MINING CIRCUIT LOWER BOUND
PROOFS FOR META-ALGORITHMS

RUIWEN CHEN, VALENTINE KABANETS,
ANTONINA KOLOKOLOVA, RONEN SHALTIEL,
AND DAVID ZUCKERMAN

March 3, 2015

Abstract. We show that circuit lower bound proofs based on the
method of random restrictions yield non-trivial compression algorithms
for “easy” Boolean functions from the corresponding circuit classes.
The compression problem is defined as follows: given the truth table
of an n-variate Boolean function f computable by some unknown small
circuit from a known class of circuits, find in deterministic time poly(2™)
a circuit C' (no restriction on the type of C') computing f so that the
size of C' is less than the trivial circuit size 2"/n. We get non-trivial
compression for functions computable by AC’ circuits, (de Morgan)
formulas, and (read-once) branching programs of the size for which the
lower bounds for the corresponding circuit class are known.

These compression algorithms rely on the structural characterizations
of “easy” functions, which are useful both for proving circuit lower
bounds and for designing “meta-algorithms” (such as Circuit-SAT). For
(de Morgan) formulas, such structural characterization is provided by
the “shrinkage under random restrictions” results by Subbotovskaya
(1961) and Hastad (1998), strengthened to the “high-probability” ver-
sion by Santhanam (2010), Impagliazzo, Meka & Zuckerman (2012b),
and Komargodski & Raz (2013). We give a new, simple proof of the
“high-probability” version of the shrinkage result for (de Morgan) for-
mulas, with improved parameters. We use this shrinkage result to get
both compression and #SAT algorithms for (de Morgan) formulas of
size about n?. We also use this shrinkage result to get an alternative
proof of the result by Komargodski & Raz (2013) of the average-case
lower bound against small (de Morgan) formulas.

Finally, we show that the existence of any non-trivial compression al-
gorithm for a circuit class C C P/poly would imply the circuit lower

2 Chen et al.

bound NEXP ¢ C; a similar implication is independently proved also by
Williams (2013). This complements the result by Williams (2010) that
any non-trivial Circuit-SAT algorithm for a circuit class C would imply
a superpolynomial lower bound against C for a language in NEXP.

Keywords. average-case circuit lower bounds; Circuit-SAT algo-
rithms; compression; meta-algorithms; natural property; random re-
strictions; shrinkage of de Morgan formulas

Subject classification. 03D15

1. Introduction

Circuit lower bounds (proved or assumed) have a number of algo-
rithmic applications. The most notable examples are in cryptog-
raphy, where a computationally hard problem is used to construct
a secure cryptographic primitive (Blum & Micali 1984; Yao 1982),
and in the derandomization of probabilistic polynomial-time algo-
rithms, where a hard problem is used to construct a source of pseu-
dorandom bits that can replace truly random ones when simulating
an efficient randomized algorithm (Nisan & Wigderson 1994). In
both cases, we in fact have an equivalence between the existence
of appropriately hard computational problem and the existence
of a corresponding algorithmic procedure (appropriate pseudoran-
dom generator), cf. Hastad et al. (1999); Kabanets & Impagliazzo
(2004); Nisan & Wigderson (1994).

In both mentioned examples, a circuit lower bound is used in
a “black-box” fashion: the knowledge that a lower bound holds is
sufficient to derive algorithmic consequences, e.g., if some language
in DTIME(2°™) requires circuit size 2™ then BPP = P (Im-
pagliazzo & Wigderson 1997). One would hope that the proof
techniques (of the few circuit lower bounds that we actually have
at present) may yield new algorithms (for the same computational
model where we have the lower bounds).

This is indeed the case as witnessed by a number of examples:

o a learning algorithm for AC’-computable Boolean functions
by Linial et al. (1993),

Mining Circuit Lower Bound Proofs 3

a Circuit-SAT algorithm for ACY circuits by Beame et al.
(2012); Impagliazzo et al. (2012a), using Hastad’s Switching
Lemma, a main tool used in the AC® lower bound proof by
Hastad (1986),

O

o a simple pseudorandom generator for AC® circuits by Bazzi
(2009); Braverman (2010), using the aforementioned work of
Linial et al. (1993),

o a Circuit-SAT algorithm for linear-size (de Morgan) formulas
by Santhanam (2010); Seto & Tamaki (2012), and

o a pseudorandom generator for small (de Morgan) formulas
and branching programs by Impagliazzo et al. (2012b), using
a generalization of the “shrinkage under random restrictions”
result of Hastad (1998); Subbotovskaya (1961).

Compression of Boolean functions as a special natural
propery. Trying to understand the limitations of current circuit
lower bound techniques, Razborov & Rudich (1997) came up with
the notion of a natural property that can be extracted from most
lower bound proofs known at the time. Loosely speaking, a natural
property is a deterministic polynomial-time algorithm that can dis-
tinguish the truth table of an easy Boolean function (computable
by a small circuit from a given circuit class C) from the truth ta-
ble of a random Boolean function, when given the truth table of a
function as input. They also argued that such an algorithm can be
used to break strong pseudorandom generators computable in the
circuit class C; hence, if we assume sufficiently secure cryptography
for a circuit class C, then we must conclude that there is no natural
property for the class C. The latter is known as the “natural-proof
barrier” to proving new circuit lower bounds.

More precisely, a property of n-variate Boolean functions is
called natural if it satisfies the following conditions: (i) Construc-
tiveness: There is a deterministic algorithm that, given the truth
table of an n-variate Boolean function f, checks in time poly(2™)
whether f satisfies the property; (ii) Largeness: At least 279
fraction of all n-variate Boolean functions satisfy the property. For

4 Chen et al.

a circuit class C, a property of Boolean functions is called C-useful
if whenever a family {f,}.>0 of n-variate Boolean functions satis-
fies the property for infinitely many input lengths n, we get that
this family { f,, }n>0 is not computable by the circuit class C.

We focus on the “positive” part of the natural-property argu-
ment: known circuit lower bounds yield a natural property. One
way to obtain such a natural property is to argue the existence of
an efficient compression algorithm for easy functions from a given
circuit class C. Namely, given the truth table of n-variate Boolean
function f from C, we want to find some Boolean circuit (not nec-
essarily of the type C) computing f such that the size of the found
circuit is less than 2" /n (which is the trivial size achievable for any
n-variate Boolean function)!. There are two natural parameters to
minimize: the size of the found circuit and the running time of the
compression algorithm. Since the algorithm is given the full truth
table as input, we consider it efficient if it runs in time 29 (poly-
nomial in its input size). Ideally, we would like to find a circuit as
small as the promised size of the concise representation of a given
function f. However, any non-trivial savings over the generic 2" /n
circuit size (Lupanov 1958) are interesting.?

Does every natural C-circuit lower bound, currently known,
yield a compression algorithm for C? The positive answer would
strengthen the argument of Razborov & Rudich (1997) to show
that every known lower bound proof yields a particular kind of
natural property, efficient compressibility.

We hypothesize that the answer is ‘Yes,” and make the first
step in this direction by extracting a compression algorithm from
the lower-bound proofs based on the method of random restric-
tions. These include the lower bounds for AC® circuits (Furst
et al. 1984; Hastad 1986; Yao 1985), for de Morgan formulas (An-
dreev 1987; Hastad 1998; Subbotovskaya 1961), for branching pro-
grams (Nechiporuk 1966), and for read-once branching programs,

!This is different than C-circuit minimization considered by (Allender et al.
2008) where the task is to construct a minimum-size circuit of the type C.

2The compression task as defined above can be viewed as lossless compres-
sion: we want the compressed image (circuit) to compute the given function
exactly. One can also consider the notion of lossy compression where the task
is to find a circuit that only approximates the given function.

Mining Circuit Lower Bound Proofs 5)

see, e.g., Andreev et al. (1999).

Compression Theorem: (1) Boolean n-variate functions com-
puted by AC® circuits of size s and depth d are compressible in time
poly(2™) to circuits of size at most 27~/O0s)™" " (9) Boolean n-
variate functions computed by de Morgan formulas of size at most
n>4 by formulas over the complete basis of size at most n'%,
or by branching programs of size at most n**° are compressible in
time poly(2") to circuits of size at most 2", for some ¢ > 0.
(8) Boolean n-variate functions computed by read-once branching
programs of size at most 2% are compressible in time poly(2")
to circuits of size at most 20997,

Finding a succinct representation of a given object is an im-
portant natural problem studied in various settings under various
names: e.g., data compression, circuit minimization, and compu-
tational learning. Designing efficient compression algorithms for
“data” produced by small Boolean circuits of restricted type is an
interesting task in its own right. In addition, such algorithmic fo-
cus helps us sharpen our understanding of the structural properties
of easy Boolean functions, which may be exploited in both design-
ing new meta-algorithms, algorithms that take Boolean functions
as inputs (e.g., the full truth table as in the case of compression al-
gorithms, or a small Boolean circuit computing the function, as in
the case of Circuit-SAT algorithms), and proving stronger circuit
lower bounds.

In this vein, we also have the following additional results.

1.1. Our results. In addition to the aforementioned Compres-
sion Theorem, we have results on shrinkage of (de Morgan) formu-
las, #SAT-algorithms and average-case lower bounds for small (de
Morgan) formulas, and circuit lower bounds implied by compres-
sion algorithms. These are detailed next.

Shrinkage of formulas As shown by Subbotovskaya (1961), if
one randomly chooses n—k variables of a given n-variate de Morgan
formula, and sets each to 0 or 1 uniformly at random, then the
expected size of the resulting formula is at most (k/n)"-|F|, where

6 Chen et al.

I' (called the shrinkage exponent) is 3/2; this I' was subsequently
improved to the optimal value 2 by Hastad (1998).

This “shrinkage in expectation” result is sufficient for proving
worst-case de Morgan formula lower bounds (Andreev 1987). How-
ever, for designing SAT-algorithms and pseudorandom generators,
as well as for proving strong average-case hardness results for small
de Morgan formulas, it is important to have a “high-probability”
version of such a shrinkage result, saying that “most” restrictions
(of the appropriate kind) shrink the size of the original formula.
Such a version of shrinkage for de Morgan formulas is implicit in
the work by Santhanam (2010) for linear-size formulas; Impagli-
azzo et al. (2012b) prove a version of shrinkage with respect to
pseudo-random restrictions for de Morgan formulas of size almost
n?; Komargodski & Raz (2013) prove the shrinkage result for cer-
tain random restrictions for de Morgan formulas of size about n??,
later improved by Komargodski et al. (2013) to size almost n?.

We sharpen a structural characterization of small (de Morgan)
formulas by proving a stronger version of the “shrinkage under ran-
dom restrictions” result of (Komargodski & Raz 2013; Santhanam
2010), with a cleaner and simpler argument.

Shrinkage Lemma: Let F' be a (de Morgan) formula or general
branching program of size s on n variables. Consider the following
greedy randomized process:

For n — k steps (where 0 < k < n), do the follow-
ing: (1) choose the most frequent variable in the current
formula/branching program; (2) assign it uniformly at
random to 0 or 1; (3) simplify the resulting new formula
using rules which do not change the function the for-
mula computes (the rules are specified in Section 2.1).

Then, with probability at least 1 — 27%, this process produces a for-
mula of size at most 2 - s - (k/n)*, where T' = 1.5 for de Morgan
formulas, and T' = 1 for general formulas and branching programs.

Formula-#SAT That SAT is NP-complete, and so probably not
solvable in polynomial time (Cook 1971; Levin 1973), does not de-

Mining Circuit Lower Bound Proofs 7

ter interests in “better-than-brute-force” SAT-algorithms. In par-
ticular, the case of CNF-SAT has been actively studied for a num-
ber of years (see a survey by Dantsin & Hirsch (2009)), while the
study of Circuit-SAT algorithms for more general classes of circuits
is more recent: see Beame et al. (2012); Calabro et al. (2009); Im-
pagliazzo et al. (2012a) for AC’-SAT, Santhanam (2010); Seto &
Tamaki (2012) for Formula-SAT, and Williams (2011) for ACC’-
SAT. Usually such algorithms exploit the same structural proper-
ties of the corresponding circuit class that are used in the circuit
lower bounds for that class. In fact, the observation that circuit
lower bound proofs and meta-algorithms are intimately related was
first formulated in his PhD thesis by Zane (1998) precisely in the
context of depth-3 circuit lower bounds and improved CNF-SAT
algorithms.

As a consequence of the Shrinkage Lemma above, we get a
new “better-than-brute-force” deterministic algorithm for #SAT
for formulas of size almost n'*!, where I' = 1.5 for de Morgan
formulas, and I' = 1 for general formulas and branching programs,
as well as give a simplified analysis of the #SAT algorithms for
linear-size (de Morgan) formulas from Santhanam (2010); Seto &
Tamaki (2012).

#SAT algorithms: Counting the number of satisfying assign-
ments for n-variate de Morgan formulas of size n**°, formulas
over the complete basis of size n'*%°, or branching programs of size
nt9 can be done by a deterministic algorithm in time 2", for

some € > 0.

Average-case formula lower bounds Showing that explicit
functions are average-case hard to compute by small circuits is an
important problem in complexity theory, both for understanding
“efficient computation”, and for algorithmic applications (e.g., in
cryptography and derandomization). Here, again, useful algorith-
mic ideas often contribute to proving lower bounds for the related
model of computation. For example, strong average-case hardness
results for linear-size (de Morgan) formulas are proved in San-
thanam (2010); Seto & Tamaki (2012), using the same ideas that
also gave SAT-algorithms for the corresponding formula classes.

8 Chen et al.

We use our shrinkage lemma to give an alternative proof of
a recent average-case lower bound against (de Morgan) formulas
due to Komargodski & Raz (2013): There is a Boolean function
f:40,1}" — {0,1} computable in P such that every de Morgan
formula of size n**% (any general formula of size n'*°) computes
f(x) correctly on at most 1/2 + 2™ fraction of all n-bit inputs,
for some constant 0 < o < 1.

