3.7 and Corollary 3.8 of section 3.2
by modifying the constants in the proofs. Thus we have Ψ̂t ≥ εν2d2Φt−1 for an
appropriately chosen constant ε.

The following lemma relates the amortized potential drops to the actual potential
drops.

Lemma 5.2. For any initial load distribution and any step t′ > 0, we have

∑
t≤t′

Ψt ≥
∑
t≤t′

Ψ̂t

− 2Φ0 − n2φ(24jd).(5.1)

In order to prove Lemma 5.2, we need to address two issues that arise in the
dynamic setting: (i) potential gains, i.e., when a token gains height, and (ii) the lack
of a potential drop across edges that join nodes differing by at least 24d tokens. We
show that for any of the above events to occur, “many” tokens should have lost height
in previous steps. We use a part of this prior potential drop to account for (i) and
(ii). At a high level, our proof follows the lines of Lemma 3 of [2]. However, since
the potential functions involved are different, the two proofs differ considerably in the
details. We have included a complete proof of Lemma 5.2 in Appendix B.

The main result follows from Lemmas 5.1 and 5.2. We first show that within
O(1/(εν2d2)) steps, there is a step when the actual potential of the network either
decreases by a factor of 2 or falls below a threshold value.

Lemma 5.3. Let t be any integer such that at least 7/(εν2d2) of the first t steps
are good. There exists t′ ≤ t such that Φt′ ≤ max{Φ0/2, n

2φ(24jd)}.
Proof. If Φ0 ≤ n2φ(24jd), then the claim is proved for t = 0. For the remainder

of the proof, we assume that Φ0 ≥ n2φ(24jd). If Φt′ ≤ Φ0/2 for any t′ < t, the claim
is proved. Otherwise, for all t′ < t, we have Φt′ > Φ0/2. In this case, we obtain

Φt = Φ0 −
∑
t′<t

Ψt′

≤ 3Φ0 + n2φ(24jd)−
∑
t′<t

Ψ̂t′

≤ 4Φ0 −
∑
t′<t

t′good

(εν2d2)Φt′

≤ Φ0/2.
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(To obtain the second equation, we invoke Lemma 5.2. For the third equation, we
invoke Lemma 5.1 and use the inequalities Φ0 ≥ n2φ(24jd) and Ψ̂t′ ≥ 0 for every t′.
For the last equation, we use the fact that at least 7/(εν2d2) of the t steps are good
and the equation Φt′ > Φ0/2 for every t′ < t.)

Theorem 5.4. For an arbitrary network G with n nodes, degree d, and initial
imbalance ∆, if the live edges at every step t of G have edge expansion α, then the dy-
namic synchronous multiport algorithm load balances to within O(d2(logn)/α) tokens
in O(∆/α) steps.

Proof. We first place an upper bound on the number t of steps such that the height
of each node at the end of step t is O(d2(logn)/α2). If ∆ is at most d2(logn)/α2,
then a trivial bound is 0.

We now consider the case when ∆ is at least d2(logn)/α2. By repeatedly invoking
Lemma 5.3, we obtain that within T = d(7/(εν2d2))edlog Φ0e good steps, there exists
a step after which the potential of the network is at most n2φ(24jd). (Note that the
fact that Lemma 5.2 holds for arbitrary initial values of the estimates, the eu(v)’s,
is crucial here.) Since at least T/4 of the first T steps are good, there exists t ≤
4d(7/(εν2d2))edlog Φ0e such that Φt ≤ n2φ(24jd). Since Φ0 ≤ n(1 + ν)(∆+1)/ν, we
have log Φ0 ≤ logn+ (∆ + 1) log(1 +ν)− log ν. Since ν = α/(cd2) and log(1 +ν) < ν,
we have t = O((∆/α) + d2(logn)/α2) = O(∆/α).

Let h be the maximum height of any node after step t. We thus have

φ(h) ≤ Φt

≤ n2(1 + ν)24jd.

Therefore, if φ(h) > 0, then h ≤ log(1+ν)(n
2(1 + ν)24jd). If φ(h) = 0, then h ≤

24jd− 11d. In either case,

h ≤ 24jd+ (2 logn)/ log(1 + ν)

≤ 24jd+ (4 logn)/ν

= O((d2 logn)/α).

(The right-hand side of the first equation is an expansion of log(1+ν)(n
2(1 + ν)24jd).

The second equation holds since log(1 + ν) < ν/2 for c appropriately large. The final
inequality follows from the relations ν = α/(cd2) and j = O((d logn)/α).)

Thus, at the end of step t, no node has more than a = ρ + h tokens. We now
prove by contradiction that for every step after step t, no node has more than a+ d
tokens. Let t′ be the first step after step t such that there exists some node u with
more than a+ d tokens. (If no such t′ exists, the claim holds trivially.) Of the d+ 1
highest tokens received by u after step t, at least 2 tokens (say p and q) were last sent
by the same neighbor v of u. Without loss of generality, we assume that p arrived at
u before q. Let t1 be the step when p was last sent by v to u. Therefore, we have
evt1(u) ≥ ht1(p)− d ≥ a− d. Hence q can be sent to u only when v has height at least
a+ 11d, which contradicts our choice of t′.

