
LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION∗

EYAL KUSHILEVITZ† , YISHAY MANSOUR‡ , MICHAEL O. RABIN§ , AND

DAVID ZUCKERMAN¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1550–1563, December 1998 003

Abstract. We establish, for the first time, lower bounds for randomized mutual exclusion
algorithms (with a read-modify-write operation). Our main result is that a constant-size shared
variable cannot guarantee strong fairness, even if randomization is allowed. In fact, we prove a lower
bound of Ω(log log n) bits on the size of the shared variable, which is also tight.

We investigate weaker fairness conditions and derive tight (upper and lower) bounds for them as
well. Surprisingly, it turns out that slightly weakening the fairness condition results in an exponential
reduction in the size of the required shared variable. Our lower bounds rely on an analysis of Markov
chains that may be of interest on its own and may have applications elsewhere.

Key words. mutual exclusion, randomized distributed algorithms, Markov chains, lower bounds

AMS subject classifications. 68Q22, 68M99, 60J10

PII. S009753979426513X

1. Introduction. Randomization has played an important role in the design
and understanding of distributed algorithms. It is a natural tool which is usually
used in order to break symmetry between identical processes in a distributed system.
Beyond its natural role in symmetry breaking, randomization often increases the
computation power (e.g., [LR81, Ben83]), significantly decreases computational costs
(e.g., [Bra85, FM88]), and helps in simplifying algorithms.

For many applications in distributed environments, there is a provable gap be-
tween the power of randomized algorithms and that of their deterministic counter-
parts. The most renowned example is achieving Byzantine agreement with a linear
number of faults; while any deterministic algorithm requires at least a linear number
of rounds [FL82], there is a randomized algorithm that performs the same task in a
constant number of rounds [FM88]. Another important example is that of reaching
a consensus in an asynchronous distributed system with faults: this is impossible
with deterministic protocols, even if the faults are restricted to a single fail-stop fault
[FLP85], but is possible with the use of randomized protocols (see [CIL87]).

The gap between the performances of randomized and deterministic algorithms
exists also for the mutual exclusion problem. The complexity measure here is the

∗ Received by the editors February 1, 1994; accepted for publication (in revised form) September
5, 1996; published electronically June 3, 1998. An early version of this paper appeared in Proc. of the
25th ACM Symp. on Theory of Computing, 1993, pp. 154–163. The research of Eyal Kushilevitz and
Michael Rabin was supported by research contracts ONR-N0001491-J-1981 and NSF-CCR-90-07677
at Harvard University.

http://www.siam.org/journals/sicomp/27-6/26513.html
† Dept. of Computer Science, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il, http://www.

cs.technion.ac.il/∼eyalk). Part of this research was done while the author was at Aiken Computation
Lab., Harvard University, Cambridge, MA 02138.

‡ Computer Science Dept., Tel-Aviv University and IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 (mansour@math.tau.ac.il).

§ Aiken Computation Lab., Harvard University, Cambridge, MA 02138-2901 and Institute of
Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel (rabin@das.harvard.
edu).

¶ Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
(diz@cs.utexas.edu). This research was done while the author was at the Laboratory for Computer
Science, MIT, and supported by an NSF Postdoctoral Fellowship.

1550

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1551

size of the shared variable.1 Any deterministic algorithm requires an Ω(logn)-bit
shared variable, in order to achieve mutual exclusion (with fairness) between n distinct
processes, and this bound is tight [BFJ+82]. On the other hand, there is a randomized
algorithm requiring only an O(log log n)-bit shared variable [Rab82, KR92].2

It remained an open problem whether the complexity of the randomized algorithm
for the mutual exclusion problem could be further reduced, perhaps even to a constant
number of bits. A constant-size shared variable is of special interest, since it implies
that the size of the shared memory can be independent of the number of the processes
using it. Our main contribution is a tight Ω(log logn) lower bound on the number of
bits required to implement the shared variable. Other tight upper and lower bounds
are given for mutual exclusion with weaker fairness properties.

Few lower bounds are known for randomized distributed algorithms. Many of
these lower bounds are based on arguments that arise from the need for information
to flow from one side of the network to the other side, or based on the symmetry
between different processes [IR81]. Another type of argument for randomized lower
bounds is the use of the min-max theorem [Yao77, AS91]. For randomized Byzantine
agreement, when more than a third of the processes are faulty, a lower bound on the
success rate is known [KY84, GY89].

Previous work and our results. In the following, we give a more detailed
description of the mutual exclusion problem and a summary of our results together
with previous results related to our work.

The setting of the mutual exclusion problem is as follows. There are n processes
that from time to time need to execute a critical section in which exactly one is allowed
to employ some shared resource. The processes can coordinate their activities through
a shared read-modify-write variable (i.e., reading and rewriting the shared variable is
an atomic action). The sequence of accesses to the shared variable is determined by
a scheduler.

The mutual exclusion problem is a classical problem in distributed computing.
It was first suggested by Dijkstra [Dij65], who solved the problem using a (one-bit)
semaphore. While the semaphore does solve the problem and guarantees deadlock
freedom, it does not guarantee any fairness among the processes competing for the
critical section; a process that is waiting for the critical section may wait forever.
Since then, numerous solutions have been proposed for the mutual exclusion problem.
All these solutions guarantee deadlock freedom, together with some notion of fairness.

