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Abstract

We present an efficient randomized algorithm to test if a given function f : F
n

p
→ Fp (where

p is a prime) is a low-degree polynomial. This gives a local test for Generalized Reed-Muller
codes over prime fields. For a given integer t and a given real ǫ > 0, the algorithm queries f at

O
(

1

ǫ
+ t · p

2t
p−1

+1
)

points to determine whether f can be described by a polynomial of degree

at most t. If f is indeed a polynomial of degree at most t, our algorithm always accepts, and if
f has a relative distance at least ǫ from every degree t polynomial, then our algorithm rejects f
with probability at least 1

2
. Our result is almost optimal since any such algorithm must query

f on at least Ω(1

ǫ
+ p

t+1

p−1 ) points.
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1 Introduction

1.1 Background and Context

A low degree tester is a probabilistic algorithm which, given a degree parameter t and oracle access
to a function f on n arguments (which take values from some finite field F), has the following
behavior. If f is the evaluation of a polynomial on n variables with total degree at most t, then
the low degree tester must accept with probability one. On the other hand, if f is “far” from being
the evaluation of some polynomial on n variables with degree at most t, then the tester must reject
with constant probability. The tester can query the function f to obtain the evaluation of f at any
point. However, the tester must accomplish its task by using as few probes as possible.

Low degree testers play an important part in the construction of Probabilistically Checkable
Proofs (or PCPs). In fact, different parameters of low degree testers (for example, the number of
probes and the amount of randomness used) directly affect the parameters of the corresponding
PCPs as well as various inapproximability results obtained from such PCPs (starting with the work
of Fiege, Goldwasser, Lovasz, Safra and Szegedy [FGL+96] and Arora, Lund, Motwani, Sudan and
Szegedy [ALM+98]). Low degree testers also form the core of Babai, Fortnow and Lund’s proof of
MIP = NEXPTIME in [BFL91].

Blum, Luby, and Rubinfeld designed the first low degree tester, which handled the linear case,
i.e., t = 1 ([BLR93]). This was followed by a series of works that gave low degree testers that
worked for larger values of the degree parameter (e.g., Rubinfeld and Sudan[RS96], Friedl and
Sudan [FS95], Arora and Sudan [AS03]). However, these subsequent results as well as others which
use low degree testers (such as Gemmell, Lipton, Rubinfeld, Sudan and Wigderson [GLR+91]
and [BFL91]) crucially require that the size of the underlying field F be larger than the degree
being tested. One exception is the work of Alon, Kaufman, Krivelevich, Litsyn and Ron which
gave a low degree tester for any nontrivial degree parameter over the binary field F2 [AKK+05].

A natural open problem was to give a low degree tester for all degrees, with the underlying
finite fields of size between two and the degree parameter. In this work we (partially) solve this
problem by presenting a low degree test for multivariate polynomials over any prime field Fp.

1.1.1 Connection to coding theory

A linear code C over a finite field F of dimension K and length N is a K-dimensional subspace of
F

N . The code C is said to be locally testable if there exists a tester that can efficiently distinguish
oracles that represent codewords of C from oracles that differ from every codeword in C in a “large”
fraction of positions.

The evaluations of polynomials in n variables of degree at most t are well known linear codes.
In particular, the evaluation of polynomials in n variables of degree at most t over F2 is the
Reed-Muller code (or R(t, n)) with parameters t and n. The corresponding code over general
fields, called Generalized Reed-Muller code (or GRMq(n, t)) is the vector of (evaluations of)
all polynomials in n variables of total degree at most t over Fq. These codes have length qn and
dimension

(
n+t
n

)
(see [DGM70, DK00, AJK98] for more details). Therefore, a function has degree

t if and only if (the vector of evaluations of) the function is a valid codeword in GRMq(n, t). In
other words, low degree testing is equivalent to locally testing Generalized Reed-Muller codes.
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1.2 Previous low degree testers

As was mentioned earlier, the study of low degree testing (along with self-correction) dates back to
the work of Blum, Luby and Rubinfeld ([BLR93]), where an algorithm was required to test whether
a given function is linear. The approach in [BLR93] later naturally extended to yield testers for
low degree polynomials (but over fields larger than the total degree). Roughly, the idea is to project
the given function on to a random line and then test if the projected univariate polynomial has
low degree. Specifically, for a purported degree t function f : F

n
q → Fq, the test works as follows.

Pick vectors y and b from F
n
q (uniformly at random), and distinct s1, · · · , st+1 from Fq arbitrarily.

Query the oracle representing f at the t+1 points b+ siy and extrapolate to a degree t polynomial
Pb,y in one variable s. Now test for a random s ∈ Fp if

Pb,y(s) = f(b + sy)

(for details see [RS96],[FS95]). Similar ideas are also employed to test whether a given function
is a low degree polynomial in each of its variables (see [FGL+96, BFLS91, AS98]). Note that this
approach does not work when the field size is smaller than the total degree, as xq = x in Fq.

Alon et al. give a tester over field F2 for any degree up to the number of inputs to the function
(i.e., for any non-trivial degree) [AKK+05]. In other words, their work shows that Reed-Muller
codes are locally testable. Under the coding theory interpretation, their tester picks a random
codeword u from the dual code and checks if it is orthogonal to the input vector. Since the query
complexity depends on the weight of the dual codeword u, u is chosen randomly from a set of
minimum-weight codewords that happen to span the dual code.

Specifically their test works as follows: given a function f : {0, 1}n → {0, 1}, to test if the given
function f has degree at most t, pick (t + 1)-vectors y1, · · · , yt+1 ∈ {0, 1}n and test if

∑

∅6=S⊆[t+1]

f(
∑

i∈S

yi) = 0.

As we show later, the test in [RS96] above can also be given this coding theory interpretation.

1.3 Our Result

It is easier to define our tester over F3. To test if f has degree at most t, set k = ⌈ t+1
2 ⌉, and let

i = (t + 1) mod 2. Pick k-vectors y1, · · · , yk and b from F
n
3 , and test if

∑

c∈F
k
3 ;c=(c1,··· ,ck)

ci
1f(b +

k∑

j=1

cjyj) = 0,

where for notational convenience we use 00 = 1. We prove that a polynomial of degree at most t
always passes the test, whereas a polynomial of degree greater than t gets caught with non-negligible
probability α. To obtain a constant rejection probability we repeat the test Θ(1/α) times.

As in [RS96] there are two main parts to the proof. The first step is coming up with an exact
characterization for functions that have low degree. Following [AKK+05], it is best to view low
degree polynomials over Fq as the Generalized Reed-Muller (GRM) code. As GRM is a linear code,
a function is of low degree if and only if it is orthogonal to every codeword in the dual of the
corresponding GRM code. The second step of the proof entails showing that the characterization is
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a robust characterization, that is, the following natural tester is indeed a local tester (see section 2
for a formal definition). Pick a codeword uniformly at random from a set of low-weight codewords
that span the dual code and check if it is orthogonal to the given function.

Apart from the obvious difficulty of proving step two, the proof is further complicated by the
fact that to obtain a good tester (i.e. one which makes as few queries as possible), we need a
sub-collection of the dual GRM code in which each vector has low weight such that it generates
the dual code.

Since it is well known that the dual of a GRM code is a GRM code (with different parameters),
to obtain a collection of codewords (with low weight) that generate the dual of a GRM code
it is enough to do so for the GRM code itself. We present an alternative basis of GRM codes
over prime fields that in general differs from the minimum weight basis obtained in the work of
Delsarte [DGM70, DK00]. Our basis has a clean geometric structure in terms of flats (cf. [AJK98]),
and unions of parallel flats (but with different weights assigned to different parallel flats)1. This
equivalence between the polynomial and geometric representations plays a pivotal role in proving
step two. Moreover, our basis consists of codewords with weight within a factor p of the minimal
weight of the dual code. This makes the query complexity of our tester almost optimal.

1.3.1 Main Result

Our results may be stated quantitatively as follows. For a given integer t ≥ (p−1) and a given real

ǫ > 0, our testing algorithm queries f at O
(

1
ǫ + t · p

2t
p−1

+1
)

points to determine whether f can be

described by a polynomial of degree at most t. If f is indeed a polynomial of degree at most t, our
algorithm always accepts, and if f has a relative distance at least ǫ from every degree t polynomial,
then our algorithm rejects f with probability at least 1

2 . (In the case t < (p − 1), our tester
still works but more efficient testers are known). It is folklore that the dual distance (minimum

distance of the dual code), which is p
t+1
p−1 in our case, is a lower bound on the query complexity

(cf. [BSHR05]). In fact, a straightforward generalization of a result of Alon, Krivelevich, Newman
and Szegedy [AKNS99] implies that our result is almost optimal as any such testing algorithm must

query f in at least Ω(1
ǫ + p

t+1
p−1 ) many points.

Our analysis also enables us to obtain a self-corrector (as defined in [BLR93]) for f , in case
the function f is reasonably close to a degree t polynomial. Specifically, we show that the value
of the function f at any given point x ∈ F

n
p may be obtained with good probability by querying f

on Θ(pt/p) random points. Using the second moment method and majority logic decoding we can
achieve even higher probability by querying f on pO(t/p) random points.

1.4 Related Work and Further Developments

Independently of our work, Kaufman and Ron, generalizing a characterization result of [FS95],
gave a tester for low degree polynomials over general finite fields (see [KR06]). They show that
a given polynomial is of degree at most t if and only if the restriction of the polynomial to every
affine subspace of suitable dimension is of degree at most t. Given this characterization, their tester
chooses a random affine subspace of a suitable dimension, computes the polynomial restricted to

1The natural basis given in [DGM70, DK00] assigns the same weight to each parallel flat.
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this subspace, and verifies that the coefficients of the higher degree terms are zero2. To obtain
constant soundness, the test is repeated many times. An advantage of our approach is that in one
round of the test (over the prime field) we test only one linear constraint, whereas their approach
needs to test multiple linear constraints.

A basis of GRM (over prime fields) consisting of minimum-weight codewords was considered in
[DGM70, DK00]. In fact, following the work of Delsarte (see the complete references in[DK00,
AJK98]) the geometric structure of the minimal weight codewords over arbitrary finite fields are well
understood. We obtain another exact characterization for low-degree polynomials. Furthermore, it
seems that their exact characterization can also be turned into a robust characterization following
analysis similar to ours, though we have not worked out the details. However, our basis is cleaner
and yields a simpler analysis.

We point out that for degree smaller than the field size, the exact characterization obtained
from [DGM70, DK00] coincides with [BLR93, RS96, FS95]. This provides an alternate proof to the
exact characterization of [FS95] (for more details, see Remark 3.11 later and [FS95]).