We have shown that after O(∆/α) steps, no node ever has more than ρ +
O((d2 logn)/α) tokens. An easy averaging argument shows that there exists k =
O((d logn)/α) such that after every step t′ ≥ t, |S<−k| ≤ n/2. By defining an appro-
priate potential function for tokens with heights below the average and repeating the
analysis done for S>j , we show that in another O(∆/α) steps, all nodes have more
than ρ−O(d2(logn)/α) tokens.
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As suggested in [2], a simple variant of DS can be defined for asynchronous
networks. As shown in [2], the analysis for the dynamic synchronous case can be used
for asynchronous networks to yield the same time bounds. Hence, the multiport local
load balancing algorithm balances to within O(d2 logn/α) tokens in time O(∆/α) on
asynchronous networks.

6. Tight bounds on off-line load balancing. In this section, we analyze
the load balancing problem in the off-line setting for both single-port and multiport
models. We derive nearly tight bounds on the minimum number of steps required
to balance on arbitrary networks in terms of the node and edge expansion of the
networks. We assume that the network is synchronous.

We first consider the network G = (V,E) under the single-port model. For any
subset X of V , let X denote V \X, m(X) denote the number of edges in a maximum
matching between X and X, A(X) denote the set {v ∈ X : ∃x ∈ X such that (x, v) ∈
E}, and B(X) denote the set {x ∈ X : ∃y ∈ A(X) such that (x, y) ∈ E}. For subsets
X and Y of V , let M(X,Y ) denote the set of edges with one endpoint in X and the
other in Y .

Lemma 6.1. For any network G = (V,E) with node expansion µ and any subset
X of V , we have m(X) ≤ µmin{|X|, |X|}/(1 +µ). Moreover, for any subset X of V ,
m(X ∪A(X)) ≤ |A(X)|.

Proof. Without loss of generality, assume that |X| ≤ |X|. Consider the bipar-
tite graph H = (B(X), A(X),M(X,X)). A maximum matching in H is equal to
a maximum flow in the graph I = (B(X) ∪ A(X) ∪ {s, t},M(X,X) ∪ {(s, x) : x ∈
B(X)} ∪ {(x, t) : x ∈ A(X)}) from source s to sink t. (All of the edges of I have unit
capacity.) We will show that every cut C of I separating s and t is of cardinality at
least µ|X|/(1 + µ).

Consider any cut C = (S, T ) with s ∈ S and t ∈ T . The set of edges in C is
M(S, T ). Let Y = T ∩ B(X) and Z = T ∩ A(X). The capacity of C, given by
|M(S, T )|, can be lower bounded as follows.

|M(S, T )| = |Y |+ |M(Y,A(X) \ Z)|+ |M(B(X) \ Y, Z)|+ |A(X) \ Z|
≥ |Y |+ |M(B(X) \ Y, Z)|+ |A(X) \ Z|
≥ |A(X \ Y )|
≥ µ|X \ Y |
= µ(|X| − |Y |)
≥ µ|X|/(1 + µ).

(For the third equation, see Figure 6.1. Three subsets of nodes contribute to the set
A(X \ Y ): (i) the set of nodes in Y that have an edge to a node in X \ Y , (ii) the
set of nodes in Z that have an edge to a node in X \ Y , and (iii) the set of nodes in
A(X) \Z that have an edge to a node in X \Y . The size of the three sets is bounded
by |Y |, |M(B(X) \ Y, Z)|, and |A(X) \ Z|, respectively. The fourth equation follows
from the definition of A(X \ Y ). The fifth equation holds since Y is a subset of X.
The last equation holds since |Y | ≤ |M(S, T )|.)

For the second part of the lemma, we note that since all of the neighbors of X
are in A(X), any node in X ∪A(X) that connects to some node outside of X ∪A(X)
is in A(X). Therefore, m(X ∪A(X)) ≤ |A(X)|.

Theorem 1 of [29] obtains tight bounds on the off-line complexity of load bal-
ancing in terms of the function m. We restate the theorem using our notation and
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X

B(X)

A(X)

Y

Z

Fig. 6.1. The sets X, Y , Z, A(X), and B(X) in the proof of Lemma 6.1.

terminology. Before stating the theorem, we need one additional notation. For any
subset X of nodes of any network, let I(X) denote the number of tokens held by
nodes in X in the initial distribution.

Theorem 6.2 (see [29]). Consider a network G = (V,E) in the single-port model.
The network G can be balanced in at most max∅6⊆X 6⊆V d(I(X) − ρ|X|)/m(X)e steps
so that every node has at most dρe+ 1 tokens. Moreover, any algorithm takes at least
max∅6⊆X 6⊆V d(I(X)−ρ|X|)/m(X)e steps to balance the network so that every node has
at most dρe tokens.

Theorem 6.2 and Lemma 6.1 imply the following result.

Lemma 6.3. Assume the single-port model. Any network G with node expansion
µ and initial imbalance ∆ can be balanced in at most d∆(1+µ)/µe steps so that every
node has at most dρe + 1 tokens. Moreover, there exist a network G and an initial
load distribution with imbalance ∆ such that any algorithm takes at least d∆(1+µ)/µe
steps to balance G such that every node has at most dρe tokens.