An important parameter for evaluating the complexity of a mutual exclusion
algorithm is the size of the shared variable that is used. As mentioned above, to
guarantee only deadlock-freeness, a one-bit semaphore is sufficient [Dij65]. Burns
et al. [BFJ+82] define the bounded-waiting property as a fairness criterion. Roughly
speaking, this property guarantees that between the first time that a process accesses
the shared variable in order to try to enter the critical section and the time it actually
enters the critical section, each of the other processes may enter the critical section at
most once. They proved that if deterministic algorithms are used, then an Ω(logn)-

1 Throughout this work the size of the shared variable is measured in terms of the number of
bits of the shared variable rather then the number of values (as is done in some of the papers in
the literature). Clearly, the number of bits is logarithmic in the number of values, hence a constant
factor in the number of bits translates to a polynomial factor in the number of values. Still, the
number of bits is a very natural measure for the size of the variables.

2 The first solution to this problem was given in [Rab82]. A flaw in this solution was pointed out
by [Sai92]. A new solution, based on ideas of [Rab82], was given in [KR92].

1552 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

bit shared variable is required for achieving bounded-waiting and that this number of
bits is also sufficient.

Rabin [Rab82] suggested the use of randomized algorithms for mutual exclusion
and defined the notion of fairness for such algorithms. Roughly speaking, the fairness
of a randomized mutual exclusion algorithm measures the probability that a process
enters the critical section at a given time, as a function of the number of processes
concurrently competing for the critical section. Specifically, Rabin was interested
in the following fairness property, which we refer to as linear-fairness: if a process
participates in a “round”3 together with m processes, it has probability Ω(1/m) of
entering the critical section in the next round. This property can be considered as a
probabilistic analogue of the bounded-waiting property. Randomized algorithms hav-
ing the linear-fairness property that use O(log log n)-bit shared variable are presented
in [Rab82, KR92]. This is in contrast to the Θ(logn)-bit shared variable required by
deterministic algorithms.

Proving the correctness of such randomized distributed protocols involves many
delicate issues. Saias [Sai92] developed a general methodology to prove the correctness
of a randomized distributed protocol. The main difficulty of such proofs is the need to
deal with two separate sources of nondeterminism: the randomness that the protocol
generates and the decisions of the adversary. The key idea in his methodology is that
these two ingredients should be made independent. Using his systematic methodology,
Saias [Sai92] uncovered the flaw in [Rab82].

No lower bounds for randomized mutual exclusion were known. In fact, in light
of the results mentioned earlier, it may seem plausible that a constant-size shared
variable is sufficient for mutual exclusion with linear fairness. More than that, it was
shown [Rab82, KR92] that a constant-size shared variable may be powerful; it suffices
for guaranteeing that each of the competing processes will have Ω(1/n) probability
of entering the critical section. However, this is independent of m and hence is much
weaker. In this paper, we prove a tight Ω(log logn)-bit lower bound on the size of
the shared variable that is needed for achieving mutual exclusion with linear-fairness.
Thus, in particular, a constant-size shared variable cannot guarantee linear-fairness.

We define a slightly weaker fairness property that we term polynomial-fairness:
if a process participates in a round together with m processes, it has a probability of
Ω(1/m1+ε) to enter the critical section in the next round (where ε > 0 is a constant).
Surprisingly, we show that for every ε > 0 an O(log log logn)-bit shared variable
is sufficient to achieve polynomial fairness, and that an Ω(log log logn)-bit shared
variable is necessary. Hence, this slight weakening of the fairness property results
in an exponential reduction in the size of the required shared variable. Finally, we
show that with a constant-size shared variable it is possible to guarantee an Ω(1/2m)
probability of entering the critical section.

For our lower-bound proofs, we study general Markov chains, i.e., those which
are represented by a k × k real nonnegative matrix where the sum of elements in
each row is 1. We call a Markov chain live if in each of its first n steps it has a
“considerable probability” of visiting a new state (i.e., a state that was not visited
in each of the previous steps). We relate the fairness of mutual exclusion algorithms
to the liveness of Markov chains (where the different notions of fairness correspond
to different interpretations of “considerable probability”). We obtain our bounds for
mutual exclusion by proving bounds on k, the number of states of the Markov chains
(as a function of n). We believe that our bounds and technique may be found useful

3 A round is the time between two consecutive closings of the critical section.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1553

for other applications.
The paper is organized as follows. In section 2 we formally define the mutual

exclusion problem and Markov chains. In sections 3 and 4 we prove the lower bounds
for linear/polynomial-fairness (respectively). Finally, in section 5 we show the upper
bounds.

2. Preliminaries.

2.1. Mutual exclusion. In this section we define the properties required from
a randomized mutual exclusion algorithm. Let P1, . . . , Pn be the n processes in the
system. The processes coordinate their activities by using a shared read-modify-write
variable v. (In addition, each process Pi has unbounded local memory.) While it is
convenient to assume that all the processes run the same program, our results do not
depend on this assumption. During the computation, each process Pi is in one of four
possible phases: TRYING phase, in which it attempts to enter the critical section,
CS (critical section) phase, in which it executes the critical section, EXIT phase, in
which it leaves the critical section, or REMAINDER phase, in which it does other
local computations.

At any given time the adversary scheduler4 can observe the external behavior of
the processes (i.e., which of the four phases each process currently executes) and use
this information (together with its information on the past behavior of the processes)
to determine which process will be the next to access the shared variable. (It is also
assumed that the adversary knows the algorithm used by the processes, including the
initial state of each process.) The adversary scheduler cannot observe the content of
the shared variable nor the content of any local variable.5 More formally, let a run
be a (finite or infinite) sequence (i1, x1), . . . , (ik, xk), . . ., where xj indicates which
phase process Pij started or whether it accessed the shared variable. A run is called
proper if the subsequence of phases corresponding to every process Pi is of the form
REMAINDER, TRYING, CS, EXIT, REMAINDER,

A scheduler is a (probabilistic) function that on a finite run σ gives the identity of
the next process to access the shared variable. It should satisfy the following property.