Further Developments In an attempt to generalize our result to arbitrary finite fields, we have
obtained an exact characterization of low degree polynomials over general finite fields3[JPR04]. This
provides an alternate proof to the result of Kaufman and Ron [KR06] described earlier. Specifically
the result says that a given polynomial is of degree at most t if and only if the restriction of the
polynomial to every affine subspace of dimension ⌈ t+1

q−q/p⌉ (and higher) is of degree at most t. (This

characterization was first proved by Cohen [Coh87].) We remark that this gives a basis with weight
larger than the minimum weight of the code– this is not surprising as [DK00] showed that in general
there exists no minimal weight basis of GRM codes over non-prime finite fields.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce notation and mention some
preliminary facts. Section 3 contains the exact characterization of the low degree polynomials over
prime fields. In Section 4 we formally describe the tester and prove its correctness. In Section 5
we sketch a lower bound that implies that the query complexity of our tester is almost optimal,
and suggest how to self-correct a function which agrees with a low degree polynomial on most of
its input. Section 6 contains some concluding remarks.

2 Preliminaries

2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields which will be used later. We denote the
multiplicative group of Fq by F

∗
q. We begin with a simple lemma.

Lemma 2.1 For any t ∈ [q − 1],
∑

a∈Fq
at 6= 0 if and only if t = q − 1.

2Since the coefficients can be written as linear sums of the evaluations of the polynomial, this is equivalent to
check several linear constraints

3Our alternate proof along with other omitted proofs appear in the second author’s doctoral thesis [Pat07]. We
also remark that the exact characterization can further be extended to a robust characterization using techniques we
develop for prime fields.
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Proof : First note that
∑

a∈Fq
at =

∑

a∈F∗
q
at. Observing that for any a ∈ F

∗
q, aq−1 = 1, it follows

that
∑

a∈F∗
q
aq−1 =

∑

a∈F∗
q
1 = −1 6= 0.

Next we show that for all t 6= q − 1,
∑

a∈F∗
q
at = 0. Let α be a generator of F

∗
q. The sum can

be re-written as
∑q−2

i=0 αit = αt(q−1)−1
αt−1 . The denominator is non-zero for t 6= q − 1 and thus, the

fraction is well defined. The proof is complete by noting that αt(q−1) = 1.

This immediately implies the following lemma.

Lemma 2.2 Let t1, · · · , tℓ ∈ [q − 1]. Then

∑

(c1,··· ,cℓ)∈(Fq)ℓ

ct1
1 ct2

2 · · · ctℓ
ℓ 6= 0 if and only if t1 = t2 = · · · = tℓ = q − 1. (1)

Proof : Note that the left hand side can be rewritten as
∏

i∈[ℓ]

(
∑

ci∈Fq
cti
i

)

.

We will need to transform products of variables to powers of linear functions in those variables.
With this motivation, we present the following identity.

Lemma 2.3 For each kin[p − 1], there exists a ck ∈ F
∗
p such that

ck

k∏

i=1

xi =

k∑

i=1

(−1)k−iSi where Si =
∑

∅6=I⊆[k];|I|=i




∑

j∈I

xj





k

. (2)

Proof : Consider the right hand side of the (2). Note that all the monomials are of degree exactly
k. Also note that

∏k
i=1 xi appears only in Sk and nowhere else. Now consider any other monomial

of degree k that has a support of size m, where 0 < m < k. Further note that the coefficient of any
such monomial in the expansion of (

∑

j∈I xj)
k is the same and non-zero. Therefore, summing up

the number of times it appears (along with the (−1)k−i factor) in each Si is enough which is just

1 −

(
k − m

k − m − 1

)

+

(
k − m

k − m − 2

)

+ · · · + (−1)k−m

(
k − m

k − m − (k − m)

)

= (1 − 1)k−m = 0.

Moreover, it is clear that ck = k! mod p and ck 6= 0 for the choice of k.

2.2 Flats and Pseudoflats

For any integer ℓ, we denote the set {1, · · · , ℓ} by [ℓ]. Throughout we use p to denote a prime
and Fp to denote a prime field of size p. We also use Fq to denote a finite field of size q, where
q = ps for some positive integer s. In this paper, we mostly deal with prime fields. We therefore
restrict most definitions to the prime field setting. For a set S ⊆ F

n
p and y ∈ F

n
p , we define

y + S
def
= {x + y|x ∈ S}.

For any t ∈ [n(q − 1)], let Pt denote the family of all functions over F
n
q which are polynomials

of total degree at most t (and individual degree at most q − 1) in n variables. In particular f ∈ Pt

if there exists coefficients a(e1,··· ,en) ∈ Fq, for every i ∈ [n], ei ∈ {0, · · · , q − 1},
∑n

i=1 ei ≤ t, such
that

f =
∑

(e1,··· ,en)∈{0,··· ,q−1}n;0≤
Pn

i=1 ei≤t

a(e1,··· ,en)

n∏

i=1

xei
i . (3)
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The codeword corresponding to f will be its evaluation vector. We recall the definition of the
Generalized (Primitive) Reed-Muller code as described in [AJK98, DK00].

Definition 2.4 Let V = F
n
q be the vector space of n-tuples, for n ≥ 1, over the field Fq. For any k

such that 0 ≤ k ≤ n(q− 1), the kth order Generalized Reed-Muller code GRMq(k, n) is the subspace

of F
|V |
q (with the basis as the characteristic functions of vectors in V ) of all n-variable polynomial

functions (reduced modulo xq
i − xi) of degree at most k.

This implies that the code corresponding to the family of functions Pt is GRMq(t, n). Therefore, a
characterization for one will simply translate into a characterization for the other.

For any two functions f, g : F
n
q → Fq, the relative distance δ(f, g) ∈ [0, 1] between f and g is

defined as δ(f, g)
def
= Prx∈Fn

q
[f(x) 6= g(x)]. For a function g and a family of functions F (defined

over the same domain and range), we say g is ǫ-close to F , for some 0 < ǫ < 1, if, there exists an
f ∈ F , where δ(f, g) ≤ ǫ. Otherwise it is ǫ-far from F .

A one sided testing algorithm (one-sided tester) for Pt is a probabilistic algorithm that is given
query access to a function f and a distance parameter ǫ, 0 < ǫ < 1. If f ∈ Pt, then the tester
should always accept f (perfect completeness), and if f is ǫ-far from Pt, then with probability at
least 1

2 the tester should reject f (a two-sided tester may be defined analogously).
For vectors x, y ∈ F

n
p , the dot (scalar) product of x and y, denoted x · y, is defined to be

∑n
i=1 xiyi, where wi denotes the ith co-ordinate of the vector w.
To motivate the next notation which we will use frequently, we give a definition.

Definition 2.5 A k-flat (k ≥ 0) in F
n
p is a k-dimensional affine subspace. Let y1, · · · , yk ∈ F

n
p be

linearly independent vectors and b ∈ F
n
p be a point. Then the subset L = {

∑k
i=1 ciyi + b|∀i ∈ [k] ci ∈

Fp} is a k-flat. We will say that L is generated by y1, · · · , yk at b. The incidence vector of the
points in a given k-flat will be referred to as the codeword corresponding to the given k-flat.

We remark that a 0-flat is just a point.
Given a function f : F

n
p → Fp, for y1, · · · , yℓ, b ∈ F

n
p we define

Tf (y1, · · · , yℓ, b)
def
=

∑

c=(c1,··· ,cℓ)∈Fℓ
p

f(b +
∑

i∈[ℓ]

ciyi), (4)

which is the sum of the evaluations of function f over an l-flat generated by y1, · · · , yℓ, at b.
Alternatively, this can also be interpreted as the dot product of the codeword corresponding to the ℓ-
flat generated by y1, · · · , yℓ at b and that corresponding to the function f (also see Observation 3.5).

While k-flats are well-known, below we define a new geometric object, called a pseudoflat. A
k-pseudoflat is a union of (p − 1) parallel (k − 1)-flats. Also, k-pseudoflats can have different
exponents ranging from 1 to4 (p − 2). We stress that the point set of a k-pseudoflat remains the
same irrespective of its exponent. It is the value assigned to the points that changes with the
exponent.

Definition 2.6 Let L1, L2, · · · , Lp−1 be parallel (k − 1)-flats (k ≥ 1), such that for some y ∈ F
n
p

and all t ∈ [p − 2], Lt+1 = y + Lt. We define the points of k-pseudoflat L with exponent r
(1 ≤ r ≤ p− 2) to be the union of the set of points L1 to Lp−1. Also, let Ij be the incidence vector

4With slight abuse, a k-pseudoflat with exponent zero corresponds to a flat.
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of Lj for j ∈ [p − 1]. Then the evaluation vector of this k-pseudoflat with exponent r is

defined to be
∑p−1

j=1 jrIj. The evaluation vector of a k-pseudoflat with exponent r will be referred to
as the codeword corresponding to the given k-pseudoflat with exponent r.

Let L be a k-pseudoflat with exponent r. Also, for j ∈ [p−1], let Lj be the (k−1)-flat generated
by y1, · · · , yk−1 at b + j · y, where y1, · · · , yk−1 are linearly independent. Then we say that L, a
k-pseudoflat with exponent r, is generated by y, y1, · · · , yk−1 at b exponentiated along y.

See Figure 1 for an illustration of Definition 2.6.

y
L1

L2

L3

L4

Evaluation vector of L with exponent 1

1 1 1 1 1

22222

3 3 3 3 3

4444 4

L

0 0 0 0 0

Figure 1: Illustration of a k-pseudoflat L defined over F
n
p with k = 2, p = 5 and n = 5. Picture

on the left shows the points in L (recall that each of L1, . . . , L4 are 1-flats or lines). Each Li (for
1 ≤ i ≤ 4) has pk−1 = 5 points in it. The points in L are shown by filled circles and the points in
F

5
5 \ L are shown by unfilled circles. The picture on the right is the (partial) evaluation vector of

the pseudoflat corresponding to L with exponent 1.

Given a function f : F
n
p → Fp, for y1, · · · , yℓ, b ∈ F

n
p , for all i ∈ [p − 2], we define

T i
f (y1, · · · , yℓ, b)

def
=

∑

c=(c1,··· ,cℓ)∈Fℓ
p

ci
1 · f(b +

∑

j∈[ℓ]

cjyj). (5)

The above can also be interpreted similarly as the dot product of the codeword corresponding to the
ℓ-pseudoflat with exponent i generated by y1, · · · , yℓ at b (exponentiated along y1) and the codeword
corresponding to the function f (also see Observation 3.9). With a slight abuse of notation we will
use T 0

f (y1, · · · , yℓ, b) to denote Tf (y1, · · · , yℓ, b), where for notational convenience, we use 00 = 1.