Proof. If I(X) is the total number of tokens belonging to nodes in X in the
initial distribution, then we have −∆|X| ≤ I(X)− ρ|X| ≤ ∆|X| for all X. Moreover,
|I(X)−ρ|X|| = |I(X)−ρ|X||. Therefore, for all X, |I(X)−ρ|X|| = ∆ min{|X|, |X|}.
By Lemma 6.1, m(X) is at least µmin{|X|, |X|}/(1 + µ) for all X. Thus, the first
claim of Theorem 6.2 establishes the first claim of the desired lemma.

For the second claim of the lemma, given any µ, we construct the following net-
work G = (V,E) with node expansion µ. The node set V is partitioned into three
sets X, Y , and Z such that (i) |Y | = µ|X| and (ii) |Z| = |X|(1 + µ)2/(1− µ). Let n
and x denote |V | and |X|, respectively. Thus, n equals x(1 + µ+ (1 + µ)2/(1− µ)) =
2x(1 + µ)/(1 − µ). The edge set E is the union of the sets X × X, X × Y , Y × Y ,
Y × Z, and Z × Z.

We now show that the node expansion of G is µ. Consider any nonempty subset
U of V of size at most n/2, and let X ′, Y ′, and Z ′ denote U ∩X, U ∩ Y , and U ∩Z,
respectively. Let n(U) denote the number of neighbors of U that lie outside of U . We
need to show that n(U) is at least µ|U |.

We consider two cases: (i) Y ′ and Z ′ are both empty, and (ii) Y ′ is nonempty or
Z ′ is nonempty. In the first case, U = X ′. Therefore, n(U) ≥ |Y | = µx ≥ µ|U |. In
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the second case, we have

n(U) ≥ |Z| − |Z ′|
≥ |Z| − |U |
≥ x((1 + µ)2/(1− µ)− (1 + µ)/(1− µ))

= xµ(1 + µ)/(1− µ)

≥ µ|U |.
(The second equation holds since Z′ is a subset of U . For the third equation, note
that |U | ≤ n/2 = x(1 + µ)/(1− µ). The last equation follows from the upper bound
of x(1 + µ)/(1− µ) on |U |.)

We now apply the second claim of Lemma 6.1 to the subset X. Since A(X) = Y ,
m(X ∪ Y ) = µx = µ|X ∪ Y |/(1 + µ). Given any ∆, consider the initial token
distribution in which each node in X ∪ Y has ρ + ∆ tokens and each node in Z has
ρ−∆(1−µ)/(1+µ) tokens, where ρ is any integer that is at least ∆(1−µ)/(1+µ). (Note
that the average number of tokens is ρ.) By applying the second claim of Theorem 6.2,
we obtain that the number of steps to balance G so that each node has at most ρ
tokens is at least (I(X∪Y )−ρ|X∪Y |)/m(X∪Y ) ≥ ∆|X∪Y |/m(X∪Y ) ≥ ∆(1+µ)/µ.
Since the number of steps is an integer, the desired claim follows.

By using the techniques of [29], we can modify the proof of Lemma 6.3 to show
that any network G with node expansion µ and initial imbalance ∆ can be globally
balanced to within 3 tokens in at most 2d∆(1 + µ)/µe steps. The extra factor of 2
is required because even after balancing the network so that each node has at most
dρe+1 tokens, there may exist a node with considerably fewer than ρ tokens. It takes
an additional d∆(1 + µ)/µe steps to bring the network to a state in which the global
imbalance is at most 3.

Lemma 6.3 implies that the time bound achieved by the single-port algorithm (see
Theorems 3.1 and 3.9) is not optimal for all networks. An example of a network for
which the single-port algorithm is not optimal is the hypercube, which has maximum
degree log n, edge expansion 1, and node expansion Θ(1/

√
logn). The local algorithm

balances in Ω(∆ logn) time, while there exists an O(∆
√

logn + log2 n) time load
balancing algorithm for the hypercube [34] which is optimal for ∆ sufficiently large.
For the class of constant-degree networks, however, the time taken by the single-port
algorithm to reduce the global imbalance to O(logn/µ) (see Theorem 3.9) is within a
constant factor of the time taken by any algorithm to completely balance the network
(see Lemma 6.3).

The proofs of Theorem 1 of [29] and Lemma 6.3 can be modified to establish the
following result for the multiport model.

Lemma 6.4. Assume the multiport model. Any network G with edge expansion
α and initial imbalance ∆ can be balanced in at most d∆/αe steps so that every node
has at most dρe + d tokens. Moreover, for every network G, there exists an initial
load distribution with imbalance ∆ such that any algorithm takes at least d∆/αe steps
to balance G so that every node has at most dρe tokens.

Proof (sketch). We prove that there exists an off-line algorithm that balances

to within d tokens in at most T = max∅⊂X⊂V d |I(X)−ρ|X||
|M(X,X)| e steps. For all X ⊆ V ,

we have (i) |I(X) − ρ|X|| ≤ ∆ min{|X|, |X|} (see proof of Lemma 6.3), and (ii)
|M(X,X)| ≥ αmin{|X|, |X|}. It follows from (i) and (ii) that T ≤ d∆/αe.