Scheduler-liveness: For each time t and any process Pj not in REMAINDER
phase at time t, there exists a time t′ > t in which Pj makes a move.

Next, we discuss the correctness conditions of a randomized mutual exclusion
algorithm. While the first three conditions are rather standard, the fairness definition
is the one unique to the randomized solutions. These correctness conditions may
be generalized in various ways without affecting the results. We discuss possible
extensions of the conditions throughout the paper.

Mutual exclusion: At any time t there is at most one process in the CS phase.
If there is a process in the CS phase then we say that the critical section is
closed; otherwise, it is open.

Fault-freeness: If a process Pj moves from TRYING phase to the CS phase then
eventually Pj moves from the CS phase to EXIT phase and from EXIT phase
to REMAINDER phase. (For example, a protocol in which a process after
entering the critical section gets into an infinite loop violates this condition.)

Deadlock-freeness: If the critical section is open and there is a process in
TRYING phase, then eventually some process enters the CS phase.6

4 We assume here the same adversary scheduler and the same correctness conditions as in [KR92].
5 Note that since we are interested in this work in proving lower bounds, this assumption makes

our job more complicated.
6 The definition can be weakened to require that this will hold with probability 1, and all the

1554 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

f-fairness: Let Ci be the time at which the ith closing of the critical section
occurs. Let Si be the set of processes in TRYING phase that were scheduled
to access the shared variable between time Ci−1 and Ci, excluding the process
that entered the critical section at Ci.

1. If Si 6= ∅ then one of the processes in Si enters the critical section at
Ci+1.

2. For every process Pj ∈ Si, the probability that Pj enters at time Ci+1

is at least 1/f(t), where t = |Si|.7
In particular, for a constant c, we refer to c · t-fairness as linear-fairness, and
to tc-fairness as polynomial-fairness.8

In the definition of f -fairness, we require that a process that tries to enter at
time Ci will have a “good” chance to enter at the next time, i.e., Ci+1. At first sight,
it seems more natural to require that a process that arrives between time Ci−1 and
Ci will have a good probability to enter at Ci, as defined in [Rab82]. However, as
pointed out by [Sai92], such a statement is circular since the definition of the event Ci

depends on whether the process enters the critical section or not, and it seems that
there is no “acceptable” way to get around this problem. We follow here the solution
suggested by [KR92], which requires the “good” chance to be only in the next time
step.

2.2. Markov chains. Let S = {s1, s2, . . . , sk} be a set of k states. A Markov
chain is a real, nonnegative, k × k matrix (Qi,j) with the property that the sum of
elements in each row equals 1. It can be used to generate sequences of elements of S
in the following way. Start in the initial state, say, s1. At each step, if the last element
in the sequence is si, move to state sj with probability Qi,j (i.e., the probability of
moving into state sj depends only on the last state si and not on the whole history).

We say that a Markov chain (Qi,j) is (n, f(t))-live if for every 1 ≤ t ≤ n the
probability that the sequence generated by the above process visits in the tth step a
state that was not visited during the first t− 1 steps is at least 1/f(t).

It is sometimes convenient to think about the Markov chain as a complete directed
graph on k nodes. Every edge i→ j has a value Qi,j which is the probability of visiting
node j in the next step when being in node i. The sequence of states, in this case, is
usually called a walk.

3. Lower bound: Linear-fairness. In this section we describe the lower bound
for the case of linear-fairness; that is, where the probability of each process entering
the critical section is required to be inversely proportional to the number of processes
trying to enter the critical section. To do so, we describe a strategy for the adversary
scheduler, given a mutual exclusion algorithm A, to plan a schedule in which the
probability that a certain process (that the adversary wish to discriminate against)
enters the critical section in a given round is smaller than what is required.

results of the paper will remain valid.
7 The probability space is defined on prefixes of runs; therefore, the space is finite. Formally, the

above requirement says that for any prefix of a run up to Ci, σ, which have a nonzero probability,
the probability that Pj enters at time Ci+1 given σ is at least 1/f(t). Later, when we will refer to
an event as “happened in the past” we will mean that it is satisfied by σ.

8 It is possible to relax the definition of fairness and to allow each party that was scheduled to
access the shared variable between times Ci−1 and Ci and that has not entered the critical section
at times Ci, Ci+1, . . . , Ci+d−1, for some parameter d, to compete on entering at time Ci+d with
probability of success at least 1/f(t). The results and the proofs (with few minor changes) hold for
such a definition as well.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1555

1. Schedule Pn until it enters the critical section.
2. Schedule P1, . . . , Ps, . . . , Pt (each is scheduled once).
3. Schedule Pn until it exists the critical section.
4. Schedule P1, . . . , Ps for M steps (in a round-robin).
5. Schedule P1, . . . , Pn (in a round-robin).

Fig. 1. Strategy for the adversary (assuming the existence of s and t as in Lemma 1).