3 Characterization of Low Degree Polynomials over Fp

In this section we present an exact characterization for the family Pt over prime fields. Specifically
we prove the following:

Theorem 3.1 Let t = (p − 1) · k + R. (Note 0 ≤ R ≤ p − 2.) Let r = p − 2 − R. Then a function
f belongs to Pt, if and only if for every y1, · · · , yk+1, b ∈ F

n
p , we have

Tf (y1, · · · , yk+1, b) = 0 if r = 0; (6)

T r
f (y1, · · · , yk+1, b) = 0 otherwise. (7)

8



As mentioned previously, the above characterization is a common generalization of previous special
cases such as [FS95, AKK+05]. Further, a characterization for the family Pt implies a characteri-
zation for GRMp(t, n) and vice versa. It turns out that it is easier to characterize Pt when viewed
as GRMp(t, n). Therefore our goal is to determine whether a given word belongs to the GRM code.
Since are we dealing with a linear code, a simple strategy will then be to check whether the given
word is orthogonal to all the codewords in the dual code. Though this yields a characterization, this
is computationally inefficient. Note however that the dot product is linear in its input. Therefore
checking orthogonality with a basis of the dual code suffices. Further, to make it query efficient,
we look for a dual basis with small weights. The above theorem essentially is a restatement of this
idea.

We recall the following useful lemma that can be found in corollary 5.26 of [AJK98].

Lemma 3.2 GRMq(k, n) is a linear code with block length qn and minimum distance (R + 1)qQ

where R is the remainder and Q the quotient resulting from dividing (q−1) ·n−k by (q−1). Denote
the dual of a code C, i.e. the dual of the subspace C, by C⊥ Then GRMq(k, n)⊥ = GRMq((q − 1) ·
n − k − 1, n).

Since the dual of a GRM code is again a GRM (of appropriate order), we therefore need the
generators of GRM code (of arbitrary order). We first establish that flats and pseudoflats (of
suitable dimension and exponent) indeed generate the Generalized Reed-Muller code (of desired
order). We then end the section with a proof of Theorem 3.1 and a few remarks.

We begin with few simple observations about flats. Note that an ℓ-flat L is the intersection of
(n − ℓ) hyperplanes in general position. Equivalently, it consists of all points v that satisfy (n− ℓ)
linear equations over Fp (i.e., one equation for each hyperplane): ∀i ∈ [n − ℓ]

∑n
j=1 cijxj = bi

where cij , bi defines the ith hyperplane (i.e., v satisfies
∑n

j=1 cijvj = bi). General position means
that the matrix {cij} has rank (n − ℓ). Note that then the incidence vector of L can be written as

n−ℓ∏

i=1

(1 − (
n∑

j=1

cijxj − bi)
p−1) =

{

1 if (v1, · · · , vℓ) ∈ L

0 otherwise
(8)

We record a lemma here that will be used later in this section. We leave the proof as a
straightforward exercise.

Lemma 3.3 For ℓ ≥ k, the incidence vector of any ℓ-flat is a linear sum of the incidence vectors
of k-flats.

As mentioned previously, we give an explicit basis for GRMp(r, n). For the special case of
p = 3, our basis coincides with the min-weight basis given in [DK00].5 However, in general, our
basis differs from the min-weight basis provided in [DK00].

The following Proposition originated in the work of Delsarte (see [DK00],[AJK98]) and has at
least two known proofs. It shows that the incidence vectors of flats form a basis for the Generalized
Reed-Muller code of orders that are multiples of (p − 1). We give an alternative elementary proof
for completeness.

Proposition 3.4 GRMp((p − 1)(n − ℓ), n) is generated by the incidence vectors of the ℓ-flats.

5The equations of the hyperplanes are slightly different in our case; nonetheless, both of them define the same
basis generated by the min-weight codewords.
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Proof : We first show that the incidence vectors of the ℓ-flats are in GRMp((p − 1)(n − ℓ), n).
Recall that L is the intersection of (n− ℓ) independent hyperplanes. Therefore using (8), L can be
represented by a polynomial of degree at most (n− ℓ)(p− 1) in x1, · · · , xn. Therefore the incidence
vectors of ℓ-flats are in GRMp((p − 1)(n − ℓ), n).

We prove that GRMp((p − 1)(n − ℓ), n) is generated by ℓ-flats by induction on n − ℓ. When
n− ℓ = 0, the code consists of constants, which is clearly generated by n-flats i.e., the whole space.

To prove the result for an arbitrary (n − ℓ) > 0, we show that any monomial of total degree
d ≤ (p − 1)(n − ℓ) can be written as a linear sum of the incidence vectors of ℓ-flats. Let the
monomial be xe1

1 · · · xet
t . Rewrite the monomials as x1 · · · x1

︸ ︷︷ ︸

e1 times

· · · xt · · · xt
︸ ︷︷ ︸

et times

. Group into products of

(p−1) (not necessarily distinct) variable as much as possible. Rewrite each group using Lemma 2.3
setting k = (p − 1). For any incomplete group of size d′ < p − 1, use the same lemma by setting
the last (p − 1 − d′) variables to the constant 1. After expansion, the monomial can be seen to be

a sum of product of at most (n − ℓ) degree (p − 1)th powered linear terms. We can add to it a
polynomial of degree at most (p−1)(n− ℓ−1) so as to represent the resulting polynomial as a sum
of polynomials, each polynomial as in (8). Each such non-zero polynomial is generated by a t flat,
t ≥ ℓ. By induction, the polynomial we added is generated by (ℓ + 1) flats. Thus, by Lemma 3.3
our given monomial is generated by ℓ-flats.

This leads to the following observation:

Observation 3.5 Consider an ℓ-flat generated by y1, · · · , yℓ at b. Denote the incidence vector of
this flat by I. Then the right hand side of (4) may be identified as I · f , where I and f denote the
vector corresponding to respective codewords and · is the dot (scalar) product.

To generate GRM codes of arbitrary order, we need pseudoflats. Note that the points in a
k-pseudoflat may alternatively be viewed as the space given by union of intersections of (n − k)
hyperplanes, where the union is parameterized by another hyperplane that does not take one
particular value. Concretely, it is the set of points v which satisfy the following constraints over Fp:

∀i ∈ [n − k]
n∑

j=1

cijxj = bi; and
n∑

j=1

cn−k+1,jxj 6= bn−k+1.

Thus the values taken by the points of a k-pseudoflat with exponent r is given by the polynomial

n−k∏

i=1

(1 − (

n∑

j=1

cijxj − bi)
(p−1)) · (

n∑

j=1

cn−k+1,jxj − bn−k+1)
r (9)

Remark 3.6 Note the difference between (9) and the basis polynomial in [DK00], which along with
the action of the affine general linear group yields the min-weight codewords:

h(x1, · · · , xn) =
n−k∏

i=1

(1 − (xi − wi)
(p−1))

r∏

j=1

(xn−k+1 − uj),

where w1, · · · , wn−k, u1, · · · , ur ∈ Fp.

The next lemma shows that the code generated by the incidence vectors of l-flats is a subcode of
the code generated by the evaluation vectors of l-pseudoflats with exponent r.
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Claim 3.7 The evaluation vectors of ℓ-pseudoflats (ℓ ≥ 1) with exponent r (r ∈ [p − 2]) generate
a code containing the incidence vectors of ℓ-flats.

Proof : Let W be the incidence vector of an ℓ-flat generated by y1, · · · , yℓ at b. Clearly W =
〈1, · · · , 1〉, where the ith (i ∈ [p−1]∪{0}) coordinate denotes the values taken by the characteristic
functions of (ℓ − 1)-flats generated by y2, · · · , yℓ at b + i · y1.

6 Let this denote the standard basis.
Let Lj be a pseudoflat with exponent r generated by y1, · · · , yℓ exponentiated along y1 at b+ j · y1,
for each j ∈ Fp, and let Vj be the corresponding evaluation vector. By Definition 2.6, Vj assign a
value ir to the (ℓ − 1)-flat generated by y2, · · · , yℓ at b + (j + i)y. Rewriting them in the standard
basis yields that Vj = 〈(p− j)r, (p− j +1)r, · · · , (p− j + i)r, · · · , (p− j− 1)r〉 ∈ F

p
p. Let λj denote p

variables for t = 0, 1, · · · , (p− 1), each taking values in Fp. Then a solution to the following system
of equations

∀i ∈ [p − 1] ∪ {0} 1 =
∑

j∈Fp

λj(i − j)r

implies that W =
∑p−1

j=0 λjVj, which suffices to establish the claim. Consider the identity

1 = (−1)
∑

j∈Fp

(j + i)rjp−1−r

which may be verified by expanding and applying Lemma 2.1. Setting λj to (−1)(−j)p−1−r estab-
lishes the claim.

The next Proposition complements Proposition 3.4. Together they say that by choosing dimen-
sion and exponent appropriately, Generalized Reed-Muller code of any given order can be generated.
This gives an equivalent representation of Generalized Reed-Muller code. An exact characterization
then follows from this alternate representation.

Proposition 3.8 For every r ∈ [p − 2], the linear code generated by the evaluation vectors of
ℓ-pseudoflats with exponent r is equivalent to GRMp((p − 1)(n − ℓ) + r, n).

Proof : For the forward direction, consider an l-pseudoflat L with exponent r. Its evaluation vector
is given by an equation similar to (9). Thus the codeword corresponding to the evaluation vector
of this flat can be represented by a polynomial of degree at most (p− 1)(n− ℓ)+ r. This completes
the forward direction.

To prove the other direction, we restrict our attention to monomials of degree at least (p −
1)(n − ℓ) + 1 and show that these monomials are generated by ℓ-pseudoflats with exponent r.
Since monomials of degree at most (p−1)(n−ℓ) is generated by ℓ-flats, Claim 3.7 will establish the
Proposition. Now consider any such monomial. Let the degree of the monomial be (p−1)(n−ℓ)+r′

(1 ≤ r′ ≤ r). Rewrite it as in Proposition 3.4. Since the degree of the monomial is (p−1)(n−ℓ)+r′,
we will be left with an incomplete group of degree r′. We make any incomplete group complete
(i.e. of size r) by adding 1’s (as necessary) to the product. We then use Lemma 2.3 to rewrite this
group as a linear sum of rth powered terms. After expansion, the monomial can be seen to be a
sum of product of at most (n − ℓ) degree (p − 1)th powered linear terms and a rth powered linear
term. Each such polynomial is generated either by an ℓ-pseudoflat with exponent r or an ℓ-flat.
Claim 3.7 completes the proof.