We modify the proofs of Theorem 1 and Lemma 4 of [29] (where the single-port
model was assumed) to establish the desired claims for the multiport model. We
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transform the load balancing problem on G to a network flow problem on a directed
graph H = (V ′, E′), which is constructed as follows. Let Vi be {〈v, i〉 : v ∈ V },
0 ≤ i ≤ T . Let Ei be {(〈u, i〉, 〈v, i+ 1〉) : (u, v) ∈ E or u = v}, 0 ≤ i < T . We set V ′

to {s} ∪ ⋃0≤i≤T Vi ∪ {t} and E′ to {(s, 〈v, 0〉) : v ∈ V } ∪ ⋃0≤i<T Ei ∪ {(〈v, T 〉, t) :
v ∈ V }. For any v in V , the capacity of the edge (s, 〈v, 0〉) is w(v). For any (u, v) in
E, the capacity of any edge (〈u, i〉, 〈v, i + 1〉), 0 ≤ i < T , is 1. For any v in V , the
capacity of any edge (〈v, i〉, 〈v, i+ 1〉), 0 ≤ i < T , is ∞. For any v in V , the capacity
of the edge (〈v, T 〉, t) is dρe+ d.

We show that the value of the maximum integral flow in H is equal to the total
number of tokens N in V , from which it follows that there exists an off-line algorithm
that balances to within d tokens in T steps. Consider any cut C = (S, T ) of H
separating s ∈ S and t ∈ T . Let Si = S ∩ Vi and D(Si) = {v ∈ V : 〈v, i〉 ∈ Si}. If
S0 = ∅, or ST = VT , or there is an edge of infinite capacity, then the capacity of C
is at least N . Otherwise, the number of edges from Vi to Vi+1 that belong to the cut
is at least |M(D(Si), D(Si))| − d(|Si+1| − |Si|). Moreover, since there is no edge with
infinite capacity in C, D(Si) is a subset of D(Si+1). Thus the capacity of C is at least

I(D(V0) \D(S0)) +

(
T−1∑
i=0

(
|M(D(Si), D(Si))| − d(|Si+1| − |Si|)

))
+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) +

(
T−1∑
i=0

((I(D(Si))− ρ|Si|)/T − d(|Si+1| − |Si|))
)

+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) +

(
T−1∑
i=0

((I(D(S0))− ρ|ST |)/T − d(|ST | − |S0|))
)

+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) + I(D(S0))− ρ|ST |+ d|S0|+ dρe|ST |
≥ N.
(In the first equation, (i) I(D(V0) \D(S0)) is the capacity of the edges from s to V0

that belong to the cut, (ii) |M(D(Si), D(Si))| − d(|Si+1| − |Si|) is the capacity of the
edges from Vi to Vi+1 that belong to the cut, and (iii) (dρe + d)|ST | is the capacity
of the edges from ST to t that belong to the cut. The second equation follows from
the definition of T and the fact that |D(Si)| = |Si|. For the third equation, note that
D(S0) is a subset of D(Si) for all i and |ST | ≥ |Si| for all i. The fourth equation
holds since the sum of |Si+1| − |Si| telescopes. The final equation is obtained since
I(D(V0)) = N .) Since the capacity of the cut ({s}, V ′ \ {s}) equals N , the maximum
flow in H is N .

To prove the second part of the lemma, given any network G with a partition
(V1, V2) of its nodes such that |V1| ≤ n/2 and |M(V1, V2)| = α|V1|, we define an initial
load distribution with average ρ in which each node in V1 has ρ+ ∆ tokens and each
node in V2 has ρ − ∆|V1|/|V2| tokens. The desired claim holds since at least ∆|V1|
tokens need to leave the set V1.

Lemma 6.4 implies that the local multiport algorithm is asymptotically optimal
for all networks. As in the single-port case, we can modify the above proof to obtain
upper bounds on the off-line complexity of globally balancing a network. We can show
that any network G with edge expansion α and initial imbalance ∆ can be globally
balanced to within d+ 1 tokens in at most 2d∆/αe steps.

Appendix A. Some technical inequalities. Let ν equal α/(cd2). For the
following we set c large enough so that (1 + ν)12d ≤ 3/2. The function φ is defined in
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section 5.
Lemma A.1. For any integer x, if φ(x) > 0, then φ(x+ 12d) ≤ 3φ(x)/2.
Proof. Since φ(x) > 0, we have φ(x + 12d) = (1 + ν)12dφ(x) ≤ 3φ(x)/2. (Note

that if φ(x) = 0, then φ(x+ 12d) may not equal (1 + ν)12dφ(x).)
Lemma A.2. For any integer x we have

max{φ(24jd), φ(x− 12d)} ≥ 2φ(x)/3.

Proof. If φ(x− 12d) > 0, then 2φ(x)/3 ≤ φ(x− 12d) by Lemma A.1. Otherwise,
x−12d ≤ 24jd−11d, which implies that x ≤ 24jd+d. Therefore, φ(x) ≤ φ(24jd+d) ≤
φ(24jd)(1 + ν)d ≤ 3φ(24jd)/2.