The schedule starts by scheduling the process Pn to access the shared variable
until this process enters the CS phase; i.e., the critical section is closed (Figure 1,
step 1). The deadlock-freeness property guarantees that this will eventually happen.
Denote by d the number of steps taken by Pn before entering the CS phase, and by
v[n] the value that Pn wrote into the shared variable at this time. Then, the adversary
schedules each of the processes P1 to Pt (in order) to perform a single read-modify-
write operation on the shared variable, where t is a parameter (Figure 1, step 2). We
denote by v[i] the value written by Pi into the shared variable. The proof of the lower
bound has two parts. We first show that if t is good (in a sense that will be defined
later) then the adversary can discriminate against Pt; namely, with high probability,
process Pt will not enter the critical section (although scheduled to access the shared
variable). Later, we show that if the shared variable is “too small” then a good t
must exist. To introduce the idea of the proof we first assume that t satisfies an even
stronger property, as formalized in the next lemma.

Lemma 1. Assume that there exists a specific s, 1 < s < t, such that the
probability that the value v[t] written by Pt into the shared variable equals the value
v[s] written by Ps is at least 1−δ. Then there exists an extension of the above schedule
such that the probability that Pt enters at either C1 or C2 is at most δ+ ε, where ε is
arbitrarily small.

Proof. Assume that v[t] = v[s]. That is, Pt wrote into the shared variable
the same value as Ps (this happens with probability at least 1 − δ). The adversary
extends the schedule by first scheduling Pn to access the shared variable until it moves
to the REMAINDER phase and the critical section is open (Figure 1, step 3). This
is guaranteed by the fault-freeness property. Then (Figure 1, step 4), the adversary
continues by scheduling only P1 to Ps (say, by a round-robin). Observe that the only
way that a process Pi can note that another process Pj was scheduled before it is
if Pj changed the value of the shared variable. Hence, if indeed v[t] = v[s], then in
this case processes P1 to Ps must operate as if Ps+1 to Pt were not scheduled. This
implies (by the deadlock-freeness property and the first part of the fairness property)
that eventually some process Pi enters at C1, and some other process Pj at C2, where
1 ≤ i, j ≤ s. More precisely, there exists a large enough M such that if P1, . . . , Ps are
scheduled to take M steps, then with probability at least 1− ε, two of these processes
enter at time C1 and time C2 (if this does not happen during the M steps this could
be either because Pt did not write the same value as Ps or because none of P1, . . . , Ps
entered the critical section). Hence, the probability that Pt enters at either C1 or
C2 is bounded by the probability that it did not write the same value as Ps plus the
probability that M steps were not enough for P1, . . . , Ps, which is at most δ+ ε.

The problem with the above lemma is that the adversary needs to know some
fixed s, such that the probability that Pt writes to the shared variable the same value
that was written by Ps, is “high.” The next lemma shows that the same bound holds
even when s is not fixed. First we define the notion of good t.

1556 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

1. Schedule Pn until it enters the critical section.
2. Schedule P1, . . . , Pt (each is scheduled once).
3. Schedule Pn until it exists the critical section.
4. For i = 1, . . . , t− 1

Schedule P1, . . . , Pi for Mi steps (in a round-robin).
5. Schedule P1, . . . , Pn (in a round-robin).

Fig. 2. Strategy for the adversary (assuming the existence of t which is δ-good).

Definition 1. We say that t is δ-good9 if the probability that the value v[t]
written by Pt into the shared variable equals one of v[1], . . . , v[t−1] (the values written
by P1, . . . , Pt−1, respectively) is at least 1− δ.

Lemma 2. Given that t is δ-good, there exists an extension of the above schedule
such that the probability that Pt enters at either C1 or C2 is at most δ+ ε, where ε is
arbitrarily small.

Proof. As t is δ-good, the adversary, who knows the algorithm used, knows that
with high probability there exists an s (1 ≤ s < t) such that v[t] equals v[s]. However,
the adversary has to overcome the fact that he does not know the value of s. He will
do so by trying all the possible values of s. The problem is that trying one value of
s, say s = 9, influences other values of s, say s = 3, since the processes may notice
that s > 3. The first idea is to try s = 1, 2, . . . , t − 1 in this order. This guarantees
that before trying s = i, the only processes scheduled are P1, . . . , Pi−1 (this is done
by modifying step 4; see Figure 2).

Essentially, when the adversary checks whether s = i, it does the same thing as in
the proof of Lemma 1 above. Namely, it schedules only P1, . . . , Pi. If, indeed, s = i,
then the adversary is guaranteed that if it schedules only P1, . . . , Pi, eventually one of
them would enter at C1 and one at C2 (it might be the same process in both cases).
If the scheduler detects that s 6= i, then it continues to i+1. We are guaranteed that,
with probability 1− δ, there exists such an i.

We need to show how the adversary can check whether s = i or s 6= i. If the
adversary has a bound on the number of steps until the processes P1, . . . , Pi would let
one in C1 and another in C2, say Mi steps, it would schedule them this many steps.
If no process would enter at either C1 or C2, then the scheduler is guaranteed that
s 6= i. As in the proof of Lemma 1 it may be the case that such a bound Mi does
not exist. For this reason it would compute the value of Mi such that if s = i the
probability that one of P1, . . . , Pi enters at C1 and C2 during at most Mi steps (in a
round-robin schedule) is at least 1− ε.

The probability that the scheduler misses the right value of s is ε (note that we
do not care about the other cases). In addition, we assumed that there exists such an
s, with probability 1 − δ. Therefore, the probability that Pt enters is at most δ + ε.
This is since this probability is bounded by the probability that there is no such s
(bounded by ε), plus the probability that, given that there is such an s, the scheduler
misses it (bounded by δ).