Circuit lower bounds from compression algorithms There
are a number of results showing that the existence of a meta-
algorithm for a certain circuit class C implies superpolynomial
lower bounds against that class for some function in (nondeter-
ministic) exponential time (Agrawal 2005; Fortnow & Klivans 2006;
Heintz & Schnorr 1982; Impagliazzo et al. 2002; Kabanets & Im-
pagliazzo 2004; Kannan 1982; Nisan & Wigderson 1994; Williams
2010). In particular, the result by Williams (2010) essentially says
that deciding the satisfiability of circuits from a class C in time
slightly less than that of the trivial brute-force SAT-algorithm im-
plies superpolynomial circuit lower bounds against C for a language
in NEXP. Here we complement this, by showing the following result
(also proved independently by Williams (2013)).

Compression implies circuit circuit lower bounds: Com-
pressing Boolean functions from any subclass C of polynomial-size
circuits to any circuit size less than 2™ /n implies superpolynomial
lower bounds against the class C for a language in NEXP.

Thus, both non-trivial SAT algorithms and non-trivial com-
pression algorithms for a circuit class C C P/poly imply superpoly-
nomial lower bounds against that class. This suggests trying to get
an alternative proof of the lower bound NEXP ¢ ACC® (Williams
2011) via designing a compression algorithm for ACC’ functions.
Apart from getting an alternative proof, the hope is that such a
compression algorithm would give us more insight into the struc-
ture of ACCY functions, which could lead to ACC® circuit lower
bounds against a much more explicit Boolean function, say one in
NP or in P.

Mining Circuit Lower Bound Proofs 9

Although non-trivial SAT and compression algorithms both im-
ply circuit lower bounds, they work on different types of inputs. In
compression algorithms, we have the truth table of a function as
input, without knowing a (small) circuit computing the function;
in #SAT algorithms, we have the circuit as input, but require the
running time to be significantly faster than 2".

1.2. Our proof techniques. The circuit lower bounds proved
by a method of random restrictions yield a nice structural charac-
terization of the class of n-variate Boolean functions f computable
by small circuits. Roughly, we get that the universe {0,1}" can
be partitioned into “not too many” disjoint regions, such that the
restriction of the original function f to “almost every” region is a
“simple” function, where “simple” means of description size O(n).
This is reminiscent of the Set Cover problem: we want to cover all
the 1s of the given function f using as few as possible subsets that
correspond to the truth tables of “simple functions” of small de-
scription size. We show how to find such a collection of few simple
functions, using a variant of the greedy heuristic for Set Cover.

For our compression algorithms, we use the “simplicity” of func-
tions in the disjunction to argue that they have linear-size descrip-
tions, which can be recovered using brute-force enumerations in
time poly(2™). For our #SAT algorithms, we use the “simplicity”
of the functions to argue that there will be few distinct functions as-
sociated with the regions of the partition of {0,1}". Once we solve
#SAT (using a brute-force algorithm) for all distinct subfunctions
and store the results, we can solve #SAT for almost all regions by
the table look-up, achieving a noticeable speed-up overall.

In our proof of the high-probability version of the shrinkage
lemma for formulas, we follow the supermartingale approach of
Komargodski & Raz (2013): For a de Morgan formula F' on n vari-
ables, we consider a sequence of random variables X;, 1 < i < n,
where X; = log(L(F;)/L(F) - (n/(n — i))*?) depends on the size
L(F;) of the restricted and simplified subformula F; of I after ¢
variables are set randomly. By Subbotovskaya (1961), setting a sin-
gle variable at random is expected to shrink the formula size (with
the shrinkage exponent 3/2). Thus, the sequence {X;} is a su-
permartingale. However, to apply standard concentration bounds

10 Chen et al.

(Azuma’s inequality), one needs to show that the absolute value of
|X; — X,;_1] is bounded. In our case, we have only one side of this
bound, i.e., that X; — X;_; is small. We show a variant of Azuma’s
inequality that holds in this case (for one-sided bounded random
variables that take two possible values with equal probability), and
apply this bound to complete the shrinkage analysis. This yields a
simpler proof of the shrinkage result of Komargodski & Raz (2013)
with the following differences: (1) our restrictions always choose
deterministically which variable to restrict (as opposed to restric-
tions of Komargodski & Raz (2013) that define “heavy” and “light”
variables, and either choose deterministically a heavy variable, if
it exists, or randomly choose a light variable otherwise), (2) after
setting n — k variables, we get that all but at most 27* restricted
formulas have shrunk in size (as opposed to 2=k~ Komargod-
ski & Raz (2013)). The fact that our restrictions are deterministic
when choosing a variable to restrict leads to a deterministic #SAT
algorithm for small (de Morgan) formulas. The fact that our error
parameter is 2% leads to simplified analysis of the #SAT algorithm
for linear-size de Morgan formulas from Santhanam (2010).

Our proof of the average-case hardness result by Komargodski
& Raz (2013) is more modular and simpler. In particular, we adapt
the original lower bound argument of Andreev (1987) to the case
of not necessarily truly random restrictions (by using randomness
extractors), and use the information-theoretic framework of Kol-
mogorov complexity to avoid some technicalities.

Finally, our proof of circuits lower bounds for NEXP from a com-
pression algorithm for a circuit class C C P/poly is a generalization
of the similar result from Impagliazzo et al. (2002), showing that
the existence of a natural property (even without the “largeness”
assumption) for P/poly implies NEXP ¢ P/poly. Here we han-
dle the case of any circuit class C C P/poly. Since the existence
of an efficient compression algorithm for a circuit class C implies
a natural property for the same class, the required lower bound
NEXP & C follows. Independently, Williams (2013) also proves
such a generalization of the result from Impagliazzo et al. (2002)
(as part of his equivalence between proving C-circuit lower bounds
against NEXP and having polynomial-time computable properties

Mining Circuit Lower Bound Proofs 11

useful against C).

1.3. Related work. Perhaps the earliest example of a compres-
sion algorithm for a general class of Boolean functions is due to
Yablonski (1959), who observed that n-variate Boolean functions
that “don’t have too many distinct subfunctions” can be computed
by a circuit of size o - 2" /n, for some o < 1 (related to the number
of distinct subfunctions). The complexity of circuit minimization
was studied in Allender et al. (2008); Feldman (2009); Kabanets
& Cai (2000); Masek (1979). In particular, Allender et al. (2008);
Feldman (2009) show that finding an approximately minimal-size
DNF for a given truth table of an n-variate Boolean function is NP-
hard, for the approximation factor n” for some constant 0 < v < 1,
whereas the task is in P for approximation factor n using a greedy
Set Cover heuristic (Chvatal 1979; Johnson 1974; Lovész 1975).
Concurrently and independently, Komargodski et al. (2013) im-
prove the average-case de Morgan formula lower bounds of Komar-
godski & Raz (2013) to handle formulas of size about n®. They also
prove a version of the high-probability shrinkage result for de Mor-
gan formulas with Hastad’s shrinkage exponent 2 (rather than Sub-
botovskaya’s shrinkage exponent 1.5 used in Komargodski & Raz
(2013)). Similarly to our paper, Komargodski et al. (2013) also
adapt Andreev’s method to arbitrary (not necessarily completely
random) restrictions by using appropriate randomness extractors.

The remainder of the paper We give basic definitions in Sec-
tion 2. We prove our compression theorem in Section 3, and the
shrinkage result in Section 4. We give our #SAT algorithms in
Section 5. Average-case formula lower bounds are proved in Sec-
tion 6. We prove that compression implies circuit lower bounds in
Section 7. We conclude with open questions in Section 8.

2. Preliminaries

2.1. Circuits. Here we recall some basic definitions of circuit
classes considered in our paper; for more background on circuit
complexity, consult any of the following (Boppana & Sipser 1990;
Jukna 2012; Wegener 1987).

12 Chen et al.

A literal is either a variable, or the negation of a variable; the
sign of the variable is said to be positive in the first case, and
negative otherwise. A DNF is a disjunction of terms, where each
term is a conjunction of literals. The following is a basic fact: For
any subset S C {0,1}" of size ¢, there is a DNF D(zy,...,2,) on
t terms that evaluates to 1 on each a € S, and is 0 outside of S.

A Boolean circuit on n inputs is a directed acyclic graph with
a single node of out-degree 0 (the output gate), and n in-degree 0
nodes (input gates), where each input gate is labeled by one of the
variables x4, ..., x,, and each non-input gate by a logical function
on at most 2 inputs (e.g., AND, OR, and NOT). The size of the
circuit is the total number of gates; the depth is the length of a
longest path in the circuit from an input gate to the output gate.
The class ACY is a class of constant-depth circuits with NOT, AND
and OR gates, where AND and OR gates have unbounded fan-in.
For a circuit class C and a size function s(n), we denote by C[s(n)]
the class of s(n)-size n-input circuits of the type C. When no s(n)
is explicitly mentioned, it is assumed to be some poly(n).

A Boolean formula F on n input variables x1,...,x, is a tree
whose root node is the output gate, and whose leaves are labeled
by literals over the variables xi,...,z,; all non-input gates are
labeled by logical functions over 2 inputs. The size of the formula
F, denoted by L(F), is the total number of leaves. A de Morgan
formula is a formula where the only logical functions used are AND
and OR.

A branching program F on n input variables zq,...,x, is a
directed acyclic graph with one source, where each sink node is
labeled by 0 or 1, and each non-sink node is of out-degree 2 and is
labeled by an input variable z;, 1 < i < n. (There may be more
than one sink node.) The two outgoing edges of each non-terminal
node are labeled by 0 and 1. The branching program computes by
starting at the source node, and following the path in the graph
using the edges corresponding to the values of the variables queried
in the nodes. The program accepts if it reaches the sink labeled
1, and rejects otherwise. The size of a branching program F', de-
noted by L(F), is the number of nodes in the underlying graph.
A branching program is (syntactic) read-once if on every path no

Mining Circuit Lower Bound Proofs 13

variable occurs more than once.

A decision tree is a branching program whose underlying graph
is a tree; the size of a decision tree is the number of leaves.

A restriction p of the variables zq, ..., x, is an assignment of
Boolean values to some subset of the variables; the assigned vari-
ables are called set, while the remaining variables are called free.
For a circuit (formula or branching program) F' on input variables
x1,...,T, and a restriction p, we define the restriction F|, as the
circuit on the free variables of p, obtained from F' after the set
variables are “hard-wired” and the circuit is simplified.

A de Morgan formula can be simplified using the following sim-
plification rules, which have been used in (Hastad 1998; Santhanam
2010). We denote by ¢ an arbitrary subformula, and y a literal.
The rules are: (1) If 0 A4 or 1V v appears, then replace it by 0 or
1, respectively. (2) If 0V ¢ or 1 A1) appears, then replace it by .
(3) If y V) appears, then replace all occurrences of y in ¢ by 0 and
y by 1; if y A1 appears, then replace all occurrences of y in ¢ by 1
and 7y by 0. We say a de Morgan formula is simplified if none of the
above rules are applicable. Note that in a simplified formula, by
the rule 3, if a leaf is labeled with x or T, then its sibling subtree
does not contain the variable x.

2.2. Kolmogorov complexity and description size. Recall
that the Kolmogorov complexity of a given n-bit string z, denoted
by K(z), is the length of a shortest string (M)w, where (M) is a
description of a Turing machine M, and w is a binary string such
that M on input w produces z as an output. A simple counting
argument shows that, for every n, there exists an n-bit string x
with K (z) > n, and, more generally, for any 0 < a < 1, we have
that K (z) > an for all but at most 2~(=) fraction of n-bit strings
x.

When we refer to the description size of Boolean circuits (or for-
mulas or branching programs), we mean time-bounded Kolmogorov
complexity, where the machine M outputs some canonical repre-
sentation of the circuit and M is restricted to run in polynomial
time (though time 2°™ would suffice for our purposes). In par-
ticular, a (bounded fan-in) circuit of size s can be described using
O(slogs) bits (by specifying the gate type and at most two in-

14 Chen et al.

coming gates for each of the s gates). The same bound is true also
for general formulas and branching programs of size s. However,
sometimes smaller descriptions are possible, such as a conjunction
on some subset of n variables or their negations. Such a conjunc-
tion may be described by O(n) bits: n bits for the subset, and n
bits for the signs (and O(1) bits for M).

2.3. Extractors and codes. For a distribution X over {0, 1}",
the min-entropy of X is defined as

HOO<X) = mxinlogQ m

We say two distributions X and Y over {0, 1}" are e-close if for any
subset A C {0,1}", it holds that |Pr[X € A] — Pr[Y € 4]| <e.

An oblivious (n, k)-bit-fiving source is a distribution X over
{0,1}", where there is a subset S C [n] of size k such that X,
is fixed, while X is uniformly distributed over {0,1}°l. A sced-
less zero-error disperser for oblivious bit-fixing sources is a func-
tion D: {0,1}" — {0,1}™ such that, for any oblivious (n,k)-
bit-fixing source X, the support of D(X) is {0,1}™. A seed-
less (k,€)-extractor for oblivious bit-fixing sources is a function
E: {0,1}" — {0,1}™ such that, for any oblivious (n, k)-bit-fixing
source X, F(X) is e-close to the uniform distribution over {0, 1}™.
We remark that seedless dispersers and extractors do not exist
for general sources, but can be constructed for the special case of
oblivious bit-fixing sources, considered in this paper.

A binary (n, k, d)-code is a function C': {0, 1}* — {0,1}" (map-
ping k-bit messages to n-bit codewords) such that any two code-
words are at least the Hamming distance d apart; the relative min-
imum distance of C'is d/n. For 0 < p < 1 and L > 1, we say a
code C'is (p, L)-list-decodable if for any y € {0,1}", there are at
most L codewords in C' within the Hamming distance at most pn
from y. The Johnson bound (see, e.g., Arora & Barak (2009)) says
that, for any 6 > /€, an (n, k, (1/2—¢)n)-code is (1/2—4§,1/(26%))-
list-decodable.

Mining Circuit Lower Bound Proofs 15

3. Compression from restriction-based circuit
lower bounds

Here we prove the Compression Theorem stated in the Introduc-
tion.

3.1. Compression of DNF's via Set Cover. [t is well-known
that DNFs of almost minimum size can be computed from the
truth table of f: {0,1}" — {0, 1} using a greedy Set Cover heuris-
tic (Chvatal 1979; Johnson 1974; Lovasz 1975). We recall this
heuristic next.