The following is analogous to Observation 3.5.

6Recall that a ℓ-pseudoflat (as well as a flat) assigns the same value to all points in the same (ℓ − 1)-flat.
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Observation 3.9 Consider an ℓ-pseudoflat with exponent r, generated by y1, · · · , yℓ at b exponen-
tiated along y1. Let E be the evaluation vector of this pseudoflat with exponent r. Then the right
hand side of (5) may be interpreted as E · f .

Now we prove the exact characterization.
Proof of Theorem 3.1: The proof directly follows from Lemma 3.2, Proposition 3.4, Proposi-
tion 3.8, Observation 3.5 and Observation 3.9. Indeed by Observation 3.5 and Observation 3.9, (6)
and (7) are essentially tests to determine whether the dot product of the function with every vector
in the dual space of GRM(t, n) evaluates to zero.

Remark 3.10 One can obtain an alternate characterization from Remark 3.6 which we state here
without proof.

Let t = (p − 1) · k + R (note 0 < R ≤ (p − 2)). Let r = (p − 1) − R − 1. Let W ⊆ Fp with

|W | = r. Define the polynomial g(x)
def
=
∏

α∈W (x−α) if W is non-empty; and g(x) = 1 otherwise.
Then a function f belongs to Pt if and only if for every y1, · · · , yk+1, b ∈ F

n
p , we have

∑

c1∈Fp\W

g(c1)
∑

(c2,··· ,ck+1)∈Fk
p

f(b +

k+1∑

i=1

ci · yi) = 0.

Moreover, this characterization can also be extended to certain degrees for more general fields,
i.e., Fps (see the next remark).

Ding and Key [DK00] showed that minimal weight bases in general do not generate GRM codes.
In a nutshell, this happens because certain transformations between monomials of fixed degree do
not act transitively. These transformations involve binomial coefficients, and some indices get
annihilated by Lucas’s theorem.

We mention here that we do not know whether our exact characterization can be worked out
over arbitrary finite fields Fq. The difficulty essentially seems to arise from our failure to estimate
sums of the form

∑

i∈I ciα
i where

I
def
= {r |

(
n

r

)

6= 0 over Fq where p < n ≤ q − 1},

and ci ∈ Fq.

Remark 3.11 The exact characterization of low degree polynomials as claimed in [FS95] may be
proved using duality. Note that their proof works as long as the dual code has a min-weight basis
(see [DK00]). Suppose that the polynomial has degree d ≤ q− q/p− 1, then the dual of GRMq(d, n)
is GRMq((q − 1)n − d − 1, n) and therefore has a min-weight basis. Note that then the dual code
has min-weight (d+1). Therefore, assuming the minimum weight codewords constitute a basis, any
d + 1 evaluations of the original polynomial on a line are dependent and vice-versa. We leave the
details as an exercise for the interested readers.
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4 A Tester for Low Degree Polynomials over F
n
p

In this section we present and analyze a one-sided tester for Pt. The analysis of the algorithm
roughly follows the proof structure given in [RS96, AKK+05]. We emphasize that the generaliza-
tion from [AKK+05] to our case is not straightforward. As in [RS96, AKK+05] we first define a
self-corrected version of the (possibly corrupted) function being tested. The straightforward adop-
tion of the analysis given in [RS96] gives reasonable bounds. However, the better bound is achieved
by following the techniques developed in [AKK+05]. In there, they show that the self-corrector
function can be interpolated with overwhelming probability. However their approach appears to
use special properties of F2 and it is not clear how to generalize their technique for arbitrary prime
fields. We give a clean formulation which relies on the flats being represented through polynomials
as described earlier. In particular, Claims 4.10, 4.12 and their generalization appear to require our
new polynomial based view.

4.1 Tester in Fp

In this subsection we describe the algorithm when the underlying field is Fp. In what follows, ǫ
denotes the distance between f and Pt.
Algorithm Test-Pt in Fp

0. Let t = (p − 1) · k + R, 0 ≤ R < (p − 1). Denote r = p − 2 − R.
1. Uniformly and independently at random select y1, · · · , yk+1, b ∈ F

n
p .

2. If T r
f (y1, · · · , yk+1, b) 6= 0, then reject, else accept.

Theorem 4.1 The algorithm Test-Pt in Fp is a one-sided tester for Pt with a success probability
at least min(Ω(pk+1ǫ), 1

2(k+7)pk+2 ).

Corollary 4.2 Repeating the algorithm Test-Pt in Fp Θ( 1
pk+1ǫ

+ kpk) times, the probability of

error can be reduced to less than 1/2.

We will provide a general proof framework. However, for the ease of exposition we prove the
main technical lemmas for the case of F3. The proof idea in the general case is similar and the
details are omitted. Therefore we will essentially prove the following.

Theorem 4.3 The algorithm Test-Pt in F3 is a one-sided tester for Pt with success probability at
least min(Ω(3k+1ǫ), 1

2(t+7)3t/2+1 ).

4.1.1 Intuition for the proof

As was mentioned earlier, the analysis of the above algorithm roughly follows the proof structure
given in [RS96, AKK+05]. Recall that our task is to catch functions that are not in the family Pt.
Of course, the exact characterization implies that our tester can only have one-sided error. This
means, if f , the function being tested, somehow passes our test with high probability, we then need
to justify that f is indeed close to the family Pt. To prove this, we essentially prove that in this
case f can be “uniquely” decoded, confirming that the function is indeed not very far given that
the rejection probability, say η, of our algorithm is small.
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As in [RS96, AKK+05] we first define a self-corrected version, say g, of the function f (see (10)).
In Lemma 4.4, it is shown that if η is small then the distance between f and g is small. We then
show that the value of g at any point can be obtained with good probability by interpolating the
values of f on a random k-flat or k-pseudoflat as appropriate. The straightforward adoption of the
analysis given in [RS96] gives Lemma 4.5 which in turn gives reasonable bounds on the probability.
However, the better bound is achieved by following the techniques developed in [AKK+05] and is
given in Lemma 4.6. The proof of the lemma in turn crucially uses Claims 4.10 and 4.12.

Next in Lemma 4.7 we show that if the rejection probability is sufficiently low, then g indeed
belongs to the family Pt, i.e. it satisfies the exact characterization of the family Pt. The proof of
Lemma 4.7 in turn uses Lemma 4.6.

If η is sufficiently large, then we have nothing to prove (this gives the 1
2(t+7)3t/2+1 term in

Theorem 4.3). Otherwise, by Lemma 4.7 we know it can be “decoded” to a function g that belongs
to the family Pt. We also know that g and f are sufficiently close (this follows from Lemma 4.4).
This by Lemma 4.8 in turn will imply that η is large enough in terms of ǫ (this gives the 3k+1ǫ
term in Theorem 4.3).

4.2 Analysis of Algorithm Test-Pt

In this subsection we analyze the algorithm described in Section 4.1. From Claim 3.1 it is clear
that if f ∈ Pt, then the tester accepts. Thus, the bulk of the proof is to show that if f is
ǫ-far from Pt, then the tester rejects with significant probability. Our proof structure follows
that of the analysis of the test in [AKK+05]. In what follows, we will denote Tf (y1, · · · , yl, b) by
T 0

f (y1, · · · , yl, b) for the ease of exposition. In particular, let f be the function to be tested for

membership in Pt. Assume we perform Test T i
f for an appropriate i as required by the algorithm

described in Section 4.1. For such an i, we define gi : F
n
p → Fp as follows: For y ∈ Fn

p , α ∈ Fp,
denote py,α = Pry1,··· ,yk+1

[f(y) − Tfi
(y − y1, y2, · · · , yk+1, y1) = α]. Define gi(y) = α such that

∀β 6= α ∈ Fp, py,α ≥ py,β with ties broken arbitrarily. With this meaning of plurality, for all
i ∈ [p − 2] ∪ {0}, gi can be written as:

gi(y) = pluralityy1,··· ,yk+1

[
f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)
]
. (10)

Further define
ηi

def
= Pry1,··· ,yk+1,b[T

i
f (y1, · · · , yk+1, b) 6= 0], (11)

which is typically very small, i.e., at most 1
pk+2 . The next lemma follows from a Markov-type

argument.

Lemma 4.4 For a fixed f : F
n
p → Fp, let gi, ηi be defined as above. Then, δ(f, gi) ≤ 2ηi.

Proof : Consider the set of elements y such that Pry1,··· ,yk+1
[f(y) = f(y)−T i

f (y−y1, y2, · · · , yk+1, y1)] <
1/2. If the fraction of such elements is more than 2ηi then that contradicts the condition that

ηi = Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) 6= 0]

= Pry1,y2,··· ,yk+1,b[T
i
f (y1 − b, y2, · · · , yk+1, b) 6= 0]

= Pry,y1,··· ,yk+1
[f(y) 6= f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)].

Therefore, we obtain δ(f, gi) ≤ 2ηi.
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Note that Pry1,··· ,yk+1
[gi(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1)] ≥
1
p . We now show that this

probability is actually much higher. The next lemma gives a weak bound in that direction following
the analysis in [RS96]. For the sake of completeness, we present a proof in the appendix.

Lemma 4.5 For all y ∈ F
n
p , Pry1,··· ,yk+1∈Fn

p
[gi(y) = f(y)−T i

f (y−y1, y2, · · · , yk+1, y1)] ≥ 1−2pk+1ηi.

However, when the degree being tested is larger than the field size, we can improve the above
lemma considerably. The following lemma strengthens Lemma 4.5 when t ≥ (p− 1) or equivalently
k ≥ 1. We now focus on the F3 case. The proof appears in Section 4.2.1.

Lemma 4.6 For all y ∈ F
n
3 , Pry1,··· ,yk+1∈F

n
3
[gi(y) = f(y)− T i

f (y − y1, y2, · · · , yk+1, y1)] ≥ 1− (4k +
14)ηi.

Lemma 4.6 will be instrumental in proving the next lemma, which shows that sufficiently small
ηi implies that gi is the self-corrected version of the function f (the proof appears in Section 4.2.2).

Lemma 4.7 Let k ≥ 1 be an integer. Over F3, if ηi < 1
2(2k+7)3k+1 , then the function gi belongs to

Pt.