So far, we proved that if there is a t which is δ-good then the adversary can
discriminate against Pt. We now prove that such a t must exist if the number of
values is “too small.” At this point it is convenient to define the Markov chain
Q(A, d) corresponding to a mutual exclusion algorithm A and an integer d (where d

9 The term “good” is from the adversary point of view.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1557

will be taken as the number of times Pn was scheduled before entering the critical
section; this parameter is known to the adversary). Note that d does depend on A,
but for each specific d we have a different Markov chain. Recall that we assume, at
this point, that all the processes run the same program.

States: The states of the Markov chain correspond to the possible values of the
shared variable. In addition there is a special initial state q0 (i.e., if we have
a k-bit shared variable, then the Markov chain has 2k + 1 states).

Transition probabilities: For i, j ≥ 1, the entry Qi,j equals the probability
that a process, when invoked for the first time (i.e., it is in its initial state)
and reading the value i from the shared variable, writes the value j. This
probability is defined by the algorithm A. For the initial state and i > 0,
we define Q0,i to be the probability that the process Pn, before closing the
critical section, wrote the value v[n] = i (this probability depends on d!).
Also, Qi,0 = 0 for all i.

The idea is that the behavior of a process which is scheduled to read the shared
variable for the first time depends only on the current value of the shared variable
and does not depend on the whole history of values. This Markov property enables us
to describe the process of writes as a Markov chain. The relation between this Markov
chain and the schedule we are constructing is formalized by the following claim; later
we concentrate on analyzing the Markov chain.

Claim 1. Fix a schedule as above. Also, let A, d, and Q(A, d) be as above. Then,
for every sequence of values Vn, V1, . . . , Vi,

Pr[(s0 = Vn) ∧ (s1 = V1) ∧ . . . ∧ (si = Vi)]

= Pr[(v[n] = Vn) ∧ (v[1] = V1) ∧ . . . ∧ (v[i] = Vi)],

where s0, s1, s2, . . . is the sequence of states visited by the Markov chain.
Proof. The proof follows by an easy induction from the definition of the Markov

chain.
It follows from the definitions that if every t is not 1

ct -good, then the corresponding
Markov chain is (n, c · t)-live; hence, if the Markov chain is not (n, ct)-live, then there
exists a t which is 1

ct -good. (Recall that a Markov chain (Qi,j) is (n, f(t))-live if for
every 1 ≤ t ≤ n the probability that the tth step reaches a state that was not visited
during the first t− 1 steps is at least 1/f(t).) The following lemma gives a bound on
the number of states of any Markov chain (not only those constructed as above) with
linear-liveness property.

Lemma 3. Let c ≥ 0 be any constant. Let (Qi,j) be any Markov chain on k states
which is (n, c · t)-live. Then, k > 1

c lnn.
Proof. For every 1 ≤ i ≤ n, let Xi be a random variable which takes the value 1 if

the Markov chain visits a new state in its ith step, and 0 otherwise. Clearly,
∑n

i=1 Xi

is at most the number of states k, and hence also E[
∑n

i=1 Xi] ≤ k. By linearity of
expectation, E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]. By the liveness of the Markov chain, for

every i, Prob[Xi = 1] ≥ 1
ci . This implies that E(Xi) ≥ 1

ci . Combining all together,
we get that k ≥∑n

i=1
1
ci >

1
c · lnn.

Theorem 4. Every mutual exclusion algorithm A for n processes which guaran-
tees O(t)-fairness requires a shared variable of Ω(log log n) bits.

Proof. Consider the algorithm A and the corresponding Markov chain Q(A, d)
and assume that the algorithm A guarantees ct-fairness. If the Markov chain Q(A, d)
is not (n − 1, 2ct)-live, then there exists a t, 1 ≤ t ≤ n − 1, which is 1

2ct -good. By
Lemma 2, there exists an extension of the basic schedule (in which Pn was scheduled d

1558 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

times) such that the probability of Pt entering the critical section at either C1 or C2 is
less than 1

ct , contradicting the ct-fairness of the algorithm. Therefore, Q(A, d) must be
(n−1, 2ct)-live. By Lemma 3, this implies that k, the number of states in this Markov
chain, is at least 1

2c ln(n−1). By the construction of the Markov chain, the number of
bits in the shared variable used by A is log(k−1) ≥ log(1

2c ln(n−1)−1) = Ω(log logn),
as claimed.

Note that in the proof of Lemma 3 we do not use the fact that in each step we
use the same transition matrix. In other words, the lemma holds even if we associate
with every step i a different transition matrix Q(i). This implies that the lower bound
of Theorem 4 still holds even if the processes are allowed to use different programs.

Corollary 5. Every mutual exclusion algorithm for n processes which guaran-
tees O(t)-fairness requires a shared variable of Ω(log log n) bits, even if each process
runs a different program.

In the above discussion, we assumed that the adversary knows which value of t is
1

2ct -good. We can make this assumption because the adversary is given the algorithm
A, and it knows the number of steps d taken by Pn before entering the CS phase.
Therefore, it can construct the above Markov chain. Based on this, the adversary can
compute the probability of visiting a new state at any given step and hence find the
value of t.

4. Lower bound: Nonlinear-fairness. In this section we extend the results
from the case of linear-fairness to the case of polynomial (tc, for c > 1) fairness. The
proof goes along the same lines, except that the proof of Lemma 3 fails in this case,
since

∑
i 1/i

c = O(1), for c > 1. Thus, a different approach is required.
To simplify the proof, we assume that all the processes are identical (i.e., both

code and initial state). At the end of the section we show that the proof can be
extended to the case when the processes are not identical. Our goal now is to derive
a lower bound for the number of states of (n, tc)-live Markov chains.