Let U be a universe, and let S1,...,5; C U be subsets. Suppose
U can be covered by ¢ of the subsets. Then the following algorithm
will find an approximately minimal set cover.

Repeat the following, until all of U is covered: find a
subset S; that covers at least 1/¢ fraction of points in
U which were not covered before, and add S; to the set
cover.

For the analysis, observe that since ¢ subsets cover U, they also
cover every subset of U. Hence, in each iteration of the algorithm,
there exists a subset that covers at least 1/¢ fraction of the not-yet-
covered points. After each iteration, the size of the set of points
that are not covered reduces by the factor (1 — 1/¢). Thus, after
t iterations, the number of points not yet covered is at most |U] -
(1-1/0)* < |U|-e~** which is less than 1 for ¢ = £-In |U|. Hence,
this algorithm finds a set cover that is at most the factor In |U]|
larger than the minimal set cover.

It is easy to adapt the described algorithm to find approxi-
mately minimal DNFs. Let f: {0,1}" — {0,1} be given by its
truth table. Suppose that there exists a DNF computing f such
that the DNF consists of ¢ terms (conjunctions). With each term a
on n variables, we associate the set S, = a~*(1) of points of {0,1}"
where it evaluates to 1. We enumerate over all possible terms a
on n variables, and keep only those sets S, where S, C f~1(1)
(i.e., S, does not cover any zero of f); note that all ¢ terms of the
minimal DNF for f will be kept. Next we run the greedy set cover

16 Chen et al.

algorithm on the universe U = f~*(1) and the collection of sets S,
chosen above. By the analysis above, we get ¢ - log |U| terms such
that their disjunction computes f. That is, we find a DNF for f
of size at most n times larger than that of the minimal DNF for f.

The running time of the described algorithm is polynomial in
2™ and the number of possible terms. The latter is exactly 3" (each
restriction can be described by a vector in {0,1,*}"). Thus, the
overall running time is poly(2").

3.2. Compression of AC’ functions via DNFs. The known
lower bounds for AC® circuits are based on the fact that almost
all random restrictions simplify a small ACY circuit to a function
that depends on fewer than the remaining unrestricted variables.
Intuitively, this means that there is a partitioning of the Boolean
cube {0,1}" into not too many disjoint regions such that the orig-
inal AC® circuit is constant over each region. This intuition can
be made precise using the Switching Lemma (Beame 1994; Hastad
1986; Impagliazzo et al. 2012a; Razborov 1993).

LEMMA 3.1. (Impagliazzo et al. 2012a) Every Boolean circuit on
n inputs of size s and depth d has an equivalent DNF with at most
poly(n) - s - 2"'=#) terms, where p > 1/0(log(s/n) + dlog d)*!.

Using this structural characterization and the greedy Set-Cover
algorithm, we get the following.

THEOREM 3.2. There is a deterministic poly(2")-time algorithm
A satistying the following. Let f: {0,1}" — {0,1} be any Boolean
function computable by an ACY circuit of depth d and size s =
s(n). Given the truth table of f, d, and s, algorithm A produces
a DNF for f with at most poly(n) - s - 2"0=# terms, where p >
1/0(log(s/n) + dlogd)?~*.

Note the described algorithm achieves nontrivial compression
for depth-d AC® circuits of size up to 2”1/@71), the size for which
we know lower bounds against AC.

3.3. Formulas and branching programs. The known lower
bounds for (de Morgan) formulas are also proved using the method

Mining Circuit Lower Bound Proofs 17

of random restrictions. One of the earliest results here is by Sub-
botovskaya (1961) who argued that the size of a de Morgan formula
shrinks in expectation when hit by a random restriction; this re-
sult was subsequently tightened by Hastad (1998). However, these
results are not strong enough to provide a kind of structure of easy
functions that would be useful for compression. By analogy with
the case of ACY, we would like to say something like “for every small
de Morgan formula, there is a partition of the Boolean cube into
not too many regions such that the original formula is constant on
each region”. In particular, we need a “high probability” version
of the classical shrinkage results of Hastad (1998); Subbotovskaya
(1961).

Recently, there have been several such shrinkage results proved
for different purposes. Santhanam (2010) implicitly proved such a
result for linear-size de Morgan formulas and used it to obtain a
deterministic SAT algorithm for such formulas that runs in time
better than that of the “brute-force” algorithm. Impagliazzo et al.
(2012b) proved a version of shrinkage result with respect to certain
pseudorandom restrictions, in order to construct a non-trivial pseu-
dorandom generator for small de Morgan formulas. Komargodski
& Raz (2013) proved a shrinkage result for certain random restric-
tions (different from the ones in Santhanam (2010)), and used it
to get a strong average-case lower bound against small de Morgan
formulas.

We will give an improved and simplified proof of the shrink-
age result due to (Komargodski & Raz 2013; Santhanam 2010).
We use the same notion of random restrictions as in (Santhanam
2010), which will later allow us to get a “better than brute force”
deterministic SAT algorithms for n**°-size de Morgan formulas.
We get a smaller error probability than that of (Komargodski &
Raz 2013), which allows us to analyze Santhanam’s SAT algorithm
for linear-size de Morgan formulas as an easy corollary.

3.3.1. Structure of functions computable by small formu-
las. First, we state our version of the shrinkage result. Let F' be
a de Morgan formula on n variables. As in (Santhanam 2010),
we consider adaptive restrictions that proceed in ¢ rounds, for
0 < i < n, and in each round set uniformly at random the most

18 Chen et al.

frequent variable in the current formula, and simplify the resulting
new formula (using the standard simplification rules). Note that
these restrictions are not completely random: the next variable
to be restricted is chosen completely deterministically (as the most
frequent one), but the value assigned to this variable is then chosen
uniformly at random to be either 0 or 1.

For a given de Morgan formula F, define F, = F. For 1 <
1 < n, we define F; to be the random formula obtained from F;_;
by uniformly at random assigning the most frequent variable of
F;_1, and simplifying the result. Note that F; is a formula on n —i
remaining (unrestricted) variables.

LEMMA 3.3 (Shrinkage Lemma). Let F' be any given (de Mor-
gan) formula or a branching program on n variables. For any k > 4,

we have Pr [L(Fn,k) >2-L(F)- (%)F} < 27% where I = 3/2 for
de Morgan formulas, and I' = 1 for formulas over the complete
basis and for branching programs.

We postpone the proof of Shrinkage Lemma till Section 4. Now
we apply this lemma to obtain the following structural character-
ization of small formulas and branching programs, which will be
useful for both compression and #SAT algorithms.

COROLLARY 3.4. Let F(xi,...,z,) be any formula (branching
program) of size O(n?), where the constant d is such that d < 2.5
for de Morgan formulas, and d < 2 for formulas over the com-
plete basis and for branching programs. There exist constants
0 < 6,7 < 1 (dependent on d) such that for k = [n°] the fol-
lowing holds.

The Boolean function computed by F' is computable by a deci-
sion tree of depth n — k whose leaves are labeled by the restrictions
of F' (determined by the path leading to the leaf) such that all but
2% fraction of the leaf labels are formulas (branching programs)
on k variables of size O(n?).

Proor. We consider the case of de Morgan formulas only; the
case of formulas over the complete basis or branching programs can
be argued analogously. Let d = 2.5 — v, for some constant v > 0.

Mining Circuit Lower Bound Proofs 19

Set 6 :=v/3, and 7 := 1 — v/2. By Lemma 3.3 applied to F, we
get that for all but 27% fraction of the branches of the restriction

decision tree of depth n — k, the restricted formula has size less
than O(n?/n'50-9)) = O(n!=¥/?), O

3.3.2. Generalized greedy Set-Cover heuristic. The afore-
mentioned Shrinkage Lemma allows us to decompose the Boolean
cube into not too many regions so that, over almost all regions,
the original formula simplifies to a formula of sublinear size. This
falls short of our original hope to get a constant function over most
regions. In fact, the latter cannot be achieved since a de Morgan
formula of size O(n?) computes the parity of n bits, and the parity
function doesn’t simplify to a constant unless all of its variables
are fixed.

Fortunately, we can still use a version of the greedy Set Cover
heuristic to compress de Morgan formulas of size about n%°. The
reason is that a similar algorithm works also for a Boolean function
f: 40,1} — {0,1} computed by a circuit of the form V{1 C;, for
¢ < 2™ where all but one circuit are small, while the remaining
circuit accepts few inputs.

THEOREM 3.5. There is a deterministic poly(2™)-time algorithm
A satisfying the following. Let f: {0,1}" — {0, 1} be any function
computable by a circuit \/fgCZ-, for 1 < ¢ < 2", where each circuit
C1,...,Cy has both circuit size and description size at most cn for
a constant ¢ > 0, while the last circuit Cy,1 evaluates to 1 on at
most fraction « of points in {0, 1}", for some 0 < o < 1.

Given the truth table of f and the parameters ¢, ¢, and «,
algorithm A finds a circuit for f of the form V", D;, where m =
O(n - 0), the circuits Dy, ..., D,,_1 are of size O(n) each, and the
circuit D,, is a DNF with O(a2"™) terms. Hence the overall size of
the found circuit is O(¢n? + an2™).

PROOF. LetU = f~'(1),and let 8 = |U|/2". If B < 2a, then our
algorithm A outputs the circuit which is a DNF with 52" terms,
where each term evaluates to 1 on a single point in U, and is 0
everywhere else. Note that the size of this circuit is O(an2"), as
required.

If B > 2a, then algorithm A does the following.

20 Chen et al.

Enumerate?® all linear-size circuits C' of description size
at most cn, keeping only those C' where C~1(1) C
f71(1). Call the kept circuits legal. Let S = 0.

Repeat the following until the number of the points of
U that are still not covered becomes at most 2a:2™: find
a legal circuit C such that the set C~*(1) covers at least
1/(2¢) fraction of not-yet-covered points in U, and add
C to the set S.

Once the number of non-covered points in U becomes
at most 2a2", construct a DNF D that evaluates to 1
on each non-covered point, and is 0 everywhere else.
Output the disjunction of D and the circuits in S.

For the analysis, let W = C.; (1), and let V = U\W. We claim
that at each iteration of the algorithm before the last iteration, the
set of not-yet-covered points in V' is at least as big as the set of
not-yet-covered points in W. Indeed, otherwise the total number
of not-yet-covered points at that iteration is at most 2-|W| < 222",
making this the last iteration of the algorithm.

Next observe that at each iteration before the last one, the set
of not-yet-covered points in V' is non-empty, and is covered by /¢
legal circuits. Hence, there is a legal circuit that covers at least 1/
fraction of non-covered points in V', which, by the earlier remark,
constitutes at least 1/(2¢) fraction of all non-covered points of U.
Thus our algorithm will always find a required legal circuit C'. It
follows that after each iteration, the size of not-yet-covered points
in U decreases by the factor (1 — 1/(2¢)), and hence the total
number of iterations is t = O(¢ - log |U|) = O(¢ - n).

Thus, after at most ¢ iterations, at most 2a2" points of U are
still not covered. We denote the ¢ found circuits D, ..., D;, and
let D;y1 be the DNF with at most 2a2™ terms which evaluates to 1
on the non-covered points of U, and is 0 everywhere else. Note that
the circuit size of Dy is O(an2™), while all D;’s, for 1 < ¢ < ¢,
are of circuit size O(n) by construction. The overall running time
of the described algorithm is poly(2",t) = poly(2"). O

3Here we assume the correspondence between circuits and their descriptions
is efficiently computable and is known.

Mining Circuit Lower Bound Proofs 21

Using this generalized algorithm, we get the following.

THEOREM 3.6. There is an efficient compression algorithm that,
given the truth table of a formula (branching program) F on n
variables of size L(F) < n?, produces an equivalent Boolean circuit
of size at most 2"~ for some constant 0 < ¢ < 1 (dependent on
d), where d < 2.5 for de Morgan formulas, and d < 2 for formulas
over the complete basis and for branching programs.

PrROOF. Let F be a de Morgan formula, a complete-basis for-
mula, or a branching program of the size stated in the theorem.
By Corollary 3.4, this ' can be computed by a decision tree of
depth m := n — n? such that all but at most a := 2" fraction of
the leaves correspond to restricted subformulas of F' of size n” on
k := n® variables, for some constants 0 < 6,y < 1 dependent on d.

Each leaf of the decision tree corresponds to a restriction of
some subset of m input variables. Let us associate with each leaf
7, 1 < i < 2™, of the decision tree, the conjunction ¢; of m literals
that defines the corresponding restriction. Also let Fj, for 1 <7 <
2™ denote the restriction of the original F' corresponding to the
restriction given by ¢;. We get that F' = \/?:1(61' A).

We know that all but b := « - 2™ of formulas F; are sublinear-
size n”. Let us assume, without loss of generality, that all the first
¢ := 2" —p formulas F; are small. Define the circuits C; := (¢; A F;),
for 1 <i </, and Cppy == Vi, (c; N F).

Observe that the circuit Cy;q can evaluate to 1 on at most
b-2F = a - 2" inputs from {0, 1}" (since the decision tree of depth
m partitions the set {0, 1}" into 2™ disjoint subsets of size 2* each,
and Cpyq corresponds to b such subsets). Each circuit C;, for 1 <
i < {, is of size at most O(m + n?) < O(n). We also claim that
each such circuit can be described by a string of O(n) bits. Indeed,
we can specify the conjunction ¢; using 2n bits (n bits to describe
the subset of variables in the conjunction, and another n bits to
specify the signs of the variables), and we can specify the formula
(branching program) F; of size n? by at most O(n”logn) < O(n)
bits in the standard way.

Thus F = V!IC; satisfies the assumption of Theorem 3.5.

22 Chen et al.

Running the greedy algorithm of Theorem 3.5, we get a circuit
for F of total size at most O(¢n® + an2™) < poly(n) - 2" O

3.4. Read-once branching programs. Read-once branching
programs are well understood, with strongly exponential lower
bounds known. A property that makes a function f hard for read-
once branching programs is that of being m-mixed: for every set
S of variables such that |S| = m every two distinct assignments
a and b to variables in S give rise to different functions f, Z f;.
Any read-once branching program computing an m-mixed Boolean
function must have at least 2™ — 1 nodes (Savicky & Zak 1996).
There are many examples of explicit functions with strongly expo-
nential lower bounds for read-once branching programs; e.g., An-
dreev et al. (1999) give an explicit function achieving an optimal
lower bound 2" /poly(n).