By combining Lemma 4.4 and Lemma 4.7 we obtain that if f is Ω(1/(k3k))-far from Pt then
ηi = Ω(1/(k3k)). We next consider the case in which ηi is small. By Lemma 4.4, in this case,
the distance δ = δ(f, g) is small. The next lemma shows that in this case the test rejects f with
probability that is close to 3k+1δ. This follows from the fact that in this case, the probability over
the selection of y1, · · · , yk+1, b, that among the 3k+1 points

∑

i ciyi + b, the functions f and g differ
in precisely one point, is close to 3k+1 · δ. Observe that if they do, then the test rejects.

Lemma 4.8 Suppose 0 ≤ ηi ≤ 1
2(2k+7)3k+1 . Let δ denote the relative distance between f and g,

ℓ = 3k+1, and Q
def
= (1−ℓδ

1+ℓδ ) · ℓδ. Then, when y1, · · · , yk+1, b are chosen randomly, the probability
that for exactly one point v among the ℓ points

∑

i Ciyi + b, f(v) 6= g(v) is at least Q.

Observe that ηi = Ω(Q) = Ω(3k+1δ). The proof of Lemma 4.8 is deferred to Section 4.2.3
Proof of Theorem 4.3: Clearly if f belongs to Pt, then by Claim 3.1 the tester accepts f with
probability 1.

Therefore let δ(f,Pt) ≥ ǫ. Let d = δ(f, gr), where r is as in algorithm Test-Pt. If ηr <
1

2(2k+7)3k+1 then by Lemma 4.7 gr ∈ Pt and, by Lemma 4.8, ηr = Ω(3k+1 · d) = Ω(3k+1ǫ). Hence

ηr ≥ min
(

Ω(3k+1ǫ), 1
2(2k+7)3k+1

)

.

Remark 4.9 Theorem 4.1 follows from a similar argument.

4.2.1 Proof of Lemma 4.6

Observe that the goal of the lemma is to show that at any fixed point y, if gi is interpolated out of
a random hyperplane, then w.h.p. the interpolated value is the most popular vote. To ensure this
we show that if gi is interpolated on two independently random hyperplanes, then the probability
that these interpolated values are same, that is the collision probability, is large. To estimate this
collision probability, we show that the difference of the interpolation values can be rewritten as
a sum of T i

f on small number of random hyperplanes. Thus if the test passes often (that is, T i
f
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evaluates to zero w.h.p.), then this sum (by a simple union bound) evaluates to zero often, which
proves the high collision probability.

The improvement will arise because we will express differences involving T i
f (· · · ) as a telescoping

series to essentially reduce the number of events in the union bound. To do this we will need the
following claims. They can easily be verified by expanding the terms on both sides like the proof
of Claim 4 in [AKK+05]. However, this does not give much insight into the general case i.e., for
Fp. We provide an alternate proof that can be generalized to get similar claims and has a much
cleaner structure based on the underlying geometric structure, i.e., flats or pseudoflats.

Claim 4.10 For every ℓ ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈
F

n
3 , let

Sf (y, z)
def
= Tf (y, y2, · · · , yℓ−1, z, yℓ+1, · · · , yk+1, b).

(Note that Tf (·) is a symmetric function in all but its last input. Therefore to enhance readability,
we omit the reference to index ℓ in S.) Then the following holds:

Sf (y,w) − Sf (y, z) = Sf (y + w, z) + Sf (y − w, z) − Sf (y + z,w) − Sf (y − z,w).

Proof : Assume y, z, w are linearly independent. If not then both sides are equal to 0 and hence the
equality is trivially satisfied. To see why this claim is true for the left hand side, recall the definition
of Tf (·) and note that the sets of points in the flat generated by y, y2, · · · , yℓ−1, w, yℓ+1, · · · , yk+1 at
b and the flat generated by y, y2, · · · , yℓ−1, z, yℓ+1, · · · , yk+1 at b are the same. A similar argument
works for the expression on the right hand side of the equality.

We first prove the claim for the special case of k = 1 and b = 0. Consider the space H generated
by y, z and w at 0. Thus, every point in H can be written as ŷ · y + ẑ · z + ŵ · w, with ŷ, ẑ and
ŵ in F3. Note that Sf (y,w) (with b = 0) is just f · 1L, where 1L is the incidence vector of the
2-flat given by the equation ẑ = 0. Therefore 1L is equivalent to the polynomial (1− ẑ2). Similarly
Sf (y, z) = f · 1L′ where L′ is given by the polynomial (1 − ŵ2). When it is clear from context, we
will identify the coordinates ŷ with y itself, etc.

We use the following polynomial identity (in F3)

w2 − z2 = [1 − (y − w)2 + 1 − (y + w)2] − [1 − (y + z)2 + 1 − (y − z)2].

Now observe that the equation (1− (y −w)2) is the incidence vector of the flat generated by y + w
and z. Similar observations hold for other terms. Therefore, interpreting the above equation in
terms of incidence vectors of flats, we complete the proof for the case of k = 1 and b = 0 with
Observation 3.5.

To complete the proof, we “reduce” the k > 1 and b 6= 0 case to the k = 1 and b = 0

case . A linear transform (or renaming the co-ordinate system appropriately) reduces the case
of k = 1 and b 6= 0 to the case of k = 1 and b = 0. We now show how to “reduce” the
case of k > 1 to the k = 1 case. Fix some values c2, · · · , cℓ−1, cℓ+1, · · · , ck+1 and note that
one can write c1y + c2y2 + · · · cℓ−1yℓ−1 + cℓw + cℓ+1yℓ+1 + ck+1yk+1 + b as c1y + cℓw + b′, where
b′ =

∑

j∈{2,··· ,ℓ−1,ℓ+1,··· ,k+1} cjyj + b. Thus, Sf (y,w) =
∑k−1

(c2,··· ,cℓ−1,cℓ+1,··· ,ck+1)∈F3

∑

(c1,cℓ)∈F
2
3
f(c1y +

cℓw + b′), where b′ is as defined earlier. One can rewrite the other Sf (·) terms similarly. Note that
for a fixed vector (c2, · · · , cℓ−1, cℓ+1, · · · , ck+1), the value of b′ is the same. Finally note that the
equality (in the k > 1 case) is satisfied if 3k−1 similar equalities hold (in the k = 1 case).
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We have the following analogue7 of Claim 4.10 in Fp:

Claim 4.11 For every ℓ ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈
F

n
p , with notation used from the previous lemma, it holds that

Sf (y,w) − Sf (y, z) =
∑

e∈F∗
p

[Sf (y + ew, z) − Sf (y + ez,w)] .

Proof : (Sketch) If the following identity

w(p−1) − z(p−1) =
∑

e∈F∗
p

[

[1 − (ew + y)(p−1)] − [1 − (ez + y)(p−1)]
]

, (12)

is true then we can prove the claim along the same lines as the proof of Claim 4.10 above. We
complete the proof by proving (12). Consider the sum:

∑

e∈F∗
p
(ew + y)(p−1). Expanding the terms

and rearranging the sums we get
∑p−1

j=0

(p−1
j

)
w(p−1)−jyj

∑

e∈F∗
p
ep−1−j . By Lemma 2.1 the sum

evaluates to (−w(p−1) − y(p−1)). Similarly,
∑

e∈F∗
p
(ez + y)(p−1) = (−z(p−1) − y(p−1)) which proves

(12).

Claim 4.12 For every ℓ ∈ {2, · · · , k + 1}, for every y(= y1), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈
F

n
3 , denote

S1
f (y,w)

def
= T 1

f (y, y2, · · · , yℓ−1, w, yℓ+1, · · · , yk+1, b).

Then8 the following holds:

S1
f (y,w) − S1

f (y, z) = S1
f (y + z,w) + S1

f (y − z,w) − S1
f (y + w, z) − S1

f (y − w, z).

Proof : Note here that the defining equation of S1
f (y, z) is y(1 − w2). Now consider the following

identity in F3:

y(z2 − w2) = (y + w)[1 − (y − w)2] + (y − w)[1 − (y + w)2]

−(y + z)[1 − (y − z)2] − (y − z)[1 − (y + z)2]

for variables y, z, w ∈ F3. Rest of the proof is similar to the proof of Claim 4.10 (the proof replaces
flats by pseudoflats) and is omitted.

We now prove the following analogue in Fp:

Claim 4.13 For every i ∈ {1, · · · , p − 2}, for every ℓ ∈ {2, · · · , k + 1} and for every
y(= y1), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈ F

n
p , denote

Si
f (y,w)

def
= T i

f (y, y2, · · · , yℓ−1, w, yℓ+1, · · · , yk+1, b).

Then there exists ci such that

Si
f (y,w) − Si

f (y, z) = ci

∑

e∈F∗
p

[
Si

f (y + ew, z) − Si
f (y + ez,w)

]
.

7This claim can be extended to Fq in a straightforward manner. We mention here that this lemma over Fq allows
one to prove a similar version of Lemma 4.6 over Fq. That lemma along with versions of Lemma 4.7 and Lemma 4.8
can be used to get a robust characterization as is done in [KR06].

8Note that T
i
f (·) is a symmetric function in its all but last and first input. Therefore to enhance readability, we

omit the reference to index ℓ.
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Proof : Observe that T i
f (y, z) = f · ELi , where ELi denotes the evaluation vector of the pseudoflat

L with exponent i, generated by y, z at b exponentiated along y. Note that the polynomial defining
ELi is just yi(w(p−1) −1). We now give an identity similar to that of (12) that completes the proof.
We claim that the following identity holds

yi(w(p−1) − z(p−1)) = ci

∑

e∈F∗
p

[

(y + ew)i[1 − (y − ew)(p−1)] − (y + ez)i[1 − (y − ez)(p−1)]
]

. (13)

where ci = 2−i. Before we prove the identity, note that (−1)j
(p−1

j

)
= 1 in Fp. This is because for

1 ≤ m ≤ j, m = (−1)(p − m). Therefore j! = (−1)j (p−1)!
(p−j−1)! holds in Fp. Substitution yields the

desired result. Also note that
∑

e∈F∗
p
(y+ew)i = −yi (expand and apply Lemma 2.1). Now consider

the sum

∑

e∈F∗
p

(y + ew)i(y − ew)(p−1) =
∑

e∈F∗
p

∑

0≤j≤i;0≤m≤(p−1)

(−1)m
(

i

j

)(
p − 1

m

)

y(p−1)+i−j−mwj+mej+m

=
∑

0≤j≤i;0≤m≤(p−1)

(−1)m
(

i

j

)(
p − 1

m

)

y(p−1)+i−j−mwj+m
∑

e∈F∗
p

ej+m

= (−1)[y(p−1)+i + (−1)(p−1)
i∑

j=0

(
i

j

)(
p − 1

p − 1 − j

)

(−1)j

︸ ︷︷ ︸

=1

yiw(p−1)]

= (−1)[yi + yiw(p−1)2i]. (14)

Similarly one has
∑

e∈F∗
p
(y + ez)i(y− ez)(p−1) = (−1)[yi + yiz(p−1)2i]. Substituting and simplifying

one gets (13).
We will also need the following claims.