Consider the k2 values Qi,j of the Markov chain. We divide the proof into two
cases according to the way these values are distributed in the interval [0, 1]. The easy
case is when these values are “dense” in the interval. Lemma 6 below claims that
in this case k must be “large.” Then, we handle the more difficult case where there
exists some “gap” in the interval [0, 1] in which none of these k2 values fall, and we
show that in this case the Markov chain is not (n, tc)-live.

Lemma 6. Let λ > 1 be a constant.10 Let (Qi,j) be a Markov chain over k
states. If, for every 0 ≤ α ≤ 1/2 such that αλk ≥ 1/n, there exist i and j such that
Qi,j ∈ (αλk, α], then k = Ω(

√
log log n/ log log logn).

Proof. Consider the sequence β` = 2−(λk)` (` = 0, 1, . . .). By the assumption, if
β`+1 ≥ 1/n then the interval (β`+1, β`] contains at least one of the values Qi,j (also
note that these intervals are disjoint). Since there are at most k2 such values, then
βk2+1 < 1/n; otherwise, not all the intervals contain a value Qi,j . From this inequality

we get that k = Ω(
√

log log n/ log log logn).
In the following we assume that there is such a gap; i.e., there exists an α ≤ 1/2

such that the interval (αλk, α] contains no probability Qi,j , and αλk ≥ 1/n. An edge
i→ j with probability Qi,j ≤ αλk is called α-light; otherwise, if Qi,j > α, it is called
α-heavy. The assumption that there is a gap implies that every edge is either α-heavy
or α-light. We consider a random walk of (a suitably chosen) length t < n. We show
two main properties. The first is that the probability that in t steps of the Markov

10 The value of λ depends on the value of the constant c.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1559

chain some α-light edge is used is “small.” The second is that the probability that we
do not “cover” the graph induced by the α-heavy edges is “small.” Before going into
the details, we will make our choice of parameters, as follows:

t =
γk2c2

α2k
and

λ = γ′c log c,

where γ and γ′ are sufficiently large constants and k is the number of states. (Un-
fortunately, the best intuition that we can give for the choice of t and λ is that they
make the proof go through.) We start by showing that the probability of traversing
some α-light edge is negligible.

Lemma 7. The probability that any α-light edge is used in a walk of length t is
less than 1/(2tc).

Proof. In each of the t steps, the walk can choose among at most k − 1 α-light
edges, each with probability at most αλk. Therefore, the probability that any α-
light edge is used is not more than t · k · αλk. To see that this is less than 1/(2tc),
it is sufficient to show that 2tc+1kαλk < 1. We now substitute the value of t into
this inequality and we get that it is sufficient to prove 2γc+1k2c+3c2c+2α(λ−2(c+1))k

< 1. As α < 1/2 it is enough that 2γc+1k2c+3c2c+2 < 2(λ−2(c+1))k. This is satisfied
as long as (λ − 2(c + 1))k > 1 + (c + 1) log γ + (2c + 3) log k + (2c + 2) log c. Hence,
choosing λ as above, with γ′ sufficiently large, will satisfy the inequality, and the
lemma follows.

In the following we define what it means to cover a directed graph. Intuitively, a
directed graph is covered by a walk if no new node can be reached.

Definition 2. A directed graph is completely covered by a walk W if each node
that is reachable from the last node of the walk W has already been visited in W .

Note that the above definition does not require that the walk visit all the nodes
in the graph, just that there be no new nodes which can be reached from the last
node. The next lemma gives a bound on the probability that we completely cover the
graph induced by the α-heavy edges.

Lemma 8. Consider a Markov chain (Qi,j) such that each transition probability
is either α-heavy or α-light. The probability that after a walk W of t steps, which uses
only α-heavy edges, the induced (directed) graph of α-heavy edges is not completely
covered is less than 1/(2tc).

Proof. Recall that k is the number of states in the Markov chain. We divide the
walk W into b = dt/ke blocks of size k. Consider the location v of the walk at the
beginning of a block. Either all the nodes reachable from v in the induced graph of
α-heavy edges were already visited, or there is some node v′, reachable from v, which
was not visited yet. This implies that there is a (simple) path of length at most k
from v to v′ consisting of α-heavy edges. (There may be more than one such path;
however, we cannot make any stronger assumption, e.g., the existence of an α-heavy
edge connecting v to v′.) Therefore, the probability that the walk visits v′ during the
current block of steps is at least αk.

By standard Chernoff bounds, the probability that the graph is not completely

covered after t/k blocks is at most e−
tαk

8k . To see this, define a random variable Xi

which is 1 if the graph is completely covered by the first i − 1 blocks of the walk
or if a new node is visited during the ith block of the walk. Otherwise, Xi = 0.
By the above, the probability that Xi is 1 is at least p = αk. Let S be the sum of

these random variables. That is, S
4
=
∑b

i=1 Xi. With these definitions, the event

1560 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

S ≥ k implies that the graph is completely covered. The Chernoff bound shows that
Pr(S ≤ (1 − ε)pb) ≤ e−bpε

2/2, which for ε = 1/2 and our choices of b and p gives

e−
tαk

8k . Finally, note that (1 − ε)pb = (1/2)αkt/k which is greater than k for our

choice of t. Therefore, Pr(S < k) ≤ Pr(S < (1− ε)pb) ≤ e−
tαk

8k .

Finally, we need to show that e−
tαk

8k < 1/(2tc). It is enough to show that − tαk

8k <

− ln(2tc) or that 2t > 16k
αk

c ln(2t). It can be easily verified that for D ≥ 3 the

equation x > D lnx is true for any x ≥ D2. In our case we take D = 16ck
αk

. (Note
that c > 1, k ≥ 1, and α < 1; hence, indeed D ≥ 3.) Therefore, the choice of t (with
γ sufficiently large) guarantees the inequality. The lemma follows.