On the other hand, a function that is computable by a small
read-once branching program cannot be m-mixed for large m. In-
tuitively, such a function can be represented by a decision tree
of depth m, whose leaves are labeled by subfunctions g (in the re-
maining n—m variables) so that many of the leaves share the same
subfunction. If a program has size s, then the number of distinct
such subfunctions is at most s. Thus, f can be computed as an
OR of at most s subformulas, where each subformula encodes the
conjunction of a particular subfunction g and the DNF describing
all branches leading to this subfunction ¢g. The fact that f can
be represented as an OR of few simple formulas allows us to use
the greedy SetCover heuristic to compress such f. We provide the
details next.

It is convenient for us to use the following canonical form of a
read-once branching program. We call a program full if, for every
node v of the program, all paths leading from the start node to v
query the same set of variables (not necessarily in the same order).

LEMMA 3.7. Every read-once branching program F' of size s on
n inputs has an equivalent full read-once branching program F' of

size s' < 3n - s.

PROOF. Given F, construct F’ inductively as follows. Consider

Mining Circuit Lower Bound Proofs 23

nodes of F'in the topological order from the start node. The start
node obviously satisfies the fullness property. For every node v of F’
with distinct predecessor nodes uq, ..., us, for t > 2, let X; denote
the set of variables queried by the paths from start to u;; note that,
by the inductive hypothesis, all paths leading to u; query the same
set X; of variables. Let X = Ul_, X;. For every i € {1,...,t}, let
A; = X \ X; be the set of “missing” variables. If A; # (), replace
the edge (u;,v) by a multi-path w;, wy,ws, ..., w,, v, for r = |A,
where w;’s are new nodes labeled by the “missing” variables from
A; (in any fixed order), with the edge (u;,w) labeled as the edge
(ui,v), and each w; has two edges to its successor node on the
path, labeled by 0 and by 1, respectively.

Since our original program is read-once, no variable from the
set X for a node v can occur after v. Thus, adding the queries
to the “missing” variables for every predecessor of v preserves the
property of being read-once, and preserves the functionality of the
branching program. It also makes the node v and all of its pre-
decessors satisfy the fullness property. Hence, after considering all
nodes v, we obtain a required full read-once branching program F’
equivalent to F. The size of F’ is at most s + 2sn since we add at
most n dummy nodes for each of at most 2s edges of F'. 0

THEOREM 3.8. There is a deterministic poly(2™)-time algorithm
A satisfying the following. Let f: {0,1}" — {0,1} be any Boolean
function computable by a read-once branching program of size s.
Given the truth table of f, algorithm A produces a formula for f
of size at most O(sn® - 27/2).

Proor. By Lemma 3.7, f is computable by a full read-once
branching program F' of size s’ = 3sn. For 0 < k < n to be chosen
later, consider the set B of all nodes at distance n—k from the start
node. Clearly, there are at most s’ such nodes. For every such node
v, let X, be the set of n — k variables queried on every path from
the start to v. Let Y, be the remaining k variables. Associate with
v the function h, in the variables X, computed by the branching
subprogram with v as the new accepting terminal node (and the
same start node), and the function g, in the variables Y, computed

24 Chen et al.

by the branching subprogram with v as the new start node (and
the same terminal nodes). We may assume that the functions g,
are distinct for distinct nodes in B; otherwise, we merge all nodes
with the same g, (on the same subset of k variables) into a single
node. We have

(39> f = vv€B<hv A gv)

Consider any v € B. Let p be a restriction of the variables
X, corresponding to some path from the start to v. We have
gv = flp, and h, is the disjunction of all restrictions p’ of the
variables X, such that f|, = g, = f|,. Thus, to describe any term
in the representation of f given by Eq. (3.9), it suffices to specify
a restriction of some subset of n — k variables of f; this can be
described using O(n) bits.

We now run the greedy Set-Cover heuristic to find at most
O(s'n) functions, each describable by a restriction of some n — k
variables as explained above, whose disjunction equals f. For each
restriction p specifying one of these functions, the corresponding
function can be computed as an AND of a DNF of size 2* (for
the function f|, on k variables) and a DNF of size 2" (for all
restrictions p’ on n — k variables that yield f|, = f|,). The overall
circuit size of each of these O(s'n) functions is then O(n(2~F+277%)),
and the overall size of the circuit computing f is O(s'n?(28+2"%)),
which is at most O(sn®-2"/2), if we set k = n/2. The running time
of the compression algorithm is poly(2") since we only need to
enumerate all O(n)-size descriptions. O

4. Shrinkage of de Morgan Formulas

Here we prove the Shrinkage Lemma. We use the adaptive re-
strictions of Santhanam (2010) (each time randomly restricting
the most frequent variable in the formula). Following Komargod-
ski & Raz (2013), our idea is to analyze how the size of a for-
mula is changed after a single (most frequent) variable is randomly
assigned. The new formula size is a random variable, which is
expected to shrink non-trivially from the previous formula size.
We would like to treat the sequence of these random variables

Mining Circuit Lower Bound Proofs 25

as a supermartingale, and use the standard concentration results
(Azuma’s inequalities) to show that the final formula is very likely
to have a small size.

One technical problem with this approach is that in one step the
formula size may drop by an arbitrary amount, and we don’t seem
to get the boundedness condition (that a random variable changes
by at most some fixed amount after each step) that is a condition
for the standard version of Azuma’s inequality. In Komargodski &
Raz (2013), this technicality was circumvented by introducing some
“dummy” variables into the formula to artificially keep the one-step
change in the formula size bounded, and then apply the standard
version of Azuma’s inequality. However, it seems unnecessary to
do that, since if the formula size drops by a lot in a single step,
this should be even better for us!

Instead, we show a version of Azuma’s inequality holds in the
special case of random variables which take two values with equal
probability and where the boundedness condition is one-sided: we
just require that the next random value be smaller than the cur-
rent value by at least some known amount, meanwhile allowing it
to be arbitrarily small. This turns out to be precisely the setting
in our case, and so we can bound the probability of producing a
large formula by a direct application of Azuma’s inequality. Apart
from making the overall argument simpler, this also gives a quan-
titatively better bound. We give the details next.

4.1. A variant of Azuma’s Inequality.

LEMMA 4.1. Let Y be a random variable taking two values with
equal probability. If E[Y] < 0 and there exists ¢ > 0 such that
Y <, then for any t > 0, E [ety] < et*e?/2,

PROOF. Suppose Y takes two values a and b with equal prob-
ability, and @ < b < ¢. If b < 0, then e < 1 < /2 If
b > 0, since E[Y] = (a4 b) <0, then @ < —b and E [¢"] =
s (e +e?) < 5 (“hpet) < V)2 < /2 Ty the inequality
—(g et) < /2, O

Recall that a sequence of random variables Xy, X1, Xo,..., X,

26 Chen et al.

is a supermartingale with respect to a sequence of random variables
Rl,RQ,...,Rn 1fE[Xz | Rz‘—l;'--le] S Xi—l; for 1 S) S n.

LEMMA 4.2. Let {X;}!", be a supermartingale with respect to
{R;}!_,. Let Y; = X; — X, 4. If, for every 1 < i < n, the random
variable Y; (conditioned on R;_1, ..., Ry) assumes two values with
equal probability, and there exists a constant ¢; > 0 such that Y; <

¢, then, for any X\, we have Pr[X,, — X, > A] < exp (Z A”)
i=1¢

The original Azuma’s inequality does not require Y; to be bi-
nary, but requires two-sided bounded differences such as |Y;| < ¢;.
The following is an adaptation of the standard proof of the orig-
inal Azuma’s inequality to our case of “one-sided bounded” dif-
ferences. The error bound we obtain is the same as that of the
original Azuma’s inequality.

PROOF. Let t > 0 be arbitrary. Since X,, — Xy = > | Vi, we
have

Pr[X, — Xo > \| = Pr [efZ?:lyi > e)‘t} < e ME [etZ?:IYi] ,
where the last inequality is by Markov’s inequality. We get
E|¢ZY| = B[R [R, R
< E [Dy lY-] et enl?.

where the last inequality is by Lemma 4.1. By induction, we get
E[in } < et X2 Thus,

Pr[X, — Xo > \] < e M XL /2,

Choosing t = A/ >_" | ¢? yields the required bound. O

zlz

4.2. Shrinkage lemma. For a given de Morgan formula F' on
n variables, define Fy = F. For 1 < i < n, we define F; to be
the simplified formula obtained from F;_; by uniformly at ran-
dom assigning the most frequent variable of F; ;. We re-state the
Shrinkage Lemma for the case of de Morgan formulas; the case
of general formulas and branching programs is similar with the
shrinkage exponent I' = 1 used throughout instead of I" = 3/2.

Mining Circuit Lower Bound Proofs 27

LEMMA 4.3 (Shrinkage Lemma). Let F' be any given de Morgan
formula on n variables. For any k > 4, we have

Pr |L(F, ;) >2-L(F) - (%)3/1 <27k

We need the following auxiliary lemmas.

LEMMA 4.4. Let F be a de Morgan formula on n variables, and

let F' = Fy (obtained from F' in one step of adaptive restriction
defined above). Then L(F') < L(F)- (1—2), and E[L(F")] <

L(F)- (1=)"

PROOF. Let x be the most frequent variable in F'. Then x ap-
pears at least L(F')/n times (as a leaf label z or 7). Furthermore,
since F' is simplified, for each leaf labeled with x or T, its sibling
subtree can be transformed such that it does not contain z. By
the simplification rules 1 and 2, after assigning x to be 0 or 1, we
can remove at least one leaf for each appearance of . That is,
L(F')<L(F)—L(F)/n=L(F)-(1-1/n).

Moreover, for each appearance of x, we expect to remove its
sibling with probability 1/2. Since the sibling has size at least 1
and does not contain x, we have

Bl < r)- (1- 2) < 1) 1- %)/

where the last inequality is by Bernoulli’s inequality 1 — ax <
(I—xz)for0<z<1landa>1. O

Let R; be the random value assigned to the restricted variable
in step i. Set L; := L(F;), and [; := log L;. Define a sequence of
random variables {Z;} as follows:

3 1
Zi=1li—1li1— =1 l— .
! 20g(n—z+1)

Conditioned on Ry,...,R;_;, the formula F;_; is fixed, and Z;
assumes two values with equal probability.

28 Chen et al.

LEMMA 4.5. Let Xy =0 and X; = Z;Zl Zj. Then the sequence
{X;} is a supermartingale with respect to {R;}, and, for each Z;,
we have Z; < ¢; := ——log (1 —

n— z+1)

Proor. Using Lemma 4.4, we get [; < ;1 + log (1 — n—i—i—l) ;
this implies Z; < ¢;. By Jensen’s inequality, E[l; | R;_1, ..., R1] <
logE[L; | Ri_1, ..., Ri], which, by Lemma 4.4, is at most

1 3/2 3 1
og (Lia- (1-———) J=ti1+210g(1-—1).
og(! (n—z—l—l)) 1+20g(n—z+1)

this implies E[Z; | Ri—1,...,R] < 0, and so {X;} is indeed a
supermartingale. U

Now we can complete the proof of the Shrinkage Lemma.

PROOF (Proof of Lemma 4.3). Let A be arbitrary, and let ¢;’s be
as defined in Lemma 4.5. By Lemma 4.5 and Lemma 4.2, we get

Pr [Z] \Zi > /\] < exp (Z/\—2> For the left-hand side, by
J 1€
the fact that ijl Z;=1;—ly— 3log =,

Pr|Y 2z;>A| = Pr li—lo—§10g(n_l>2)\}
n
i=1 -

2

n—i\>?
= Pr Lize*Lo()]
n

For each 1 < j <4, we have ¢; = £ log(1 + n—lj) <1/2(n —j),

using the inequality log(1 + z) < x. Thus, Z;) cf is at most

i 2 i
S () e () e ——
4],:1 n—j 4j:1 n—j7j—1 n—j 4 n—1—1

Taking : = n — k, we get

B\ 32 A2)
L, > eALO (—)] < exp (22” - 2) < e A (k—1).
n

le

Pr

Choosing A = In 2 concludes the proof. O

Mining Circuit Lower Bound Proofs 29

5. #SAT algorithms for formulas

5.1. n*>*-size de Morgan and n'?-size general formulas.
Here we show the existence of “better than brute-force” #SAT
algorithms for formulas of about quadratic size.

THEOREM 5.1. There is a deterministic algorithm counting the
number of satisfying assignments in a given formula on n variables
of size < n? which runs in time t(n) < 2”_”5, for some constant
0 < 6 < 1 (dependent on d), where d < 2.5 for de Morgan formulas,
and d < 2 for formulas over the complete basis and for branching
programs.

ProoOF. We consider the case of de Morgan formulas only; the
case of general formulas and branching programs is similar (using
the shrinkage exponent I' = 1 rather than I' = 1.5). Suppose we
have a formula F on n variables of size n?5~¢ for a small constant
€e>0. Let k =n“and a < %e. We build a restriction decision tree
with 2"~* branches as follows:

Starting with F' at the root, find the most frequent
variable in the current formula, set the variable first to
0 then to 1, and simplify the resulting two subformu-
las. Make these subformulas the children of the current
node. Continue until you get a full binary tree of depth
exactly n — k.

Constructing this decision tree takes time 2" *poly(n). By
Lemma 4.3, all but 27% fraction of the leaves have the formula
size < 2L(F) (%)3/2

To solve #SAT for all “big” formulas (which haven’t shrunk),
we use brute-force enumeration over all possible assignments to the
k variables left. The running time is bounded by 27% . 2% .2k .
poly(n) < 2" - poly(n).