Lemma A.3. For any integers x and y, if φ(x) > 0 and x − y ≥ 11d, then we
have φ(x)− φ(y) ≥ 2(φ(x+ 11d)− φ(y))/5.

Proof.

2(φ(x+ 11d)− φ(y))/5 = 2(φ(x+ 11d)− φ(x))/5

+2(φ(x)− φ(y))/5

≤ 2(1 + ν)11d(φ(x)− φ(x− 11d))/5

+2(φ(x)− φ(y))/5

≤ 2(1 + ν)11d(φ(x)− φ(y))/5

+2(φ(x)− φ(y))/5

≤ φ(x)− φ(y).

(In the second equation we use x− 11d ≥ y. In the last equation we use (1 + ν)11d ≤
3/2.)

Appendix B. Proof of Lemma 5.2. We define a notion of “goodness” of the
tokens. Initially, all tokens are unmarked. After any step t, for every token p that is
moved along an edge, p is marked good if ht−1(p)−ht(p) ≥ 6d; otherwise, p is marked
bad . The marking of tokens that do not move is unchanged.

Lemma B.1. For any two bad tokens p1 and p2 present at any node v at the
start of any step t, if p1 and p2 are last sent to v by the same neighbor u of v, then
|ht(p1)− ht(p2)| > 4d.

Proof. Let t1 (resp., t2) be the step during which p1 (resp., p2) is last sent to v.
Without loss of generality, we assume t1 < t2 < t. Thus we have ht(p1) < ht(p2).
Since u’s estimate of the number of tokens at v is updated in step t1, we have eut1(v) ≥
ρ+ht1(p1)−d. (Note that eut1(v) is u’s estimate of the number of tokens at v after step
t1.) Since p1 remains at v during the interval [t1, t2), we find that eut′(v) ≥ ρ+ht′(p1)−d
for every step t′ in [t1, t2). In particular, we have eut2−1(v) ≥ ρ+ht2−1(p1)−d. Since u
sends p2 to v in step t2, ht2−1(p2) ≥ ht2−1(u)−d ≥ eut2−1(v)−ρ+11d ≥ ht2−1(p1)+10d.
Since p2 is bad, we also have ht2(p2) > ht2−1(p2) − 6d ≥ ht2−1(p1) + 4d. Since
ht(p2) = ht2(p2) and ht(p1) = ht2−1(p1), the lemma follows.

Corollary B.2. At any time, for any node u and integer i > 0, there are at
most d bad tokens with heights in (i, i+ 4d].

Proof of Lemma 5.2. Consider an arbitrary step t of the algorithm. For every
token p transferred from u to v in step t, we assign some credit to every edge adjacent
to u or v. Specifically, if p is marked good after step t we assign an outgoing credit
of 9(φ(ht−1(p))− φ(ht(p)))/(20d) units to every edge adjacent to u and an incoming
credit of the same amount to every edge adjacent to v. If p is marked bad we assign
an outgoing credit of (φ(ht(p) + d)− φ(ht(p)))/(20d) + (φ(ht−1(p))− φ(ht−1(p)− d))
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units to every edge adjacent to u and an incoming credit of the same amount to
every edge adjacent to v. Also, for each edge (u, v), we assign an initial credit of
2 max{φ(24jd), φ(h0(u) − d) + φ(h0(v) − d)} units at the start of the analysis. The
total initial credit I is bounded as follows:

I ≤ 2

(
n

2

)
φ(24jd) +

∑
(u,v)∈E

2(φ(h0(u)− d) + φ(h0(v)− d))

≤ n2φ(24jd) +
∑
u∈V

∑
0≤`<d

2φ(h0(u)− `)

≤ n2φ(24jd) + 2Φ0.

(The first equation follows from the fact that the maximum of two quantities is at
most the sum of the particular quantities. We also note that each undirected edge
(u, v) appears at most once in the summation. For the second equation, we note that
each node has at most d edges. Hence for any node u, the term 2φ(h0(u)−d) appears
in at most d terms of the sum. We complete the derivation of the second equation by
observing that φ(h0(u)− `) is at least φ(h0(u)− d) for 0 ≤ ` < d. The third equation
is obtained by the fact that

∑
0≤`<d φ(h0(u)− `) is at most φ(u).) The above bound

on I corresponds to the negative term in (5.1).
We now show that by using the above accounting method we can account for

the amortized potential drop of (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50 units at step t
for every edge (u, v) ∈ Et. To accomplish this, for every live edge (u, v) ((u, v) not
necessarily in Et), we consider three cases: (i) a token p sent from u to v is marked
good, (ii) a token p sent from u to v is marked bad, (iii) no token is sent from u to v.

We first consider case (i). When a token p is marked good after being sent
along (u, v), we use the actual potential drop of p to pay for the amortized drop D1

associated with (u, v) as well as the total credit D2 assigned to the edges adjacent to
u or v due to the transfer of a good token.