Given that the walk does not use any α-light edge, and since every edge is either
α-light or α-heavy, the probability that in step t the walk visits a state in which it is
already visited is at least the probability that a walk of length t−1 completely covers
the induced graph of α-heavy edges (since, by the definition of “completely covered,”
the only nodes that can be reached in step t, by an α-heavy edge, have already been
visited).

Lemma 9. Consider a Markov chain (Qi,j) such that each transition probability
is either α-heavy or α-light. For any c > 1, the Markov chain is not (n, tc)-live.

Proof. In order to show that the Markov chain is not (n, tc)-live, it is sufficient
to show that there exists a t, such that the probability that in step t a new state is
visited is less than 1/tc. The probability of reaching a new state at step t is

Pr(new state in step t)

= Pr(new state in step t|α-light edge is used) · Pr(α-light edge is used)

+ Pr(new state in step t|no α-light edge is used) · Pr(no α-light edge is used)

≤ Pr(α-light edge is used) + Pr(new state in step t|no α-light edge is used).

The first summand is less than 1/(2tc), by Lemma 7. If the graph of the α-heavy edges
is covered and no α-light edge was used, we cannot reach a new state. Therefore, the
second summand is not more than the probability of not covering the graph in t− 1
steps (given that no α-light edge is used). By Lemma 8, this probability is also less
than 1/(2tc). Altogether, we get that the probability of visiting a new state in step
t is less than 1/tc. This implies that the Markov chain does not have the required
liveness property.

Corollary 10. Let c ≥ 0 be any constant. Let (Qi,j) be any Markov chain on

k states which is (n, tc)-live. Then, k = Ω(
√

log log n/ log log logn).
Proof. Lemma 6 shows that if there is no “gap” of the form (αλk, α], then the

claimed lower bound holds. Lemma 9 shows that if there is such a “gap,” then the
Markov chain is not (n, tc)-live.

Theorem 11. Every mutual exclusion algorithm for n processes which guarantees
tc-fairness requires a shared variable of Ω(log log log n) bits.

Proof. The proof is similar to the proof of Theorem 4, but using Corollary
10 instead of Lemma 3. Consider the algorithm A and the corresponding Markov
chain Q(A, d), and assume that the algorithm A guarantees tc-fairness. If the
Markov chain Q(A, d) is not (n − 1, 2tc)-live, then there exists a 1 ≤ t ≤ n − 1
which is 1

2tc -good. By Lemma 2, there exists an extension of the basic schedule
such that the probability that Pt enters the critical section at either C1 or C2 is less
than 1

tc , contradicting the tc-fairness of the algorithm. Therefore, Q(A, d) must be
(n − 1, 2tc)-live. By Corollary 10, this implies that k, the number of states in this

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1561

Markov chain, is Ω(
√

log log n/ log log logn). By the construction of the Markov
chain, the number of bits in the shared variable used byA is log(k−1) = Ω(log log logn),
as claimed.

To relax the requirement that the processes have the same program, we make the
following observations. For every process Pi, we can associate with its program Ai

a Markov chain Q(Ai, d), as before. All those Markov chains have the same number
of states k. If k = Ω(

√
log log n/ log log logn), we are done. That is, the number

of bits of the shared variable is Ω(log log logn). By Lemma 6, if k is “too small”
(i.e., k = o(

√
log log n/ log log logn)), then for every process there is some gap. That

is, one of the k2 intervals (β`+1, β`] considered in the proof of Lemma 6 is empty.
Moreover, for n/k2 of the processes the gap is in the same interval. Denote this
interval by (αλk, α]. Now, consider only these processes and the α-heavy edges in
the corresponding graphs. The number of ways of choosing for each of the k2 edges

whether it is heavy or not is 2k
2

. Therefore, there are n′
4
= n/(k2 · 2k2

) processes
with the same gap, and the same α-heavy edges. If we take only these processes, the
same proof can be repeated. Finally, note that due to the double logarithmic relation
between k and n, the number of processes we remained with is

n′ = n/(k2 · 2k2

) > nε

for some constant ε > 0. Hence, we also get a lower bound of Ω(log log logn′) =
Ω(log log log n) for the case when processes may use different programs. We conclude
with the following theorem.

Theorem 12. Every mutual exclusion algorithm for n processes which guarantees
tc-fairness requires a shared variable of Ω(log log log n) bits, even if each process runs
a different program.

5. Upper bounds. In this section, we present some upper bounds to complete
the picture. In fact, we do not explicitly present protocols. Instead, we present
appropriate lotteries, where a lottery is just a probability distribution that allows
processes to draw numbers (“tickets”) in {1, 2, . . . , B}. The “winners” of the lottery
are those processes drawing the maximal drawn number. We use as a black box the
following theorem, implicit in [KR92], that reduces the existence of mutual exclusion
algorithms with certain fairness properties to the existence of lotteries that guarantee
a certain probability of having a unique winner.

Theorem 13 (see [KR92]). Let f be a function, and n and B be integers. Assume
that there exists a lottery for at most n processes, on B values, with the property that
for every number of processes 1 ≤ t ≤ n and every participating process Pi with
probability at least 1/f(t), the maximal drawn number was drawn by the process Pi,
and all other participating processes draw strictly smaller numbers. Then, there exists
a randomized mutual exclusion algorithm for n processes that guarantees f-fairness
and uses a shared variable of 2 logB +O(1) bits.