Claim 4.14 For every ℓ ∈ {2, · · · , k + 1}, y(= yl), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈ F
n
3 , with

notation used in the previous claim, it holds that

S1
f (w, y)−S1

f (z, y) = S1
f (z+w, y−z)−S1

f (z+w, y−w)+S1
f (y+z,w)+S1

f (y−z,w)−S1
f (y+w, z)−S1

f (y−w, z).

Proof : The above follows from the identity

w(1 − z2) − z(1 − w2) = (z + w)[1 − (z + y)2 − 1 + (y + w)2] + y(w2 − z2).

Also we can expand y(w2 − z2) as in the proof of Claim 4.12.

We have the following analogue in Fp.

Claim 4.15 For every i ∈ {1, · · · , p − 2}, for every ℓ ∈ {2, · · · , k + 1} and for every
y(= yℓ), z, w, b, y2, · · · , yℓ−1, yℓ+1, · · · , yk+1 ∈ F

n
p , there exists ci ∈ F

∗
p such that

Si
f (w, y) − Si

f (z, y) =
∑

e∈F∗
p

[
Si

f (y + ew, y − ew) − Si
f (w + ey,w − ey) + Si

f (z + ey, z − ey)

−Si
f (y + ez, y − ez) + ci

[
Si

f (y + ew, z) − Si
f (y + ez,w)

]]
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Proof : The above follows from the identity

wi(1− z(p−1))− zi(1−w(p−1)) = (wi − yi)(1− z(p−1))− (zi − yi)(1−w(p−1)) + yi(w(p−1) − z(p−1)).

We also use that
∑

e∈F∗
p
(w+ey)i = −wi and Claim 4.13 to expand the last term. Note that ci = 2−i

as before.

Proof of Lemma 4.6: We first prove the lemma for g0(y). We fix y ∈ F
n
3 and let γ

def
=

Pry1,··· ,yk+1∈Fn
3
[g0(y) = f(y) − Tf (y − y1, y2, · · · , yk+1, y1)]. Recall that we want to lower bound

γ by 1 − (4k + 14)η0. In that direction, we bound a slightly different but related probability. Let

µ
def
= Pry1,··· ,yk+1,z1,··· ,zk+1∈F

n
3
[Tf (y − y1, y2, · · · , yk+1, y1) = Tf (y − z1, z2, · · · , zk+1, z1)]

Denote 〈y1, · · · , yk+1〉 by Y and 〈z1, · · · , zk+1〉 by Z. Then by the definitions of µ and γ we have,

γ ≥ µ. (This is because for a probability vector v ∈ [0, 1]n,
∥
∥
∥v
∥
∥
∥
∞

= maxi∈[n]{vi} ≥ maxi∈[n]{vi} ·

(
∑n

i=1 vi) =
∑n

i=1 vi · maxi∈[n]{vi} ≥
∑n

i=1 v2
i =

∥
∥
∥v
∥
∥
∥

2

2
.)

We have µ = Pry1,··· ,yk+1,z1,··· ,zk+1∈F
n
3
[Tf (y − y1, y2, · · · , yk+1, y1)− Tf (y − z1, z2, · · · , zk+1, z1) =

0].
Now, for any choice of y1, · · · , yk+1 and z1, · · · , yk+1:

Tf (y − y1, y2, · · · , yk+1, y1) − Tf (y − z1, z2, · · · , zk+1, z1) =
Tf (y − y1, y2, · · · , yk+1, y1) − Tf (y − y1, y2, · · · , yk, zk+1, y1) +
Tf (y − y1, y2, · · · , yk, zk+1, y1) − Tf (y − y1, y2, · · · , yk−1, zk, zk+1, y1) +
Tf (y − y1, y2, · · · , yk−1, zk, zk+1, y1) − Tf (y − y1, y2, · · · , yk−2, zk−1, zk, zk+1, y1) +
...
Tf (y − y1, z2, z3, · · · , zk+1, y1) − Tf (y − z1, z2, · · · , zk+1, y1) +
Tf (y − z1, z2, z3, · · · , zk+1, y1) − Tf (y − y1, z2, · · · , zk+1, z1) +
Tf (y − y1, z2, z3, · · · , zk+1, z1) − Tf (y − z1, z2, · · · , zk+1, z1)

Consider any pair Tf (y−y1, y2, · · · , yℓ, zℓ+1, · · · , zk+1, y1)−Tf (y−y1, y2, · · · , yℓ−1, zℓ, · · · , zk+1, y1)
that appears in the first k “rows” in the sum above. Note that Tf (y−y1, y2, · · · , yℓ, zℓ+1, · · · , zk+1, y1)
and Tf (y− y1, y2, · · · , yℓ−1, zℓ, · · · , zk+1, y1) differ only in a single parameter. We apply Claim 4.10
and obtain:

Tf (y − y1, y2, · · · , yℓ, zℓ+1, · · · , zk+1, y1) − Tf (y − y1, y2, · · · , yℓ−1, zℓ, · · · , zk+1, y1) =
Tf (y − y1 + yl, y2, · · · , yℓ−1, zℓ, · · · , zk+1, y1) + Tf (y − y1 − yl, y2, · · · , yℓ−1, zℓ, · · · , zk+1, y1)
−Tf (y − y1 + zl, y2, · · · , yℓ, zℓ+1, · · · , zk+1, y1) − Tf (y − yl − zl, y2, · · · , yℓ, zℓ+1, · · · , zk+1, y1).

Recall that y is fixed and y2, · · · , yk+1, z2, · · · , zk+1 ∈ F
n
3 are chosen uniformly at random, so all

the parameters on the right hand side of the equation are independent and uniformly distributed.
Similarly one can expand the pairs Tf (y − y1, z2, z3, · · · , zk+1, y1) − Tf (y − z1, z2, · · · , zk+1, y1)
and Tf (y − y1, z2, z3, · · · , zk+1, z1) − Tf (y − z1, z2, · · · , zk+1, z1) into four Tf with all parameters
being independent and uniformly distributed9. Finally notice that the parameters in both Tf (y −
z1, z2, z3, · · · , zk+1, y1) and Tf (y − z1, z2, · · · , zk+1, y1) are independent and uniformly distributed.
Further recall that by the definition of η0, Prr1,··· ,rk+1

[Tf (r1, · · · , rk+1) 6= 0] ≤ η0 for independent
and uniformly distributed ri’s. Thus, by the union bound, we have:

Pry1,··· ,yk+1,z1,··· ,zk+1∈Fn
3
[Tf (y1, · · · , yk+1)−Tf (z1, · · · , zk+1) 6= 0] ≤ (4k+10)η0 ≤ (4k+14)η0. (15)

9Since Tf (·) is symmetric.

19



Therefore γ ≥ µ ≥ 1 − (4k + 14)η0. A similar argument, modulo the following caveats, proves the
Lemma for g1(y). Tf1(.) is not symmetric and needs some work. We use another identity as given
in Claim 4.14 to resolve the issue and get four extra terms than in the case of g0. In other words,
the proof for g1(y) is same as the proof for g0(y) except it also needs Claim 4.14.

Analogously, for Fp we have:

Lemma 4.16 For every y ∈ F
n
p , Pry1,y2,··· ,yk+1∈Fn

p
[gi(y) = f(y) − T i

f (y − y1, y2, · · · , yk+1, y1) +
f(y)] ≥ 1 − 2((p − 1)k + 6(p − 1) + 1)ηi.

The proof is similar to that of Lemma 4.6 where it can be shown µi ≥ 1−2((p−1)k+6(p−1)+1)ηi ,
for each µi defined for gi(y).

Remark 4.17 Using Lemma 4.6, we can get a slightly stronger version of Lemma 4.4 following
the proof of Lemma 2 in [AKK+05]. For a fixed function f : F

n
p → Fp, let gi, ηi be defined as in

(10) and (11). Then, δ(f, gi) ≤ min(2ηi,
ηi

1−2((p−1)k+6(p−1)+1)ηi
).

4.2.2 Proof of Lemma 4.7

From Theorem 3.1, it suffices to prove that if ηi < 1
2(2k+7)3k+1 then T i

gi
(y1, · · · , yk+1, b) = 0 for

every y1, · · · , yk+1, b ∈ F
n
3 . Fix the choice of y1, · · · , yk+1, b. Define Y = 〈y1, · · · , yk+1〉. We will

express T i
gi

(Y, b) as the sum of T i
f (·) with random arguments. We uniformly select (k + 1)2 random

variables zi,j over F
n
3 for 1 ≤ i ≤ k + 1, and 1 ≤ j ≤ k + 1. Define Zi = 〈zi,1, · · · , zi,k+1〉. We also

select uniformly (k + 1) random variables ri over F
n
3 for 1 ≤ i ≤ k + 1. We use zi,j and ri’s to set

up the random arguments. Now by Lemma 4.6, for every I ∈ F
k+1
3 (i.e. think of I as an ordered

(k + 1)-tuple over {0, 1, 2}), with probability at least 1 − 2(2k + 7)ηi over the choice of zi,j and ri,

gi(I ·Y + b) = f(I ·Y + b)−T i
f(I ·Y + b− I ·Z1−r1, I ·Z2 +r2, · · · , I ·Zk+1 +rk+1, I ·Z1 +r1), (16)

where for vectors X ∈ F
k+1
3 , Y ∈ (Fn

3 )k+1, we define Y · X
def
=
∑k+1

i=1 YiXi, where the operations are
over F

n
3 .

Let E1 be the event that (16) holds for all I ∈ F
k+1
3 . By the union bound:

Pr[E1] ≥ 1 − 3k+1 · 2(2k + 7)ηi. (17)

Assume that E1 holds. We now need the following claims. Let J = 〈J1, · · · , Jk+1〉 be a (k + 1)
dimensional vector over F3, and denote J ′ = 〈J2, · · · , Jk+1〉.