D1 +D2 ≤ (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50 + 2d[9(φ(ht−1(p))− φ(ht(p)))]/(20d)

≤ (φ(ht−1(p))− φ(ht(p)))/50 + 9(φ(ht−1(p))− φ(ht(p)))/10

≤ φ(ht−1(p))− φ(ht(p)).

(The first term in the right-hand side of the first equation is the amortized potential
drop. The second term is an upper bound on D2, since the number of edges adjacent
to either u or v is at most 2d. The second equation follows from the fact that ht−1(p)
is at least ht−1(u)− d and ht(p) is at most ht(u) + d.)

We now consider case (ii). In this case we need to account for (1) if ht(p) >
ht−1(p), an amount equal to the potential increase of D1 = φ(ht(p))−φ(ht−1(p)) units,
and (2) a credit of at most (φ(ht(p) + d)− φ(ht(p)))/10 + (φ(ht−1(p))− φ(ht−1(p)−
d))/10 units. We pay for (φ(ht−1(p)) − φ(ht(p)))/10 units of the credit using the
potential change. The remainder of the credit we need to account for is at most the
sum of D2 = (φ(ht(p) + d)− φ(ht(p)))/10 and D3 = (φ(ht(p))− φ(ht−1(p)− d))/10.
(Note that this is true regardless of whether the potential of p decreases in step t.)

We have two subcases, depending on whether t is the first step in which (u, v)
is live (subcase (a)) or not (subcase (b)). In subcase (a), if h0(u) ≥ ht(p) − d,
the initial credit C0 associated with (u, v) is at least 2 max{φ(24jd), φ(ht(p) − 2d)}.
Since φ(ht(p) − 2d) ≥ φ(ht(p) − 12d), it follows from Lemma A.2 that 3C0/4 ≥
φ(ht(p)) ≥ D1. Since φ(ht(p) − 2d) ≥ φ(ht(p) − 11d), C0/4 ≥ φ(ht(p) + d)/3 ≥
φ(ht(p) + d)/10 + φ(ht(p))/10 ≥ D2 +D3. Therefore, we have C0 ≥ D1 +D2 +D3.
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We now consider subcase (a) under the assumption that h0(v) ≤ ht(p) − d. In
order to do the accounting, we use part of the incoming credit associated with the edge
(u, v) due to the set X of good tokens of v with heights in the interval (h0(v), ht(p)−d].
(Note that each token in X is marked and thus has contributed incoming credit to
all edges adjacent to v.) Since each token x in X is good, the height of the token
before the transfer to node v was at least ht(q) + 6d. Therefore, the incoming credit
assigned to (u, v) by a token x in X is at least 9(φ(ht(q)+6d)−φ(ht(q)))/(20d) units.
For each token x in X, we use cx = 8(φ(ht(q) + 6d) − φ(ht(q)))/(20d) units of this
incoming credit. Let C1 denote

∑
x∈X cx. We obtain the following lower bound C1.

By invoking Corollary B.2, we obtain

C1 ≥ 8

20d

∑
1≤i≤bht(p)−d−h0(v)

4d c

∑
1≤k≤3d

(φ(ht(p)− d− 4id+ k + 6d)

− φ(ht(p)− d− 4id+ k + d))

≥ 8

20d

∑
1≤k≤3d

∑
1≤i≤bht(p)−d−h0(v)

4d c
(φ(ht(p)− d− 4id+ k + 6d)

− φ(ht(p)− 4id+ k))

≥ 8

20d

∑
1≤k≤3d

(
φ(ht(p)− d− 4d+ k + 6d)

−φ(ht(p)− 4d

⌊
ht(p)− d− h0(v)

4d

⌋
+ k)

)
≥ 8

20d

∑
1≤k≤3d

(φ(ht(p) + d)− φ(h0(v) + 8d))

= 6(φ(ht(p) + d)− φ(h0(v) + 8d))/5.

(In the first equation we partition the interval (h0(v), ht(p)−d] into subintervals of 4d
consecutive integers starting from ht(p)−d. The last subinterval may have fewer than
4d integers; if so, we ignore the last subinterval in the sum. The second summation
in the first equation is a lower bound on the sum of cx over each good token x in
each subinterval. To obtain the second summation, we invoke Corollary B.2, which
implies that there are at least 3d good tokens in every subinterval of 4d tokens. The
second equation is obtained by interchanging the order of summation. For the third
equation, we use the fact that φ(ht(p)− d− 4(i− 1)d+ k + 6d) ≥ φ(ht(p)− 4id+ k)
and then note that the sum telescopes. For the fourth inequality, note that (i) the

index k is at least 0 and at most 3d, and (ii) ht(p)− 4dbht(p)−d−h0(v)
4d c ≤ h0(v) + 5d.)

Since p is marked bad after step t, we have ht(p) > ht−1(p)− 6d. Therefore,

C0 + C1 ≥ 2 max{φ(24jd), φ(h0(v)− d)}+ 6(φ(ht(p) + d)− φ(h0(v) + 8d))/5

≥ 6φ(ht(p) + d)/5

≥ φ(ht(p))− φ(ht−1(p)) + (φ(ht(p) + d)− φ(ht(p)))/10

+ (φ(ht(p))− φ(ht−1(p)− d))/10

≥ D1 +D2 +D3.