For “small” formulas (which shrunk to the size less than 2n” for
some v = 1 — e + 1.5a), we use memoization. First, we enumerate
all formulas of such size, and compute and store the number of sat-
isfying assignments for each of them. Then, as we go over the leaves
of the decision tree that correspond to small formulas, we simply

= 9.p2d-e. n1.5(a71) — Ipl—etlba

30 Chen et al.

look up the stored answers for these formulas. There are at most
207 logn) gych formulas, and counting the satisfying assignments
for each one (with k inputs) takes time 2*poly(n?) = 2" - poly(n).
Including pre-processing, computing #SAT for all small formulas
takes time at most 2" % - poly(n) 4+ 20(""108m) < 2n=n" . poly(n).
The overall runtime is at most 2"~ for some & > 0. U

5.2. Linear-size de Morgan formulas. Now we analyze the
2"-9"_time satisfiability algorithm of Santhanam (2010) for cn-size
de Morgan formulas, using the “supermartingale approach”, and
get an explicit bound on §.

THEOREM 5.2 (Santhanam). There is a deterministic algorithm
for counting the number of satisfying assignments of a given cn-
size de Morgan formula on n variables that runs in time 2"~°", for
§ > 1/(32¢?), and uses polynomial space.

PROOF. Let F' be a de Morgan formula of size cn. Let p = (4%)2
and k = pn. We construct a decision tree of n — k levels in exactly
the same way as in the proof of Theorem 5.1. By the Shrinkage
Lemma (Lemma 4.3), all but 27 fraction of leaves have the formula

size L(F,_y) < 2-L(F) (%)3/2 =2-cn-p*? = 2cp"?-pn = Lpn = L.

To compute #SAT for all “big” formulas, we use brute-force
enumerations over all possible assignments to the k£ variables which
are left. The running time in total is bounded by 27=% . 27F . 2k .
poly(n) = 2"* - poly(n).

For “small” formulas (with size less than k/2), there are at
most k/2 variables left. To compute #SAT for all such formulas,
the total running time is bounded by 2"~* . 2%/2. poly(n) = 2"+/2.
poly(n).

The overall running time of counting the number of satisfy-
ing assignments of a de Morgan formula of size cn is bounded by
2"=poly(n) where § = 32% By enumerating each branch of the
decision tree, the algorithm uses only polynomial space. U

REMARK 5.3. Santhanam’s SAT algorithm relies on the fact that,
under most restrictions, a given linear-size de Morgan formula will

Mining Circuit Lower Bound Proofs 31

simplify to a formula that doesn’t depend on all of the remaining
variables. The same is not true for de Morgan formulas of size at
least n?, as such formulas can compute the parity function on n
bits. It is an interesting question whether one can devise a non-
trivial SAT algorithm for super-quadratic-size de Morgan formulas
that uses, say, polynomial space.

5.3. Linear-size general formulas. We can also use the “su-
permartingale approach” to get a different analysis of the #SAT
algorithm for linear-size general formulas of Seto & Tamaki (2012).
At a high level, their argument is as follows. One runs a greedy
branching process (picking variables to restrict, and restricting
them to both 0 and 1) on a given general formula. Either at
some point in this process, we get a subformula that is easy to
check for satisfiability (using, e.g., linear algebra), or else the for-
mula will keep shrinking (similarly to the case of de Morgan for-
mulas). That is, assuming that we don’t get a formula amenable to
linear-algebraic methods, we can show that the formulas will be-
have similarly to de Morgan formulas and so keep shrinking with
some shrinkage exponent slightly bigger than 1.

More precisely, Seto & Tamaki (2012) show that if we don’t get
a simple enough formula to solve using linear algebra, then in each
step of the branching process there will be a constant number of
variables to restrict so that all the restrictions of these variables
are guaranteed to make the formula “slightly” smaller (by a certain
known value), and moreover, for at least half of such restrictions,
the new formula gets “significantly” smaller. The latter is simi-
lar to what happens in the case of de Morgan formulas after one
restricts one variable (albeit with much worse shrinkage parame-
ters). The main difference is that for general formulas (of linear
size), we need to restrict more than one but still at most some
constant number of variables.

This suggests defining a supermartingale sequence for the sizes
of the restricted formula after a certain constant number of vari-
ables are set, and applying Lemma 4.2 to that sequence. Indeed,
this approach shows that the running time of the SAT algorithm
by Seto & Tamaki (2012) for en-size general formulas is 27", for
§ about ¢, We provide the details below.

32 Chen et al.

THEOREM 5.4 (Seto and Tamaki). There is a deterministic al-
gorithm for counting the number of satisfying assignments of a

cn-size Boolean formula over the complete basis that runs in time
2n76n for § = 270(03 log c)‘

The algorithm is based on a specific property of linear-size gen-
eral formulas. Below we first state the property and the algorithm,
and then analyze the running time of the algorithm.

Without loss of generality, we assume a Boolean formula over
the complete basis is a tree in which each leaf is labeled by a
literal (z or T) and each internal node is labeled by a gate from
{A\,V,®}. Any Boolean formula over the complete basis can be
efficiently transformed into this form by de Morgan’s law and the
fact that t @y =T d y.

Given a formula tree, we call a node linear if (1) it is a leaf, or
(2) it is labeled by @ and both of its child nodes are linear. We
say a linear node is mazimal if its parent node is not linear. For
a node v in a formula F', we denote by F), the subformula rooted
at v. Note that for a linear node v, the subformula F, computes
the parity of all its leaves. We say two maximal linear nodes u
and v are mergable if they are connected by a path in which every
node is labeled by &. We can merge u and v in the following way.
Suppose we have Fy, = F, ® F,/, and I, = F,® F,, that is, s and ¢
are the parent nodes of u and v respectively, and " and v’ are the
siblings of v and v. Then we can replace F, by F, & F, and F}; by
Fy.

We have the following simplification rules, in addition to the
rules for de Morgan formulas: (1) If 0@ ¢ or 1 & 1) appears, then
replace it by 1 or 1, respectively. (2) If a variable z appears more
than once (as x or Z) in a linear node, then eliminate redundancy
by the commutativity of @& and the facts that * & * = 0 and
x®T =1. (3) Merge any mergable maximal linear nodes.

Based on these simplification rules, Seto and Tamaki (Seto &
Tamaki 2012) identify the following structural property of linear-
size general formulas.

LEMMA 5.5 (Seto and Tamaki). Let F' be a formula on n vari-
ables of size cn for some constant c. Then one of the following

Mining Circuit Lower Bound Proofs 33

cases must be true:

(i) The formula size is small: ¢ < 3/4.
(ii) The total number of maximal linear nodes is less than 3n /4.
(iii) There exists a variable appearing at least ¢ + sic times.

(iv) There exists a maximal linear node v with L(F,) < 8¢ such
that the parent node of v is either A or V, and every variable
in F, appears at least ¢ times in F'.

The satisfiability algorithm follows directly from this property.
For case 1, a brute-force search is sufficient. For case 2, we again
use a brute-force search, but this time to enumerate all possible
assignments to maximal linear nodes, and, for each assignment,
solve a system of linear equations using Gaussian elimination. In
both cases the running time is 23*/“poly(n). For cases 3 and 4, the
algorithm is based on a step-by-step restriction. At each step, we
are able to restrict a constant number of variables such that the
shrinkage of the formula size is non-trivial.

In particular, for case 3, we randomly restrict the first variable
which appears at least ¢ + 1/8¢ times; that eliminates at least
¢+ 1/8c leaves.

For case 4, let u be the sibling of the maximal linear node v.
Consider the following two sub-cases: (a) there exists a variable
appearing in F,, but not in F,; (b) all variables in F, appear in F,.

For case 4(a), we randomly restrict all variables in the subfor-
mula F,. Suppose there are totally b < 8c variables in F,. Since
each of them appears at least ¢ times, we can eliminate at least bc
leaves. Furthermore, since F), takes value 0 or 1 with equal prob-
ability, and the parent node of v is labeled by either A or V, the
sibling node of v can be eliminated with probability 1/2. Since
there is an extra variable in the sibling, we eliminate at least bc+ 1
leaves with probability 1/2.

For case 4(b), suppose x is one common variable in both F, and
F,, and there are totally b+ 1 < 8c variables in F;,. We randomly
restrict all variables in F), except x. This eliminates at least bc + 1
leaves, since each variable appears at least ¢ times, and at least
one appearance of x in F, and F, can be eliminated.

34 Chen et al.

To unify the cases 3, 4(a) and 4(b), in each case, we can de-
terministically find 1 < b < 8c variables such that by randomly
restricting them, we eliminate at least bc leaves, and moreover,
with probability 1/2, eliminate at least bc(1 + 1/8¢?) leaves. Let
[(F) := log L(F') and let F’ be the new formula after restriction
and simplification. Then we have [(F") < [(F')+log (1 — b/n); and
with probability 1/2, [(F') < I(F) + (1 + 1/8¢*)log (1 — b/n).

Now we consider a process of adaptive restrictions; this can be
viewed as constructing a decision tree. At each step, we assume
that only cases 3, 4(a) or 4(b) happens (otherwise, we directly
run the brute-force search algorithm). We deterministically find
1 < b < 8¢ variables and branch on all possible assignments to
these variables. The process continues until at most k variables
are free (k will be fixed later). We will argue that the formula size
shrinks non-trivially on most of the branches.

Consider the decision tree virtually divided into layers of height
16¢, which means that at each layer, there are exactly 16¢ variables
being restricted. For simplicity we assume n — k is divisible by
16¢. Consider a node at the top of one layer; let G be the formula
labeling the node, and suppose G is over n variables with size cn.
Let G’ be the new formula after adaptively restricting 16¢ variables
(at the bottom of the layer). Then we have the following bounds
on the size of G'.

LEMMA 5.6. It holds that [(G') < I(G)+1log (1 — &) . Moreover,
with probability at least 1/2,

(G < U(G) + log (1 - @) + L tog (1 _ %) |

n 8c?

PROOF. Since each variable being restricted appears at least ¢
times, the first inequality holds.

Consider any path in the decision tree starting from G. There
must be one descendant node at distance 0 < h < &c from G
such that case 3, 4(a) or 4(b) happens and in consequence there
are 1 < b < 8¢ variables restricted. Over all descendants of this
particular node at the bottom of the layer, it holds with probability

Mining Circuit Lower Bound Proofs 35

at least 1/2 that

MGUf;uayu%(1_g)+(1+é%w%<l_nfh)

o 1_16c—h—b
& n—h—b
16¢ 1 1
< 1 1 - — —1 1——1.
< Z(G)—l—og(n>+802 og(n)

Note that this inequality does not depend on the particular path
in consideration. Thus it holds for all descendants of GG at distance
exactly 16¢. This ends the proof. O

Now we are ready to prove the shrinkage result for linear-size
general formulas.

LEMMA 5.7. Denote by F, _j the formula after restricting n — k
variables. For k > 160c,

L(Fys) > 2 L(F) (5)] <ot

n

Pr

ProoF. Consider the nodes in the decision tree at depth 16¢ - i,
for i = 0,1,...,(n — k)/16c. We define a sequence of random
variables

16¢
Zi = l(Fie;) — U Fipei—1y) — 1 1-— _
(Figes) = H(Fioei-1) og(n—ch(z—l))
1 | 1 1
162 5\ n—16c(i—1))"
By Lemma 5.6, we have Z; < ¢; := —ﬁlog (1—#@71)).

Let Ri, Ry, ..., Rigei—1) be the random bits (the values of the as-
signments) used at each step. Conditioning on these random bits,
it holds with probability at least 1/2 that Z; < —¢;, and thus,
Z; is upper-bounded by a variable taking —¢; and ¢; with equal
probability. By Lemma 4.2, we have for any A > 0,

i \2
E Z; > \| <exp = |
22]‘:1 G

j=1

Pr

36 Chen et al.

Let i = (n — k)/16¢c. We first have that

! k 1 k4 16¢ — 1
ZZJ' > (Fop) = 1(Fy) — log — log < 10)
j=1

n 256¢3 n+ 16c — 1

1 k+16c—1
> U(Fop) —U(Fy) — (1 log [T)
2 UFns) — U{F) (+25603> Og(n+16c—1>

Here we use the inequality that
i—1 i—1 b
1 1 1
Zog(n—bj> bzog< n—bj)
j=0 7=0

110 n—>bi+b-—1
b & n+b—1 '

IN

Hence,

Pr izjzx

Lj=1

> Pr L(Fn_k)ZGAL(FO)(

k416 — 1\ Fames
n+ 16c —1 ’

Then since ¢; < L T, we have that

1
16c2 n—16¢(j—1)—

24 < () X (mgv-1)

1 < 1 1
< . _
- 163¢° Z (n—16cj—1 n—16c(j—1)—1>

7j=1
1 1

163¢5 k—1°

<

Therefore,

Pr |L(F,_;) > e*L(F) (

n+16c—1

A2 —2048)\2c5 (k—1
< exp (—21—) =e¢ (k=1)

1.1
163¢5 k-1

k4 16¢ — 1)1+25éc3]

Mining Circuit Lower Bound Proofs 37

In particular, for A = In(2/1.2) and k£ > 160c,

Pr

k 1+25éc3
L(F,_3) >2-L(F) (—) < 27"
n

O

Now we are ready to analyze the running time of the algorithm.

PROOF (Proof of Theorem 5.4). Let F be a cn-size general for-
mula on n variables. We build a decision tree based on adaptively
restricting variables according to the cases in Lemma 5.5. When-
ever the formula is in case 1 or 2, we run the brute-force search;
otherwise we adaptively restrict a constant number of variables,
and continue the process until there are at most k£ variables left.

Let p = (4¢)"2%¢" and k = pn. In the worst case, we build a
decision tree of n — k levels with 2" =% branches. By Lemma 5.7, at
most 27F fraction of the branches end with formula size

-
L(F,) > 2- L(F) <E) T gt = L= K
n 2 2

To compute #SAT for all such “big” formulas (of size at least
k/2), we use brute-force enumerations over all possible assignments
to the k free variables. The running time in total is bounded by
(2n=F . 27F) . 2% . poly(n) = 2"~F - poly(n).

For the other branches which end with “small” formulas (of size
less than k/2), there are at most k/2 variables left. To compute
#SAT for all such formulas, the total running time is bounded by
2n—k . 2k/2 . poly(n) = 2"7*/2 . poly(n).