Claim 4.18 If (16) holds for all I ∈ F
k+1
3 , then

T 0
g0

(Y, b) =
∑

06=J ′∈F
k
3

[

−Tf (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

−Tf (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1), 2b − r1 +

k+1∑

t=2

Jtrt)

+ Tf (z1,1 +

k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +

k+1∑

t=2

Jtzt,(k+1), r1 +

k+1∑

t=2

Jtrt)

]

. (18)
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Claim 4.19 If (16) holds for all I ∈ F
k+1
3 , then

T 1
g1

(Y, b) =
∑

06=J ′∈F
k
3

[

−T 1
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

T 1
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1), 2b − r1 +

k+1∑

t=2

Jtrt)

]

.

(19)

The proofs of Claim 4.18 and Claim 4.19 are deferred to the appendix. Let E2 be the event
that for every J ′ ∈ F

k
3, T

i
f (y1 +

∑

t Jtzt,1, · · · , yk+1 +
∑

t Jtzt,(k+1), b +
∑

t=2 k + 1Jtrt) = 0,

T i
f (2y1 − z1,1 +

∑k+1
t=2 Jtzt,1, · · · , 2yk+1 − z1,k+1 +

∑k+1
t=2 Jtzt,(k+1), 2b − r1 +

∑k+1
t=2 Jtrt) = 0, and

Tf (z1,1 +
∑k+1

t=2 Jtzt,1, · · · , z1,k+1 +
∑k+1

t=2 Jtzt,k+1, r1 +
∑k+1

t=2 Jtrt) = 0. By the definition of ηi and
the union bound, we have:

Pr[E2] ≥ 1 − 3k+1ηi. (20)

Suppose that ηi ≤
1

2(2k+7)3k+1 holds. Then by (17) and (20), the probability that E1 and E2

hold is strictly positive. In other words, there exists a choice of the zi,j’s and ri’s for which all
summands in either Claim 4.18 or in Claim 4.19, whichever is appropriate, is 0. This implies that
T i

gi
(y1, · · · , yk+1, b) = 0. In other words, if ηi ≤

1
2(2k+7)3k+1 , then gi belongs to Pt.

Remark 4.20 Over Fp we have: if ηi < 1
2((p−1)k+6(p−1)+1)pk+1 , then gi belongs to Pt (if k ≥ 1).

In case of Fp, we can generalize (16) in a straightforward manner. Let E′
1 denote the event that

all such events holds. We can similarly obtain

Pr[E′
1] ≥ 1 − pk+1 · 2((p − 1)k + 6(p − 1) + 1)ηi. (21)

Claim 4.21 Assume equivalent of (16) holds for all I ∈ F
k+1
p , then10

T i
gi

(Y, b) =
∑

06=J ′∈Fk
p

[

−T i
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1

[

−T i
f (J1y1 − (J1 − 1)z1,1 +

k+1∑

t=2

Jtzt,1, · · · , J1yk+1 − (J1 − 1)z1,(k+1)

+
k+1∑

t=2

Jtzt,(k+1), J1b − (J1 − 1)r1 +
k+1∑

t=2

Jtrt)

]]

(22)

Let E′
2 be the event analogous to the event E2 in Claim 4.19. Then by the definition of ηi and the

union bound, we have
Pr[E′

2] ≥ 1 − 2pk+1ηi. (23)

Then if we are given that ηi < 1
2((p−1)k+6(p−1)+1)pk+1 , then the probability that E′

1 and E′
2 hold is

strictly positive. Therefore, this implies T i
gi

(y1, · · · , yk+1, b) = 0.

10Recall that we are using the convention 00 = 1.
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4.2.3 Proof of Lemma 4.8

For each C ∈ F
k+1
3 , let XC be the indicator random variable whose value is 1 if and only if

f(C · Y + b) 6= g(C · Y + b). Clearly, Pr[XC = 1] = δ for every C. It follows that the random
variable X =

∑

C XC which counts the number of points v of the required form in which f(v) 6= g(v)
has expectation E[X] = 3k+1δ = ℓ · δ. It is not difficult to check that the random variables XC are
pairwise independent, since for any two distinct C1 and C2, the sums

∑k+1
i=1 C1,i+b and

∑k+1
i=1 C2,i+b

attain each pair of distinct values in F
n
3 with equal probability when the vectors are chosen randomly

and independently. Since XC ’s are pairwise independent, Var[X] =
∑

C Var[XC ]. Since XC ’s are
boolean random variables, we note

Var[XC ] = E[X2
C ] − (E[XC ])2 = E[XC ] − (E[XC ])2 ≤ E[XC ].

Thus we obtain Var[X] ≤ E[X], so E[X2] ≤ E[X]2 + E[X]. Next we use the following inequality
from [AKK+05] which holds for a random variable X taking nonnegative, integer values,

Pr[X > 0] ≥
(E[X])2

E[X2]
.

In our case, this implies

Pr[X > 0] ≥
(E[X])2

E[X2]
≥

(E[X])2

E[X] + (E[X])2
=

E[X]

1 + E[X]
.

Therefore,

E[X] ≥ Pr[X = 1]+2Pr[X ≥ 2] = Pr[X = 1]+2

(
E[X]

1 + E[X]
− Pr[X = 1]

)

=
2E[X]

1 + E[X]
− Pr[X = 1].

After simplification we obtain,

Pr[X = 1] ≥
1 − E[X]

1 + E[X]
· E[X].

The proof is complete by recalling that E[X] = ℓ · δ.

5 A Lower Bound and Improved Self-correction

5.1 A Lower Bound

The next theorem is a simple modification of a theorem in [AKK+05] and essentially implies that
our result is almost optimal.

Proposition 5.1 Let F be any family of functions f : F
n
p → Fp that corresponds to a linear code

C. Let d denote the minimum distance of the code C and let d̄ denote the minimum distance of the
dual code of C.
Every one-sided testing algorithm for the family F must perform Ω(d̄) queries, and if the distance
parameter ǫ is at most d/pn+1, then Ω(1/ǫ) is also a lower bound for the necessary number of
queries.

Lemma 3.2 and Proposition 5.1 gives us the following corollary.

Corollary 5.2 Every one-sided tester for testing Pt with distance parameter ǫ must perform Ω(max(1
ǫ , (1+

((t + 1) mod (p − 1)))p
t+1
p−1 )) queries.
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5.2 Improved Self-correction

The following corollary follows from Theorem 3.1 and an application of the union bound.

Corollary 5.3 Consider a function f : F
n
3 → F3 that is ǫ-close to a degree-t polynomial g : F

n
3 →

F3, where ǫ < 2
3k+2 . (Assume k ≥ 1.) Then the function f can be self-corrected. That is, for any

given x ∈ F
n
3 , it is possible to obtain the value g(x) with probability at least 1 − 3k+1ǫ by querying

f on 3k+1 − 1 points on F
n
3 .

An analogous result may be obtained for the general case. If ǫ < 1
2·pk+1 , then repeating the

above s number of times and taking the plurality, one can retrieve the correct value with probability
at least 1−2−Ω(s) (this follows from the Chernoff bound). The query complexity is spk+1. Further,
note that the corrector uses Θ(k · s · n log p) many random bits.

Recall that the relative distance of the GRM code is δ = (1−R/p)p−k where t = (p− 1) · k + R
and 0 ≤ R ≤ (p−2). Thus, the self-corrector discussed above does not work for ǫ ≥ δ/4. Below, we
show how to locally self-correct from error rate δ/2− ǫ′ for any arbitrary ǫ′ > 0. Further, the result
below can also use less amounts of randomness than the self-corrector above for certain setting of
parameter. For example, if one is shooting for a success probability of 1 − p−k, ǫ is polynomial
in p−k and ǫ′ is polynomially related to ǫ; then in the first case we will need Θ(k2n log2 p) many
random bits (as we need s = Θ(k log p)) while the corrector below uses Θ(kn log2 p) many random
bits (as K = Θ(k log p)).

The improvement comes from the following observation. The corrector above does not allow any
error in the pk+1 points it queries. We obtain a stronger result by querying on a slightly larger flat
H, but allowing more errors. Errors are handled by decoding the induced Generalized Reed-Muller
code on H.

Proposition 5.4 Consider a function f : F
n
p → Fp that is ǫ-close, where ǫ < δ/2 − ǫ′ for any

δ/2 >> ǫ′ > 0, to a degree-t polynomial g : F
n
p → Fp. Then the function f can be self-corrected.

That is, assume K > 1 + log
(

ǫ
(ǫ′)2

)

, then for any given x ∈ F
n
p , the value of g(x) can be obtained

with probability at least 1 − ǫ
(ǫ′)2

· p−(K−1) with pK queries to f .

Proof : Our goal is to correct the f at the point x. Recall that our local tester requires a (k+1)-flat,
i.e., it tests

∑

c1,··· ,ck+1∈Fp
cp−2−R
1 f(y0 +

∑k+1
i=1 ciyi) = 0, where yi ∈ F

n
p .

We choose a slightly larger flat, i.e., a K-flat with K > 1 + log(ǫ/(ǫ′)2). We consider the code
restricted to this K-flat with point x being the origin. We query f on this K-flat. It is known
that a majority logic decoding algorithm exists that can decode Generalized Reed-Muller code up
to half the minimum distance for any choice of parameters (see [Sud01]). Thus if the number of
error is small we can recover g(x). We now present the details.

Let the relative distance of f from GRMp(t,m) be ǫ and let S be the set of points where it

disagrees with the closest codeword. Consider a K-flat H = {x +
∑K

i=1 tiui|ti ∈ F, ui ∈R F
n
p}. Let

D = F
K \ {0} and U = 〈u1, · · · , uK〉. Let the indicator variable YU,〈t1,··· ,tK〉 take the value 1 if

x +
∑K

i=1 uiti ∈ S and 0 otherwise. Define YU =
∑

〈t1,··· ,tK〉∈D YU,〈t1,··· ,tK〉 and ℓ = (pK − 1). We
would like to bound the probability

PrU [YU ≥ ℓ · δ/2] ≤ PrU [|YU − ǫℓ| ≥ ǫ′ℓ].
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Since PrU [YU,〈t1,··· ,tK〉 = 1] = ǫ, by linearity of expectation, we get EU [YU ] = ǫℓ. Let T =
〈t1, · · · , tK〉. Since U will be clear from context, we drop it from the subscripts. Now

V ar[Y ] =
∑

T∈D

V ar[YT ] +
∑

T 6=T ′

Cov[YT , YT ′ ]

= ℓ(ǫ − ǫ2) +
∑

T 6=λT ′

Cov[YT , YT ′ ]

+
∑

T=λT ′;16=λ∈F∗

Cov[YT , YT ′ ]

≤ ℓ(ǫ − ǫ2) + ℓ · (p − 2)(ǫ − ǫ2)

= ℓ(ǫ − ǫ2)(p − 1)

The above follows from the fact that when T 6= λT ′ then the corresponding events YT and YT ′ are
almost independent, and in fact Cov[YT , YT ′ ] = −(ǫ − ǫ2)/l. Also, when T = λT ′, YT and YT ′ may
be dependent. Nevertheless, Cov[YT , YT ′ ] = EU [YT YT ′ ] − EU [YT ]EU [YT ′ ] ≤ ǫ − ǫ2.
Therefore, by Chebyshev’s inequality we have

PrU [|Y − ǫℓ| ≥ ǫ′ℓ] ≤
ℓǫ(1 − ǫ)(p − 1)

(ǫ′)2ℓ2

We thus have

PrU [|Y − ǫℓ| ≥ ǫ′ℓ] ≤
ǫp

(ǫ′)2(ℓ + 1)

=
ǫ

(ǫ′)2
· p−(K−1).