(The first equation states the lower bounds on C0 and C1 obtained above. For the
second equation, we invoke Lemma A.2 as follows: 2 max{φ(24jd), φ(h0(v) − d)} ≥
4φ(h0(v) + 11d)/3 ≥ 6φ(h0(v) + 8d)/5. The third equation is obtained from the
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following three observations: (i) φ(ht(p) + d) ≥ φ(ht(p))− φ(ht−1(p)), (ii) φ(ht(p) +
d)/10 ≥ (φ(ht(p)+d)−φ(ht(p)))/10, and (iii) φ(ht(p)+d)/10 ≥ (φ(ht(p))−φ(ht−1(p)−
d))/10.)

We use a similar argument as above to handle subcase (b), where t is not the first
step in which (u, v) is live. The set X is the set of good tokens of v with heights in the
interval (eut−1(v)−ρ, ht(p)−d]. Let cx and C1 be defined as in subcase (a). That is, cx
equals 8(φ(ht(x)+6d)−φ(ht(x)))/(20d) units of the incoming credit assigned to (u, v)
by a token x in X, and C1 equals

∑
x∈X cx. We will show that 11C1/12 ≥ D1 + D3

and C1/12 ≥ D2, and hence obtain that C1 ≥ D1 +D2 +D3.
We first show that 11C1/12 ≥ D1 +D3. If ht(p) ≤ ht−1(p)− d, then D1 and D3

are both nonpositive and hence the desired claim holds trivially. We now assume that
ht(p) > ht−1(p) − d. Let y denote eut−1(v) − ρ + 8d. We observe that since u sent a
token to v during step t, y = eut−1(v)−ρ+8d ≤ ht−1(u)−4d ≤ ht−1(p)−3d. Since p is
a bad token, we have y ≤ ht−1(p)− 3d < ht(p)− 2d. As in subcase (a), we divide the
interval (eut−1(v)− ρ, ht(p)− d] into subintervals consisting of 4d consecutive integers.
Note that eut−1(v)− ρ ≤ ht(p)− 11d and hence the number of subintervals is at least
1. We obtain the following lower bound on 11C1/12.

11C1/12 ≥ (11/12) · 6(φ(ht(p) + d)− φ(y))/5

≥ 11(φ(ht(p) + d)− φ(ht−1(p)− 2d))/10

≥ (φ(ht(p))− φ(ht−1(p))) + (φ(ht(p))− φ(ht−1(p)− d))/10

= D1 +D3.

(The first equation is obtained in the same manner as the upper bound on C1 in
subcase (a). While the interval considered in subcase (a) is (h0(v), ht(p) − d], we
consider here the interval (eut−1(v) − ρ, ht(p) − d] = [y − 8d, ht(p) − d]. Hence, the
term φ(h0(v) + 8d) obtained in the lower bound on C1 in subcase (a) is replaced by
φ(y) above. The second equation is obtained from the upper bound on y.)

We now show that C1/12 ≥ D2. Since a token is sent by u to v in step t,
eut−1(u) − ρ ≤ ht−1(u) − 12d ≤ ht−1(p) − 11d. Moreover, since p is a bad token,
ht−1(p) ≤ ht(p) − 6d. Therefore, eut−1(u) − ρ ≤ ht(p) − 5d. It follows that (ht(p) −
5d, ht(p) − d] is a subinterval of (eut−1(u) − ρ, ht(p) − d]. Hence, C1 can be lower
bounded by adding cx over all good tokens x whose height is in (ht(p)−5d, ht(p)−d].
By Corollary B.2, at least 3d of the tokens in [ht(p)−5d, ht(p)−d] are good. We thus
obtain

C1/12 ≥ (3d/12) · 8(φ(ht(p) + d)− φ(ht(p)− d))/(20d)

= (φ(ht(p) + d)− φ(ht(p)))/10

≥ D2.

(For the first equation, note that cx = 8(φ(ht(x)+6d)−φ(ht(x)))/(20d) ≥ 8(φ(ht(p)+
d)− φ(ht(p)− d))/(20d) for ht(x) in [ht(p)− 5d, ht(p)− d]. The last equation follows
from the definition of D2.)

To complete the proof for case (ii), we show that for any token x of v, any
incoming credit assigned by x to edge (u, v) that is used at step t for case (ii) is
not used again for case (ii). To prove this, we note that for any x in X, for every
further step t′ > t until x is transferred by u, we have ht′(x) ≥ eut′−1(v) − ρ. While
establishing case (ii) for step t, we use only the incoming credit assigned by tokens in
(eut′−1(v)− ρ, ht′(p)− d]. Hence the incoming credit assigned by x to edges adjacent
to u that is used at step t will never be used again.
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We need to consider case (iii) only under the assumption that (u, v) ∈ Et, i.e.,
(u, v) is live in step t. In this case we account for D = (φ(ht−1(u)− d)− φ(ht−1(v) +
d))/50 units of potential. Again we consider two subcases depending on whether t is
the last step in which (u, v) is live (subcase (a)) or not (subcase (b)). We first consider
subcase (a). If h0(u) ≥ ht−1(u)−12d, then we use C0 = 2 max{φ(24jd), φ(h0(u)−d)}
units of the initial credit associated with (u, v). Since ht−1(u)− d ≤ h0(u)− d+ 12d,
it follows from Lemma A.2 that C0 ≥ 4φ(ht−1(u)− d)/3 ≥ φ(ht−1(u)− d)/50 ≥ D.