The overall running time is bounded by 2" °"poly(n) where
5 = 9-0(c*logc) 0

6. Average-case hardness for small de Morgan
formulas

6.1. Linear-size de Morgan formulas. First we observe that
the proof of Theorem 5.2 immediately yields an average-case lower
bound for linear-size de Morgan formulas that attempt to compute
the PARITY function.

38 Chen et al.

THEOREM 6.1. (Santhanam 2010) Every cn-size de Morgan for-
mula on n variables can compute PARITY on at most 1/2 +
2-1/(16¢) fraction of all n-bit inputs.

Proor. By the proof of Theorem 5.2, every cn-size de Morgan
formula F' on n variables can be computed by a decision tree of
height n — k, for k = n/(16¢*), where all but 27% branches of the
tree correspond to subformulas on at most k/2 of the remaining k
variables. Any such subformula has zero correlation with the parity
function on the free variables. Hence, F' can correctly compute
parity with probability at most 1/2 +27% = 1/2 4 27-%/(16<)]

Note that this average-case hardness is nontrivial for ¢ < y/n,

i.e., for de Morgan formulas of size at most n°. In the follow-
ing subsection, we show how to get an average-case lower bound
against de Morgan formulas of size about n?®.
6.2. de Morgan formulas of size n?>*°. We use our shrinkage
result for adaptive restrictions to re-prove a recent result by Ko-
margodski & Raz (2013) on the average-case hardness for de Mor-
gan formulas. Our proof is more modular than the original argu-
ment of Komargodski & Raz (2013), and is arguably simpler. The
main differences are: (i) we use restrictions that choose which vari-
able to restrict in a completely deterministic way (rather than ran-
domly), and (ii) we use an extractor for oblivious bit-fixing sources
(instead of Andreev’s extractor for block-structured sources).

6.2.1. Andreev’s original argument. Andreev (1987) defined
a function A : {0,1}" x {0,1}" — {0, 1} as follows: Given inputs
z,y € {0,1}", partition y into logn blocks yi,...,Yogn Of size
n/logn each. Let b; be the parity of block y;, and output the bit
of z in the position by ...bg, (Where we interpret the logn-bit
string by ...bgn as an integer between 0 and n — 1). Note that
the de Morgan formula complexity of A(x,y) is at least that of
A(zg,y) for any fixed string xy. Andreev argued that if x is a
truth table of a function of maximal formula complexity, then the
function A'(y) = A(xg,y) is hard for de Morgan formulas of certain
size (dependent on the best available shrinkage exponent I').

Mining Circuit Lower Bound Proofs 39

The proof is by contradiction. Suppose we have a small de
Morgan formula computing A’(y). The argument relies on two
observations. First, under a random restriction (with appropriate
parameters), the restricted subformula of A’(y) will have size con-
siderably less than n. Secondly, a random restriction is likely to
leave at least one variable free (unrestricted) in each of the blocks;
we can further restrict the formula such that exactly one variable
is free in each block. When both of these events happen, we get
a small-size de Morgan formula that, up to negations to the input
bits, computes the function described by the truth table zy. This
contradicts the assumed hardness of xg.

Looking at Andreev’s argument more closely, we observe that
he uses the second string y to extract logn bits that are used as a
position in the truth table xy. He needs y to have the property that
every log n-bit string can be obtained from y even after y is hit by
a random restriction, leaving few variables free. Intuitively, each
unrestricted variable in y is a source of a truly random bit, and so
the restricted string y is a weak source of randomness containing &
truly random bits, where k is the number of unrestricted variables
left in y. In fact, this is an oblivious bit-fixing source with k£ bits
of min-entropy.

Andreev uses a very simple extractor for y (extracting one bit
of randomness from each block in y), but this extractor works
only for “sources of randomness” which have a “block structure”,
namely, every block contains at least one truly random bit. This
dictates that the argument be constrained to use restrictions which
in addition to leaving k£ unrestricted bits, also respect this “block
structure” (at least with high probability). This is not an issue in
Andreev’s argument which uses random restrictions (that indeed
respect the “block structure” with high probability). However, this
creates difficulties if one wants to use other choices of restrictions
as is the case in both Komargodski & Raz (2013) and the argument
of this paper.

6.2.2. Adapting Andreev’s argument to arbitrary restric-
tions, using extractors. We modify Andreev’s argument to
work with any choice of restrictions (in particular, our adaptive re-
strictions that choose deterministically which variables to restrict).

40 Chen et al.

To this end, we shall use explicit extractors for oblivious bit-fixing
sources; in fact, a disperser suffices in this context of worst-case
hardness, but an extractor is needed for the case of average-case
hardness that we consider later.

One difficulty we need to overcome when using an arbitrary
extractor/disperser instead of Andreev’s original extractor is an
apparent need of wnvertibility: Given a position z into the truth
table of z(, and a restriction, we need to find extractor’s pre-image
y’ of z that is consistent with the restriction. This task is very easy
for Andreev’s extractor, but quite non-trivial in general. Naively,
we seem to require an inverting procedure that is computable by
a small de Morgan formula, in order to argue that we get a small
de Morgan formula for the assumed hard string z.

However, we will show that for Andreev’s argument, one can
start with any incompressible string xq, not just of high de Morgan
formula complexity, but rather, say, of high Kolmogorov complex-
ity. This makes the whole argument of deriving a contradiction to
the assumed hardness of xg much simpler: we just need to argue
that the existence of a small de Morgan formula for A(zg,y) im-
plies the existence of a short description in the Kolmogorov sense
for the string xy. The reconstruction procedure for xy may take
arbitrary amount of time, and so in particular, it is acceptable to
use even brute-force inverting procedures for extractors/dispersers.

We provide the details on how to use dispersers in Andreev’s
worst-case hardness argument next. We define a modified version
of Andreev’s function using the following zero-error disperser.

THEOREM 6.2. (Gabizon & Shaltiel 2012) There exist ¢ > 1 and
0 < n < 1 such that, for all sufficiently large n, k > (logn)¢, there
is a poly(n)-time computable zero-error disperser D : {0,1}" —
{0, 1}*=°®) for oblivious (n, k)-bit-fixing sources.

The modified function B : {0,1}** x {0,1}" — {0, 1} is defined
by B(z,y) = Zp(), where D is the disperser from Theorem 6.2
that extracts log(4n) = logn + 2 bits from oblivious bit-fixing
sources containing k& = (logn)¢ random bits. That is, we use a
more powerful disperser instead of Andreev’s naive parity based
disperser. In addition, we also increased the length of the first

Mining Circuit Lower Bound Proofs 41

input x from n to 4n. This is done for technical reasons related to
the use of Kolmogorov complexity.

Next, fix a string zy of length 4n whose Kolmogorov complex-
ity is K(zg) > 4n, and consider the function B'(y) = B(xg,y).
Suppose B'(y) has a de Morgan formula F'. The shrinkage result
of Lemma 4.3 says that, after adaptively restricting n — k variables
via a random restriction p, the formula size will shrink with high
probability. Denote by F’ the formula after a restriction p, i.e.,

F'" = F|,. Then,
K\ 1
Pr |L(F') < 2L(F) (—) S

n 2k

Fix a good restriction p and consider the formula F’ obtained
from F using the restriction p. We will use the descriptions of F’
and p to reconstruct the string x(, using the following procedure:

Given a formula F’(y’), a restriction p, and n in binary,
go over all values 0 < ¢ < 4n—1. For each ¢, find a pre-
image z = D~1(i) consistent with the restriction p (by
trying all possible values for the free variables y’ and
evaluating D on the input described by the restriction p
plus the chosen values for '), and output F’(2’), where
z' is the part of z corresponding to the unrestricted
variables 1/'.

For the correctness analysis, for each position 0 < ¢ < 4n — 1,
there will be a required preimage z to the disperser (since the
disperser is zero-error). Since F' correctly computes B'(y), we get
that F’(z") equals the bit of z(in the position D(z) = 1.

The input size that the above procedure for reconstructing z
takes is at most L(F")-log L(F") + 2n + 2logn + 2 bits to describe
the restricted formula F’, the restriction p, and the input size n.
Indeed, we can first describe n by repeating twice each bit of the
log n-bit string n, followed by the two-bit string 01, followed by
2n-bit string describing the restriction p (saying for each position
0 <i < n—1ofywhetherit’s0, 1, or %), followed by the description
of F'. We get

4n < K(xg) < L(F') -log L(F") + 2n + 2logn + ¢,

42 Chen et al.

for some constant ¢ (which takes into account the constant-size
description of the Turing machine performing the reconstruction
of zg). Hence, L(F') > n/logn. We conclude that L(F) >
n?3 /poly log n, and hence also the function B(z,y) requires de Mor-
gan formulas of at least that size, up to a constant factor.

6.2.3. Average-case hardness. Here we generalize the argu-
ment from the previous subsection to prove average-case hardness.
We use the following extractor by Rao (2009).

THEOREM 6.3 (Rao). There exist constants d < 1 and ¢ > 1
such that for every k(n) > (logn)¢, there is a polynomial time
computable extractor E: {0,1}" — {0,1}*=°®) for (n, k)-bit-fixing
sources, with error 2k

We also use the following binary code whose existence is a folk-
lore result; for completeness, we sketch a possible construction of
such a code.

THEOREM 6.4. Let r = n”, for any given 0 < v < 1. There exists
a binary code C' mapping (4n)-bit message to a codeword of length
2", such that C' is (p, L)-list decodable for p = 1/2 — O(27"/*) and
L < O(2/%). Furthermore, there is a polynomial-time algorithm
for computing C(z) in position z, for any inputs x € {0,1}*" and
z € {0,1}".

PROOF. For a parameter € > 0, let S C {0,1}" be an explicit
e-biased sample space. Using a powering construction from Alon
et al. (1992), we get such a set of size (4n/€)?, where for each
1 < i < |S|, we can compute the ith string in S in time poly(n).
For x € {0,1}* and position 1 < i < |S], we define the ith symbol
of the codeword of = by C(z); = (z,y;) mod 2, where y; is the
1th string in S. By construction, the code has relative minimum
distance at least 1/2 —e¢. Hence, by the Johnson bound, the code is
(1/2—0(y/€), O(1/¢))-list-decodable. We choose € so that |S| = 27,
which yields € = O(277/2). O

Loosely speaking, as in Komargodski & Raz (2013), the code
is used to perform “worst-case to average-case hardness amplifica-
tion” in the spirit of Sudan et al. (2001): When applied on a truth

Mining Circuit Lower Bound Proofs 43

table g of a function that is hard in the worst case, C'(x¢) is the
truth table of a function that is hard on average. Here “hardness”
refers to Kolmogorov complexity.

We extend the definition of the previous section and use the
modified Andreev’s function after applying the error-correcting
code. Namely, let f: {0,1}*" x {0,1}" — {0,1} be defined by
f(x,y) = C(x)p(y), where C'is the code from Theorem 6.4 and E is
Rao’s extractor (from Theorem 6.3) mapping n bits to m = r = n?
bits, for the min-entropy & > 2m. We prove the following.

THEOREM 6.5. Let x¢ be any fixed (4n)-bit string of Kolmogorov
complexity K (xy) > 3n. Define f'(y) = f(zo,y). Then there exists
a constant 0 < o < 1 such that, for any de Morgan formula F of
size at most n**? on n inputs, we have Prycgo 13- [F(y) = f'(y)] <
1+ 5.

Proor. We will use an argument similar to that from the pre-
vious section, where we argued worst-case hardness. Towards a
contradiction, suppose that there is a de Morgan formula F' of size
at most n** computing f'(y) well on average:

1
A

+

DO | —

(6.6) Prycon[F(y) = f'(y)] >

For k = 2m = 2n”, consider a restriction decision tree of depth n—k
for the formula F'. We know by the Shrinkage Lemma (Lemma 4.3)
that all but 2% fraction of leaves of the decision tree correspond
to restricted subformulas of F' of size s < 2 - L(F)(k/n)*?2. For a
sufficiently small v > 0, we can get that s < n%%! and hence, the
description size of each such subformula is less than n%92.

Note that the restriction decision tree of depth n — k partitions
the universe {0,1}" into disjoint subsets of inputs of equal size
2% each. Furthermore, the distribution of choosing a restriction by
the specified process, and then uniformly selecting the unrestricted
bits, induces a uniform n bit string. Hence, the probability on the
left-hand side of Eq. (6.6) is equal to the average over all branches
of this decision tree of the success probabilities of the restricted
subformulas computing the corresponding restrictions of f’. Since
there are at most 27 fraction of “bad” restrictions (which do not

44 Chen et al.

shrink the formula F'), we conclude that the average over “good”
restrictions p (those that shrink the formula F') of the success prob-
abilities Pr,[F|,(y) = f'|,(y)] is at most 27 smaller than the right
hand-side of Eq. (6.6). By averaging, there exists a restriction p
such that I/ = F|, agrees with f/|, in at least 1/2 + 27" — 27
fraction of the remaining 2% inputs, and also F’ has the reduced
size s < n%9,

Let ¢ denote the k unrestricted variables left in y. For any
given k-bit string a, we denote by (p,a) the input to the function
f'(y) obtained using the restriction p and the values a for the
unrestricted variables y'. We have

1 1 1

2 o T oE

Note that the probability above is for a random experiment where
we first choose a uniformly random 3’ € {0, 1}* which determines
z = E(p,y'). Equivalently, we can first choose z = E(p,y") for a
random y” € {0,1}*, and then set ' to be a uniformly random
k-bit string such that E(p,y’) = z. Finally, consider a new exper-
iment where we choose z uniformly at random from {0,1}", and
then choose 3’ uniformly at random so that F(p,y’) = z. Since
E is an extractor with error at most 27¥* (by Theorem 6.3), the
statistical distance between the distribution E(p,y”), for uniformly
random 3", and the uniform distribution is at most 9k Hence,
using the new experiment will reduce the probability in Eq. (6.7)
by at most the same amount 2% Thus we get the following ran-
domized algorithm for computing C'(x¢) at a given position z:

(6.7) Pry’E{Oal}’“[F/(?//) = C(xO)E(p,y’)] >

Given n and the descriptions of F” and p, on input z €
{0,1}", pick a uniformly random g’ € {0, 1}* such that
E(p,y') = z, and output F'(y/). (Output an arbitrary
value if there does not exist a 3’ such that E(p,y') = 2).