Thus with probability at least 1 − ǫ
(ǫ′)2

· p−(K−1) the function can be self-corrected at x.

6 Conclusions

The lower bound in Corollary 5.2 implies that our upper bound is almost tight. We resolved the
question posed in [AKK+05] for all prime fields. Independently in [KR06] the question has been
resolved for all fields. We mention that later we found an alternate proof of their characterization
of polynomials over arbitrary finite fields.

Recently there has been some interest in tolerant testing. In our setting this requires a tester
to also accept received words that are “close” to some codeword in addition to rejecting received
words that are “far” away received words [GR05]. Note that the “standard” testers (such as those
considered in this paper) satisfy the second requirement but are only required to satisfy the first
requirement when there is no error. Our work unfortunately does not imply anything non-trivial
about tolerant testing of GRM codes. However, designing a “standard” tester that either has
the optimal query complexity or is the so-called “robust” tester (cf. [BSS06]), will by the simple
observations in [GR05], imply a tolerant tester for GRM codes. We remark that there exists robust
testers for GRM codes when the degree parameter is smaller than the alphabet size, which in turn
implies a tolerant tester for such codes [GR05]. However, the problem of designing a tolerant tester
for GRM codes over all alphabets is still open.
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Kaufman and Litsyn ([KL05]) have shown that the dual of BCH codes are locally testable (this
result was later extended by Kaufman and Sudan to hold for a larger set of “sparse” codes [KS07]).
They also give a sufficient condition for a code to be locally testable. The condition roughly says
that if the number of fixed length codewords in the dual of the union of the code and its ǫ-far coset
is suitably smaller than the same in the dual of the code, then the code is locally testable. Their
argument is more combinatorial in nature and needs the knowledge of weight-distribution of the
code and thus differs from the self-correction approach used in this work.

Alon et al. [AKK+05], made the following general conjecture. The conjecture claims that any
linear code with small (constant) dual distance that has a doubly transitive group acting on the
co-ordinates of the codewords mapping the dual code to itself, is locally testable. [KL05] resolved
this conjecture in the affirmative for the dual BCH codes. However the general conjecture was very
recently shown to be false by Grigorescu, Kaufman and Sudan [GKS08].
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A Omitted Proofs from Section 4

Proof of Lemma 4.5: We will use I, J, I ′, J ′ to denote (k + 1) dimensional vectors over Fp. Now
note that

gi(y) = Pluralityy1,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(I1(y − y1) +

k+1∑

t=2

Ityt + y1)]

= Pluralityy−y1,y2,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(I1(y − y1) +

k+1∑

t=2

Ityt + y)]

= Pluralityy1,··· ,yk+1∈Fn
p
[−

∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(

k+1∑

t=1

Ityt + y)] (24)

Let Y = 〈y1, · · · , yk+1〉 and Y ′ = 〈y′1, · · · , y′k+1〉. Also we will denote 〈0, · · · , 0〉 by ~0. Now note
that

1 − ηi ≤ Pry1,··· ,yk+1,b[T
i
f (y1, · · · , yk+1, b) = 0] (25)

= Pry1,··· ,yk+1,b[
∑

I∈F
k+1
p

Ii
1f(b + I · Y ) = 0]

= Pry1,··· ,yk+1,b[f(b + y1) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(b + I · Y ) = 0]

= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈1,0,··· ,0〉

Ii
1f(y − y1 + I · Y ) = 0]

= Pry1,··· ,yk+1,y[f(y) +
∑

I∈F
k+1
p ;I 6=〈0,··· ,0〉

(I1 + 1)if(y + I · Y ) = 0]

(26)

Therefore for any given I 6= ~0 we have the following:

PrY,Y ′ [f(y + I · Y ) =
∑

J∈F
k+1
p ;J 6=~0

−(J1 + 1)if(y + I · Y + J · Y ′)] ≥ 1 − ηi

and for any given J 6= ~0,

PrY,Y ′ [f(y + J · Y ′) =
∑

I∈F
k+1
p ;I 6=~0

−(I1 + 1)if(y + I · Y + J · Y ′)] ≥ 1 − ηi.
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Combining the above two and using the union bound we get,

PrY,Y ′ [
∑

I∈F
k+1
p ;I 6=~0

(I1 + 1)if(y + I · Y ) =
∑

I∈F
k+1
p ;I 6=~0

∑

J∈F
k+1
p ;J 6=~0

−(I1 + 1)i(J1 + 1)if(y + I · Y + J · Y ′)

=
∑

J∈F
k+1
p ;J 6=~0

(J1 + 1)if(y + J · Y ′)]

≥ 1 − 2(pk+1 − 1)η ≥ 1 − 2pk+1ηi (27)

The lemma now follows from the observation that the probability that the same object is drawn
from a set in two independent trials lower bounds the probability of drawing the most likely object
in one trial: Suppose the objects are ordered so that pi is the probability of drawing object i, and
p1 ≥ p2 ≥ · · · . Then the probability of drawing the same object twice is

∑

i p
2
i ≤

∑

i p1pi ≤ p1.

Proof of Claim 4.18:

Tg(Y, b) =
∑

I∈F
k+1
3

g(I · Y + b)

=
∑

I∈F
k+1
3

[−Tf (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1, I · Z1 + r1)

+f(I · Y + b)]

= −
∑

I∈F
k+1
3








∑

∅6=J ′∈F
k
3

f(I · Y + b +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)





+




∑

J ′∈F k
3

(

f(2I · Y + 2b − I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

+f(I · Z1 + r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

)]]

= −
∑

06=J ′∈F
k
3






∑

I∈F
k+1
3

f(I · Y + b +

k+1∑

t=2

Jtrt +

k+1∑

t=2

JtI · Zt)






−
∑

J ′∈F
k
3











∑

I∈F
k+1
3

f(2I · Y + 2b − I · Z1 − r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)






+






∑

I∈F
k+1
3

f(I · Z1 + r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)











=
∑

06=J ′∈Fk
3

[

−Tf (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]
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+
∑

J ′∈Fk
3

[

−Tf (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +

k+1∑

t=2

Jtzt,(k+1), 2b − r1 +

k+1∑

t=2

Jtrt)

+ Tf (z1,1 +

k+1∑

t=2

Jtzt,1, · · · , z1,k+1 +

k+1∑

t=2

Jtzt,(k+1), r1 +

k+1∑

t=2

Jtrt)

]

(28)

Proof of Claim 4.19:

T 1
g1

(Y, b) =
∑

I∈F
k+1
3

I1g1(I · Y + b)

=
∑

I∈F
k+1
3

I1

[
−T 1

f (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1, I · Z1 + r1)

+ f(I · Y + b)]

= −
∑

I∈F
k+1
3

I1








∑

∅6=J ′∈F
k
3

f(I · Y + b +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





+




∑

J ′∈F k
3

f(2I · Y + 2b − I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)









= −
∑

06=J ′∈F
k
3






∑

I∈F
k+1
3

I1f(I · Y + b +
k+1∑

t=2

Jtrt +
k+1∑

t=2

JtI · Zt)






−
∑

J ′∈F
k
3






∑

I∈F
k+1
3

I1f(2I · Y + 2b − I · Z1 − r1 +
k+1∑

t=2

JtI · Zt +
k+1∑

t=2

Jtrt)






=
∑

06=J ′∈F
k
3

[

−T 1
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +
k+1∑

t=2

Jtzt,(k+1), b +
k+1∑

t=2

Jtrt)

]

+
∑

J ′∈F
k
3

[

T 1
f (2y1 − z1,1 +

k+1∑

t=2

Jtzt,1, · · · , 2yk+1 − z1,(k+1) +
k+1∑

t=2

Jtzt,(k+1), 2b − r1 +
k+1∑

t=2

Jtrt)

]

(29)

Proof of Claim 4.21:

T i
gi

(Y, b) =
∑

I∈F
k+1
p

Ii
1gi(I · Y + b)

=
∑

I∈F
k+1
p

Ii
1

[
−T i

f (I · Y + b − I · Z1 − r1, I · Z2 + r2, · · · , I · Zk+1 + rk+1, I · Z1 + r1)
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+ f(I · Y + b)]

= −
∑

I∈F
k+1
p

Ii
1








∑

∅6=J ′∈Fk
p

f(I · Y + b +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)





+




∑

J1∈Fp,J1 6=1

J i
1




∑

J ′∈Fk
p

f(J1I · Y + J1b − (J1 − 1)I · Z1 − (J1 − 1)r1 +

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)









= −
∑

06=J ′∈Fk
p




∑

I∈F
k+1
p

Ii
1f(I · Y + b +

k+1∑

t=2

Jtrt +

k+1∑

t=2

JtI · Zt)





−
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1




∑

I∈F
k+1
p

Ii
1f(J1I · Y + J1b − (J1 − 1)I · Z1 − (J1 − 1)r1

+

k+1∑

t=2

JtI · Zt +

k+1∑

t=2

Jtrt)

]]

=
∑

06=J ′∈Fk
p

[

−T i
f (y1 +

k+1∑

t=2

Jtzt,1, · · · , yk+1 +

k+1∑

t=2

Jtzt,(k+1), b +

k+1∑

t=2

Jtrt)

]

+
∑

J ′∈Fk
p




∑

J1∈Fp;J1 6=1

J i
1

[

−T i
f (J1y1 − (J1 − 1)z1,1 +

k+1∑

t=2

Jtzt,1, · · · , J1yk+1 − (J1 − 1)z1,(k+1)

+

k+1∑

t=2

Jtzt,(k+1), J1b − (J1 − 1)r1 +

k+1∑

t=2

Jtrt)

]]

(30)
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