We now consider subcase (a) of case (iii) under the assumption that h0(u) <
ht−1(u) − 12d. In addition to C0, we also use part of the incoming credit associated
with the set of tokens Y = {y : y is a token of u and h0(u) < ht(y) ≤ ht−1(u)}.
Specifically, for every token y in Y , we use (φ(ht(y) + d) − φ(ht(y)))/(20d) units of
incoming credit that is assigned to (u, v) by y. Note that since ht(y) > h0(u), token
y has moved and hence has assigned some incoming credit to (u, v). If y is good,
this credit is at least 9(φ(ht(y) + 6d) − φ(ht(y)))/(20d) units; otherwise, this credit
is at least (φ(ht(y) + d) − φ(ht(y)))/(20d). Moreover, if y is a good token, at most
8(φ(ht(y) + 6d) − φ(ht(y)))/(20d) units of incoming credit were used in the analysis
of case (ii). If y is a bad token, none of the incoming credit was used in the analysis
of case (ii). In either case, at least (φ(ht(y) + d)− φ(ht(y)))/(20d) units of incoming
credit still remain. Let this credit be denoted C1. We obtain the following lower
bound on C0 + C1:

C0 + C1 ≥ C0 +
∑

h0(u)<k≤ht−1(u)

(φ(k + d)− φ(k))/(20d)

= C0 +
1

20d

∑
1≤i≤d

(φ(ht−1(u) + i)− φ(h0(u) + i))

≥ C0 + (φ(ht−1(u))− φ(h0(u) + d))/20

≥ φ(ht−1(u))/20

≥ D.

(The second equation holds since the sum in the first equation can be expressed as a
sum of d telescoping sums. For the third equation we invoke Lemma A.2 and obtain
that C0 ≥ 2φ(h0(u) + 11d)/3 ≥ φ(h0(u) + d)/20.)

We now consider subcase (b) of (iii). Recall that by the definition of Et, u is
in S>j at the start of step t. Therefore, ht−1(u) ≥ 24(j + 1)d − 12d ≥ 24jd + 12d.
Since no token was sent along (u, v) in step t, we have eut−1(v) − ρ > ht−1(u) − 12d
(≥ 24jd). By the definition of Et, we also have ht−1(u) ≥ ht−1(v) + 24d. It follows
that eut−1(v) − ρ > ht−1(v) + 12d. Since the last step in which (u, v) was live, at
least eut−1(v) − ρ − ht−1(v) tokens have left v. We use the outgoing credit assigned
to (u, v) due to these token transmissions. Consider a token x that is transmitted by
v in step t′. If x is marked good after the step, then the outgoing credit assigned by
x to (u, v) is at least 9(φ(ht′−1(p))− φ(ht′(p)))/(20d) ≥ 9(φ(ht′−1(p))− φ(ht′−1(p)−
6d))/(20d) units. Otherwise, the outgoing credit assigned by x to (u, v) is at least
(φ(ht′−1(p)) − φ(ht′−1(p) − d))/(20d) units. In either case, the outgoing credit is at
least (φ(ht′−1(p))− φ(ht′−1(p)− d))/(20d) units. We thus obtain the following lower
bound on the total outgoing credit C2 assigned to (u, v) by at least eut−1(v)−ρ−ht−1(v)
tokens.

C2 ≥
∑

ht−1(v)<k≤eu
t−1

(v)−ρ
(φ(k)− φ(k − d))/(20d)
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=
1

20d

∑
1≤i≤d

(φ(eut−1(v)− ρ− d+ i)− φ(ht−1(v)− d+ i))

≥ (φ(eut−1(v)− ρ− d)− φ(ht−1(v)))/20

≥ (φ(eut−1(v)− ρ+ 11d)− φ(ht−1(v) + d))/50

≥ (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50

= D.

(The second equation holds since the sum in the first equation can be expressed as a
sum of d telescoping sums. For the third and fourth inequalities, we first note that
since no token is sent by u to v in step t, we have eut−1(v)−ρ > ht−1(u)−12d ≥ 24jd−d.
The third equation now follows from Lemma A.3 and the fact that φ(eut−1(v)−ρ−d) >
0. The fourth equation follows directly from the lower bound on eut−1(v)− ρ.)

We note that the outgoing credit assigned to edge (u, v) in the above analysis of
case (iii) is used at most once in case (iii). To prove this, we observe that after step t,
the value of eu(v) is updated by u to ht−1(v)+ρ. Therefore, if case (iii) of the analysis
subsequently uses any outgoing credit assigned by a token x that leaves v and whose
height in v is in (ht−1(v), eut−1(v)], then x reached v after step t. Hence, the outgoing
credit assigned by the eut−1(v)− ht−1(v) tokens that are used in the analysis for step
t are not used again for a later step.
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