By the discussion above, we have the described procedure com-
putes C(zg) correctly with probability at least € = 1/2 4+ 27" —
27k — 2_kd, where the probability is over both the codeword po-
sition z € {0,1}" and the internal randomness used to sample y'.
By choosing ¢ sufficiently small as a fun%%on of v and d, we can

ensure that ¢ > 1/2+ 277" =1/2 4 277

Mining Circuit Lower Bound Proofs 45

Equivalently, we could implement the above procedure as fol-
lows: given z, consider all k-bit strings 3’ such that F(p,y) = z,
calculate the fraction p, of those strings 1 from that set where
F'(y') = 1, and output 1 with probability p,, and 0 otherwise.
This way, the internal randomness we need is the randomness to
pick a uniformly random point on the unit interval [0, 1]. This can
be done up to an error 27%, using ¢ uniformly random bits. By
choosing ¢t = r, we ensure that this modified algorithm succeeds
with about the same probability, and that it uses ¢ uniformly ran-
dom bits for internal randomness that are independent of the string
z. By averaging, there is a particular string oy € {0, 1} such that
our algorithm correctly computes C(z) on at least 1/2 4 277/4
fraction of positions z € {0, 1}", when using this o as advice.

Thus we get a deterministic algorithm (with advice) that out-
puts some 2"-bit string w that agrees with C(zy) in at least 1/2 +
2-7/4 fraction of positions. The amount of nonuniform advice
needed by this algorithms is at most n%%! + 2n + r + O(logn) <
(2.1)n to describe the subformula F’, restriction p, internal ran-
domness «g, and the input length n.

The list-decodability of the code C' (Theorem 6.4) implies there
are at most O(2'/2) codewords that have such high agreement with
w. We can describe the required codeword C(z) by specifying its
index of at most r bits in the collection of all such codewords
(ordered lexicographically). This would add extra r = n? bits of
advice to our algorithm above. The overall amount of advice will
be < (2.5)n bits.

Once we know C'(z¢), we can also recover the message ¢, using
a uniform algorithm that does brute-force decoding. We conclude
that K (x¢) < 3n, contradicting our choice of z. O

By an averaging argument applied to Theorem 6.5, we get the
following corollary.

THEOREM 6.8. Let 0 < 0 < 1 be the constant from Theorem 6.5.

For any de Morgan formula F of size at most n*>*° on 5n inputs,
we have Prco 1y yeoyn [F(2,y) = f(z,y)] < % + 230

ProoF. The proof is by a simple averaging argument applied
to Theorem 6.5. Suppose there is a de Morgan formula F' that

46 Chen et al.

agrees with f(z,y) on at least 1/2 + € fraction of pairs (z,y), for
e = 27"°. By averaging, there is a subset S containing at least ¢/2
fraction of strings x, such that for each 2’ from the subset we have
F(2',y) = f(«',y) on at least 1/2 4 ¢/2 fraction of y’s.

On the other hand, the fraction of 4n-bit strings with Kol-
mogorov complexity less than 3n is at most 237 /29" = 27" which
is much less than €/2. Hence, there is a (4n)-bit string xy with
K(x9) > 3n, such that F(z¢,y) has non-trivial agreement with
f(xo,y) over random y’s. The latter contradicts Theorem 6.5. [

Since the function f(x,y) is computable in P (using the fact
that the code C' and the extractor F are efficiently computable),
we get an explicit function in P that has exponential average-case
hardness with respect to de Morgan formulas of size n%4°.

REMARK 6.9. The average-case lower bound for general formulas
and branching programs of size at most n*% can be argued in
exactly the same way, using the corresponding shrinkage result. In
particular, we can prove the analogue of Theorem 6.5, by observing
that a general formula (branching program) of size n'% is also likes
to shrink to size below n®% (for the same parameter k), and then
proceeding with the rest of the proof as before.

7. Circuit lower bounds from compression

Incompressibility is easily seen to be a special case of a “natu-
ral property” in the sense of Razborov & Rudich (1997). Indeed,
by counting, almost all Boolean functions are incompressible, and
so we have the largeness condition. By the definition of com-
pressibility, the compression algorithm runs in time poly(2") for
an n-variate Boolean function, and so we have the constructive-
ness condition. Finally, if we can compress Boolean functions from
the class C of circuits, then we get a C-useful natural property: a
Boolean function that cannot be compressed by our compression
algorithm must be outside the circuit class C. Therefore, the exis-
tence of compression algorithms for a circuit class C implies that
there is no strong PRG in C. Here we argue that such compression
algorithms would also yield circuit lower bounds against C for a
language in NEXP.

Mining Circuit Lower Bound Proofs 47

7.1. Arbitrary subclass of polynomial-size circuits. It was
shown by Impagliazzo et al. (2002) that the existence of a natural
property for P/poly would imply that NEXP Z P/poly. In partic-
ular, the same conclusion follows if we assume the existence of a
compression algorithm for P/poly-computable Boolean functions.
We generalize this result by proving that the same is true if we
replace P/poly with any subclass C C P/poly.

We need to recall the notion of witness complexity for NEXP
languages from (Impagliazzo et al. 2002; Kabanets 2001). For a
language L € NEXP and an n-bit input x € L, we view each
2P (")_length witness (certifying that x € L for the given NEXP
Turing machine deciding L) as the truth table of a Boolean function
on poly(n) inputs. For a circuit class C, we define the witness C-
complexity of x with respect to the NEXP Turing machine deciding
L to be the size of a smallest C-circuit that computes (the truth
table of) a witness for z € L.

We have the following.

THEOREM 7.1. Let C C P/poly be any circuit class. Suppose that
for every ¢ € N there is a deterministic polynomial-time algorithm

that compresses a given truth table of an n-variate Boolean func-
tion f € C[n| to a circuit of size less than 2" /n. Then NEXP ¢ C.

PROOF. Suppose, for the sake of contradiction, that NEXP C
C C P/poly. The following is a refinement of a result in Impagliazzo
et al. (2002) who showed the case of C = P/poly. We strengthen it
to any subclass C C P/poly.

A version of the following claim for C = ACC? also follows
from Williams (2011); our proof is via a more direct reduction
to Impagliazzo et al. (2002).

Cramv 7.2. If NEXP C C, then for every L € NEXP there is a
c¢ € N such that, for all sufficiently large n, every n-bit string
x € L has witness C-complexity at most n®.

ProOF. By Impagliazzo et al. (2002), the assumption NEXP C
P/poly implies that, for every language L € NEXP, there exists a
constant ¢, € N such that every sufficiently large input x € L has

48 Chen et al.

witness complexity at most n°:, with respect to the unrestricted
(general) circuit class. To get the required witness C-complexity,
we use the following construction.

For every L € NTIME(2""), define a new language L' € EXP as
follows: on inputs z,y, where |z| = n and |y| = n®, search through
the circuits of size n°L until find a circuit whose truth table is a
witness for x € L. If no such witness is found, then output 0.
Otherwise, output the yth bit of the found witness.

We get that for every x € L, a string y is such that (z,y) € L’
iff the yth bit of the lexicographically first witness for = (as found
by the algorithm enumerating all n° size circuits) is 1. Since
EXP C C, we get that L' € C. So, every x € L has a witness that is
the truth table of Boolean function computable by a polynomial-
size C-circuit. O

Consider now a language L € NTIME(2"") that is hard for NE.
For NTIME(2°") for every ¢ € N, the witness size for inputs of
size n is bounded by 2 < 2" for large enough n. We think
of witnesses for NE languages (on inputs of size n) as the truth
tables of m-variate Boolean functions for m = n?: such a string
of length 2 is a witness iff its prefix of appropriate length is a
witness. By Claim 7.2 above, we get that there is a constant ¢y € N
such that yes-instances z, |x| = n, of every language in NE have
witnesses that are truth tables of m = n2-variate Boolean functions
computable in C[m®].

Suppose we have a deterministic poly(2™)-time compression al-
gorithm for n-variate Boolean functions in C[n?*®]. Consider the
following NE algorithm:

On input x of size n, nondeterministically guess a bi-
nary string of length 2". Run the compression algo-
rithm on the guessed string. Accept iff the compression
algorithm didn’t produce a circuit of size less than 2" /n
for this string.

Observe that the described algorithm accepts every input z
since there are incompressible strings of every length 2". Its run-
ning time is poly(2") dependent on the running time of the assumed
compression algorithm. Note that every witness for an input x is

Mining Circuit Lower Bound Proofs 49

a string that our compression algorithm fails to compress, which
means that the witness is the truth table of an n-variate Boolean
function that requires C-circuits of size greater than n?<. If we
think of this 2"-bit witness as the prefix of a 27°-bit truth table of
an m = n’?-variate Boolean function, we conclude that the latter
m-variate Boolean function requires C-circuits of size greater than
m<. But this contradicts the fact we established earlier that every
NE language must have C[m®] computable witnesses. U

REMARK 7.3. If we could show that ACC°-computable functions
are compressible, we would get an alternative proof of the lower
bound NEXP ¢ ACC’ (Williams 2011). Interestingly, while such
a compression algorithm would yield a natural property for ACCY,
the overall lower bound proof would still use non-natural argu-
ments and non-relativizing arguments that come from the use of
Impagliazzo et al. (2002) in the proof of Claim 7.2.

Finally, we observe that it is easy to get an analogue of The-
orem 7.1 also for (appropriately defined) deterministic lossy com-
pression algorithms.

7.2. Other function classes that are hard to compress.

Large AC circuits Compressing functions that are computable
by “large” AC’ circuits (of size 2" with € > 1/d, where d is the
depth of the circuit) is difficult since every function computable
by a polynomial-size NC' circuit has an equivalent AC? circuit of
size 2" (and some depth d dependent on €). The existence of a
compression algorithm for such large ACY circuits would imply a
natural property in the sense of Razborov & Rudich (1997) useful
against NC'. The latter implies that no strong enough PRG can be
computed by NC circuits (Allender et al. 2008; Razborov & Rudich
1997). Also, using Theorem 7.1, we get that such compression
would imply that NEXP ¢ NC'.

THEOREM 7.4. For every € > 0 there is a d € N such that the
following holds. If there is a deterministic polynomial-time algo-
rithm that compresses a given truth table of an n-variate Boolean

50 Chen et al.

function f € ACY[2™] to a circuit of size less than 2"/n, then
NEXP ¢ NC'.

Monotone functions Every monotone Boolean n-variate func-
tion can be computed by a (monotone) circuit of size O(2"/n'?)
(Pippenger 1977; Red’kin 1979). Using the well-known connec-
tion between non-monotone functions and monotone slice func-
tions (Berkowitz 1982), we argue that compressing polynomial-size
monotone functions to the circuit size some constant factor smaller
than the known upper bound O(2"/n'®) is as hard as compressing
arbitrary functions in P/poly.

THEOREM 7.5. If there is an efficient algorithm that compresses
a given truth table of an m-variate monotone Boolean function
of monotone circuit size poly(m) to a (not necessarily monotone)
circuit of size less than e-2™/m'5, for a sufficiently small constant
€ > 0, then there is an efficient algorithm for compressing arbitrary
n-variate P /poly-computable Boolean functions to circuits of size
less than 2" /n.

Proor. We utilize the known connection between non-monotone
functions and monotone slice functions (Berkowitz 1982). We ap-
ply the optimal embedding of an arbitrary n-variate Boolean func-
tion f into the middle slice of a monotone slice function g on m
variables for m = n+ (logn)/2+ ©(1) by Karakostas et al. (2012).
Given a truth table of f, we can efficiently construct the truth table
of this monotone function g. The mapping between n-bit inputs of
f and the corresponding m-bit inputs of g (of Hamming weight
m/2) is computable and invertible in time poly(m) = poly(n).
Hence, a circuit for g of size less than e - 2™/m!?, for a small
enough € > 0 to be determined, yields a circuit for f of size less
than € - ¢ - 2"/n + poly(n), for some fixed constant ¢ > 0 (inde-
pendent of €). By choosing € := 1/(2¢) and by upperbounding
poly(n) < 2"/(2n), we get that the resulting circuit for f has size
less than 2™ /n for large enough n. Appealing to Theorem 7.1 con-
cludes the proof. O

Thus, a compression algorithm for monotone functions of poly-
nomial monotone-circuit complexity would yield a natural property

Mining Circuit Lower Bound Proofs 51

for the class P/poly, as well as a proof that NEXP Z P/poly.

8. Open questions

Can we extend our compressibility results to other circuit classes
with known lower bounds, e.g., constant-depth circuits with prime-
modular gates for which the polynomial-approximation method
was used (Razborov 1987; Smolensky 1987)7 Can we compress
functions computable by ACC’ circuits? More generally, do all
known circuit lower bound proofs yield compression algorithms for
the corresponding circuit classes?

The compressed circuit sizes for our compression algorithms are
barely less than exponential. Can we achieve better compression
for the circuit classes considered?

Is there a general connection between compression and SAT
algorithms?

By the independent work by Komargodski et al. (2013) on the
“high-probability version of shrinkage” for de Morgan formulas, we
can get compression and #SAT algorithms for de Morgan formu-
las of size almost n3. However, unlike our #SAT-algorithm (for
n?5-size de Morgan formulas), the #SAT-algorithm resulting from
Komargodski et al. (2013) is only randomized (due to the notion of
random restrictions used there). It is an interesting open question
to get a deterministic such algorithm for n3-size de Morgan formu-
las. (A similar problem is also open for AC’-SAT algorithms, where
there is a quantitative gap between the AC® circuit size that can be
handled by the randomized algorithm of Impagliazzo et al. (2012a)
and the deterministic algorithm of Beame et al. (2012).) Very re-
cently, Chen et al. (2014) give a deterministic #SAT-algorithm for
de Morgan formulas of size n%6® with the running time 27"
building on the work of Paterson & Zwick (1993).

For small AC? circuits and small AC® circuits with few threshold
gates, one can get nontrivial [ossy compression using the Fourier
transform (Gopalan & Servedio 2010; Linial et al. 1993). What
about lossy compression for other circuit classes?

For example, for polynomial-size AC? circuits with parity-gates,
we know by the results of Razborov (1987); Smolensky (1987) that
every such function can be approximated by a (polylogn)-degree

52 Chen et al.

polynomial over GF'(2) to within error 1/n. This is a binary Reed-
Muller codeword of order poly log n that disagrees with our received
word (the given truth table of a function) in at most 1/n fraction of
positions. The problem of lossy compression leads to the following
natural question on decoding: Given a received word x of size 2"
such that there is a Reed-Muller codeword (of order polylogn)
within the Hamming ball of relative radius 1/n around z, find in
time poly(2") some codeword that is at most 1/n away from x.
Note that this is different from the usual list-decoding question:
here the number of codewords within this Hamming ball can be
huge, and so we don’t ask to find all of them, but rather any single
one. (The only result in this direction that we are aware of is by
Tulsiani & Wolf (2011) for the case of binary Reed-Muller codes of
order 2.)

Acknowledgements

We thank Ilan Komargodski, Ran Raz, Dieter van Melkebeek,
and Avi Wigderson for helpful discussions. We also thank the
anonymous referees for many useful suggestions that helped us im-
prove the presentation. The first three authors were supported
by NSERC; the fourth author by BSF grant 2010120, ISF grant
864/11, and ERC starting grant 279559; the fifth author by NSF
Grants CCF-0916160 and CCF-1218723 and BSF Grant 2010120.

References

M. AGRAWAL (2005). Proving lower bounds via pseudo-random gener-
ators. In Proceedings of the Twenty-Fifth Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, 92—
105.

E. ALLENDER, L. HELLERSTEIN, P. McCABE, T. PiTasst & M.E.
SAKS (2008). Minimizing Disjunctive Normal Form Formulas and AcY
Circuits Given a Truth Table. SIAM Journal on Computing 38(1),
63-84.

N. Aron, O. GOLDREICH, J. HASTAD & R. PERALTA (1992). Sim-
ple Constructions of Almost k—wise Independent Random Variables.
Random Structures and Algorithms 3(3), 289-304.

Mining Circuit Lower Bound Proofs 53

A.E. ANDREEV (1987). On a method of obtaining more than quadratic
effective lower bounds for the complexity of m-schemes. Vestnik
Moskovskogo Universiteta. Matematika 42(1), 70-73. English trans-
lation in Moscow University Mathematics Bulletin.

A.E. ANDREEV, J. L. Baskakov, A. E. F. CLEMENTI & J. D. P.
RoriM (1999). Small Pseudo-Random Sets Yield Hard Functions: New
Tight Explict Lower Bounds for Branching Programs. In Proceedings of
the Twenty-Sizth International Colloguium on Automata, Languages,
and Programming, 179-189.

S. ARORA & B. BARAK (2009). Complexity theory: a modern approach.
Cambridge University Press, New York.

L. Bazz1 (2009). Polylogarithmic Independence Can Fool DNF Formu-
las. SIAM Journal on Computing 38(6), 2220-2272.

P. BEAME (1994). A switching lemma primer. Technical report, Depart-
ment of Computer Science and Engineering, University of Washington.

P. BEAME, R. IMPAGLIAZZO & S. SRINIVASAN (2012). Approximating
AC® by Small Height Decision Trees and a Deterministic Algorithm
for #AC°SAT. 1In Proceedings of the Twenty-Seventh Annual IEEE
Conference on Computational Complexity, 117-125.

S.J. BERKOWITZ (1982). On some relationships between monotone
and non-monotone circuit complexity. Technical report, University of
Toronto.

M. BLum & S. MicaL1 (1984). How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on Computing
13, 850-864.

R. B. BorpANA & M. SIPSER (1990). The complexity of finite func-
tions. In Handbook of theoretical computer science (vol. A), J. VAN
LEEUWEN, editor, 757-804. MIT Press, Cambridge, MA, USA.

M. BRAVERMAN (2010). Polylogarithmic independence fools AC? cir-
cuits. Journal of the Association for Computing Machinery 57, 28:1—
28:10.

C. CALABRO, R. IMPAGLIAZZO & R. PATURI (2009). The Complexity
of Satisfiability of Small Depth Circuits. In Parameterized and Ezact
Computation, 4th International Workshop, IWPEC 2009, 75-85.

54 Chen et al.

R. CHEN, V. KABANETS & N. SAURABH (2014). An Improved De-
terministic #SAT Algorithm for Small De Morgan Formulas. In Pro-
ceedings of the Thirty-Ninth International Symposium on Mathematical
Foundations of Computer Science, 165-176.

V. CHVATAL (1979). A greedy heuristic for the set covering problem.
Mathematics of Operations Research 4, 233-235.

S.A. Coox (1971). The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, 151-158.

E. DANTSIN & E.A. HirscH (2009). Worst-Case Upper Bounds. In
Handbook of Satisfiability, 403—-424.

V. FELDMAN (2009). Hardness of approximate two-level logic minimiza-
tion and PAC learning with membership queries. Journal of Computer
and System Sciences 75(1), 13-26.

L. Fortrnow & A.R. KLIvANS (2006). Efficient Learning Algorithms
Yield Circuit Lower Bounds. In Proceedings of the Nineteenth Annual
Conference on Learning Theory, 350-363.

M. Furst, J.B. SAXE & M. SIPSER (1984). Parity, Circuits, and
the Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1),
13-27.

A. GaBIzON & R. SHALTIEL (2012). Invertible Zero-Error Dispersers
and Defective Memory with Stuck-At Errors. In APPROX-RANDOM,
553-564.

P. GoprAaLAN & R. A. SERVEDIO (2010). Learning and lower bounds
for AC? with threshold gates. In APPROX-RANDOM, 588-601.

J. HASTAD (1986). Almost optimal lower bounds for small depth cir-
cuits. In Proceedings of the Fighteenth Annual ACM Symposium on
Theory of Computing, 6—20.

J. HASTAD (1998). The Shrinkage Exponent Of De Morgan Formulae
Is 2. SIAM Journal on Computing 27, 48-64.

J. HASTAD, R. IMPAGLIAZZO, L. LEVIN & M. LUBY (1999). A pseu-

dorandom generator from any one-way function. SIAM Journal on
Computing 28, 1364-1396.

Mining Circuit Lower Bound Proofs 55

J. HEINTZ & C.-P. SCHNORR (1982). Testing polynomials which are
easy to compute. L’Enseignement Mathématique 30, 237-254.

R. IMPAGLIAZZO, V. KABANETS & A. WIGDERSON (2002). In search
of an easy witness: Exponential time vs. probabilistic polynomial time.
Journal of Computer and System Sciences 65(4), 672-694.

R. IMPAGLIAZZO, W. MATTHEWS & R. PATURI (2012a). A satisfia-
bility algorithm for AC®. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, 961-972.

R. ImpAGLIAZZO, R. MEKA & D. ZUCKERMAN (2012b). Pseudoran-
domness from shrinkage. In Proceedings of the Fifty-Third Annual IEEE
Symposium on Foundations of Computer Science, 111-119.

R. IMPAGLIAZZO & A. WIGDERSON (1997). P=BPP if E requires ex-
ponential circuits: Derandomizing the XOR Lemma. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
220-229.

D.S. JOHNSON (1974). Approximation algorithms for combinatorial
problems. Journal of Computer and System Sciences 9, 256-278.

S. JUKNA (2012). Boolean Function Complezity: Advances and Fron-
tiers. Springer.

V. KABANETS (2001). Easiness Assumptions and Hardness Tests: Trad-

ing Time for Zero Error. Journal of Computer and System Sciences
63(2), 236-252.

V. KABANETS & J.-Y. CAI (2000). Circuit Minimization Problem. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, 73-79.

V. KABANETS & R. IMPAGLIAZZO (2004). Derandomizing polynomial

identity tests means proving circuit lower bounds. Computational Com-
plexity 13(1-2), 1-46.

R. KANNAN (1982). Circuit-size lower bounds and non-reducibility to
sparse sets. Information and Control 55, 40-56.

G. KARAKOSTAS, J. KINNE & D. VAN MELKEBEEK (2012). On deran-
domization and average-case complexity of monotone functions. Theo-
retical Computer Science 434, 35-44.

56 Chen et al.

I. KOMARGODSKI & R. RaAz (2013). Average-case lower bounds for
formula size. In Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, 171-180.

I. KoMARGODSKI, R. RAz & A. TAL (2013). Improved Average-Case
Lower Bounds for DeMorgan Formula Size. In Proceedings of the Fifty-
Fourth Annual IEEE Symposium on Foundations of Computer Science,
588-597.

L. LEvVIN (1973). Universal sorting problems. Problems of Information
Transmission 9, 265—-266.

N. LINIAL, Y. MANSOUR & N. N1sAN (1993). Constant Depth Circuits,
Fourier Transform and Learnability. Journal of the Association for
Computing Machinery 40(3), 607-620.

L. LovAsz (1975). On the ratio of optimal integral and fractional
covers. Discrete Mathematics 13, 383—-390.

O.B. Lupanov (1958). On the synthesis of switching circuits. Dok-
lady Akademii Nauk SSSR 119(1), 23-26. English translation in Soviet
Mathematics Doklady.

W.J. MASEK (1979). Some NP-complete set covering problems.
Manuscript.

E.I. NECHIPORUK (1966). On a Boolean function. Doklady Akademii
Nauk SSSR 169(4), 765-766. English translation in Soviet Mathematics
Doklady.

N. N1saN & A. WIGDERSON (1994). Hardness vs. Randomness. Journal
of Computer and System Sciences 49, 149-167.

M. PATERSON & U. Zwick (1993). Shrinkage of de Morgan Formulae
under Restriction. Random Structures and Algorithms 4(2), 135-150.

N. PIPPENGER (1977). The complexity of monotone boolean functions.
Theory of Computing Systems 11, 289-316. ISSN 1432-4350.

A. Rao0 (2009). Extractors for Low-Weight Affine Sources. In Proceed-
ings of the Twenty-Fourth Annual IEEE Conference on Computational
Complexity, 95-101.

Mining Circuit Lower Bound Proofs 57

A.A. RAzZBOROV (1987). Lower bounds on the size of bounded depth
circuits over a complete basis with logical addition. Mathematical Notes
41, 333-338.

A.A. RazBOROV (1993). Bounded arithmetic and lower bounds in
boolean complexity. In Feasible Mathematics 11, 344-386. Birkhauser.

A.A. RAzZBOROV & S. RupICH (1997). Natural proofs. Journal of
Computer and System Sciences 55, 24-35.

N.P. RED’KIN (1979). On the realization of monotone Boolean func-
tions by contact circuits. Problemy Kibernetiki 35, 87-110. (in Russian).

R. SANTHANAM (2010). Fighting Perebor: New and Improved Algo-
rithms for Formula and QBF Satisfiability. In Proceedings of the Fifty-
First Annual IEEE Symposium on Foundations of Computer Science,
183-192.

P. SAVICKY & S. ZAk (1996). A large lower bound for 1-branching
programs. Electronic Colloquium on Computational Complexity TR96-
036.

K. SETO & S. TAMAKI (2012). A Satisfiability Algorithm and Average-
Case Hardness for Formulas over the Full Binary Basis. In Proceedings of
the Twenty-Seventh Annual IEEE Conference on Computational Com-
plexity, 107-116.

R. SMOLENSKY (1987). Algebraic Methods in the Theory of Lower
Bounds for Boolean Circuit Complexity. In Proceedings of the Nine-
teenth Annual ACM Symposium on Theory of Computing, 7T7-82.

B.A. SUBBOTOVSKAYA (1961). Realizations of linear function by for-
mulas using V, &, ~. Doklady Akademii Nauk SSSR 136(3), 553-555.
English translation in Soviet Mathematics Doklady.

M. SupAN, L. TREVISAN & S. VADHAN (2001). Pseudorandom gen-
erators without the XOR lemma. Journal of Computer and System
Sciences 62(2), 236-266.

M. Tursiant & J. WoLF (2011). Quadratic Goldreich-Levin Theo-
rems. In Proceedings of the Fifty-Second Annual IEEE Symposium on
Foundations of Computer Science, 619-628.

58 Chen et al.

I. WEGENER (1987). The Complezity of Boolean Functions. J. Wiley,
New York.

R. WiLLiams (2010). Improving exhaustive search implies superpoly-
nomial lower bounds. In Proceedings of the Forty-Second Annual ACM
Symposium on Theory of Computing, 231-240.

R. WiLL1aMS (2011). Non-uniform ACC circuit lower bounds. In Pro-
ceedings of the Twenty-Sixth Annual IEEE Conference on Computa-
tional Complexity, 115-125.

R. WiLLIAMS (2013). Natural Proofs Versus Derandomization. In Pro-
ceedings of the Forty-Fifth Annual ACM Symposium on Theory of Com-
puting, 21-30.

S.V. YABLONSKI (1959). On the impossibility of eliminating PERE-
BOR in solving some problems of circuit theory. Doklady Akademii
Nauk SSSR 124(1), 44-47. English translation in Soviet Mathematics
Doklady.

A.C. YAO (1982). Theory and applications of trapdoor functions. In
Proceedings of the Twenty-Third Annual IEEE Symposium on Founda-
tions of Computer Science, 80-91.

A.C. YAO (1985). Separating the polynomial-time hierarchy by ora-
cles. In Proceedings of the Twenty-Sizth Annual IEEE Symposium on
Foundations of Computer Science, 1-10.

F. ZANE (1998). Circuits, CNFs, and Satisfiability. Ph.D. thesis,
UCSD.

Manuscript received 1 October 2014

RUIWEN CHEN VALENTINE KABANETS
School of Computing Science School of Computing Science
Simon Fraser University Simon Fraser University
Burnaby, BC, Canada Burnaby, BC, Canada

ruiwenc@sfu.ca kabanets@cs.sfu.ca

Mining Circuit Lower Bound Proofs 59

ANTONINA KOLOKOLOVA RONEN SHALTIEL
Department of Computer Science Department of Computer Science
Memorial University of Newfound- University of Haifa

land Haifa, Israel
St. John’s, NL, Canada ronen@cs.haifa.ac.il
kol@cs.mun.ca

DAVID ZUCKERMAN

Department of Computer Science
University of Texas at Austin
Austin, TX, USA
diz@cs.utexas.edu