By this theorem, in order to prove the existence of mutual exclusion algorithms,
it is enough to prove the existence of the appropriate lotteries. For example, the
lottery used in [Rab82, KR92] assigns a probability of 2−j for each value 1 ≤ j < B
(B = 4 + logn), and probability 2−B+1 for the value B. It is shown that this lottery
gives f(t) = O(t) and therefore can be used to achieve mutual exclusion with linear
fairness.

Note that all the upper bounds we give immediately give upper bounds on the
number of states of (n, f)-live Markov chains for the appropriate f ’s. We start by
showing an upper bound for a constant-size shared variable.

1562 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

Theorem 14. There exists a randomized mutual exclusion algorithm that uses a
constant-size shared variable and guarantees 1/2t-fairness.

Proof. We show a lottery with f(t) = 2t; by Theorem 13, this completes the proof.
In the lottery, each participating process Pi chooses a value in {1, 2} with uniform
distribution; i.e., the probability that Pi chooses each of the two values is 1/2. For
every participating process Pi, we are interested in the event in which Pi chooses the
maximum value and it is unique. Since there are only two possible values, this is
simply the event in which Pi chooses the value 2 and all other participating processes
choose 1. The probability that Pi chooses the value 2 and all other participating
processes choose 1 is exactly 1/2t; therefore, f(t) = 2t.

The next theorem derives a bound in the case where the fairness guarantee needs
to be polynomial in t (note that in the previous theorem, the fairness guarantee is
exponential in t). We show the result by exhibiting a different lottery for this case.
This lottery implies an upper bound of O(log log logn) bits for mutual exclusion with
polynomial-fairness.

Theorem 15. For any constant c > 1, there exists a randomized mutual exclusion
algorithm that uses an O(log log logn)-size shared variable and guarantees Ω(1/tc)-
fairness.

Proof. Again, we show a lottery with f(t) = O(tc); by Theorem 13, this completes

the proof. Consider the following lottery: the value j is chosen with probability 1/2c
j

,
for (j = 1, 2, . . . , c′ log log n), and the value 0 is chosen otherwise. For every integer t

(the number of participants), let ` ≥ 0 be an integer such that 2c
` ≤ t < 2c

`+1

(the
constant c′ is chosen so as to guarantee that such an ` exists for every t ≤ n). We are
interested in the event in which Pi chooses a value `+1 and all other t−1 participating
processes choose values at most `. This clearly lower-bounds the probability that Pi is
the unique process that chooses the maximum value. The probability that Pi chooses

the value `+ 1 is 1/2c
`+1

. For each Pj , j 6= i, the probability that Pj chooses a value
greater than or equal to `+ 1 is

c′ log log n∑
k=`+1

1

2ck
≤

c′ log log n∑
k=`+1

(
1

2c

)k
<

c′′

2c`+1 ,

where c′′ is a constant (e.g., c′′ = 2d1/ log2 ce suffices). Therefore, the probability

that Pj chooses a value less than or equal to ` is at least 1− c′′

2c`+1 . Since we have t−1
different Pj ’s, the probability that Pi chooses ` + 1 and all other t − 1 participating
processes choose values of at most ` is at least

1

2c`+1 ·
(

1− c′′

2c`+1

)t−1

≥ 1

2c`+1 ·
(

1− c′′

2c`+1

)2c
`+1

>
1

2tc
·
(

1

2e

)c′′
,

which completes the proof of the theorem. (The proof remains similar in the case
when we wish to get a lottery with f(t) = αtc for a particular constant α.)

REFERENCES

[AS91] H. Attiya and M. Snir, Better computing on the anonymous ring, J. Algorithms, 12
(1991), pp. 204–238.

[Ben83] M. Ben-Or, Another advantage of free choice: Complete asynchronous agreement proto-
cols, in Proc. 6th ACM Symp. on Principles of Distributed Computing, 1983, pp. 27–
30.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1563

[BFJ+82] J. E. Burns, M. J. Fischer, P. Jackson, N. A. Lynch, and G. L. Peterson, Data
requirements for implementation of n-process mutual exclusion using a single shared
variable, J. Assoc. Comput. Mach., 29 (1982), pp. 183–205.

[Bra85] G. Bracha, An O(logn) expected rounds randomized byzantine generals protocol, in Proc.
17th ACM Symp. on Theory of Computing, 1985, pp. 316–326.

[CIL87] B. Chor, A. Israeli, and M. Li, On process coordination using asynchronous hardware,
in Proc. 6th ACM Symp. on Principles of Distributed Computing, 1987, pp. 86–97.

[Dij65] E. Dijkstra, Solution of a problem in concurrent programming control, Comm. ACM, 8
(1965), p. 569.

[FL82] M. Fischer and N. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183–186.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus
with one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[FM88] P. Feldman and S. Micali, Optimal algorithms for byzantine agreement, in Proc. 20th
ACM Symp. on Theory of Computing, 1985, pp. 148–161.

[GY89] R. L. Graham and A. C. Yao, On the improbability of reaching byzantine agreements, in
Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 467–478.

[IR81] A. Itai and M. Rodeh, The lord of the ring, or probabilistic methods for breaking symme-
try in distributed networks, in Proc. 22th IEEE Symp. on Foundations of Computer
Science, 1981, pp. 150–158.

[KR92] E. Kushilevitz and M. O. Rabin, Randomized mutual exclusion algorithms revisited, in
Proc. 11th ACM Symp. on Principles of Distributed Computing, 1992, pp. 275–283.

[KY84] A. Karlin and A. C. Yao, Probabilistic Lower Bounds for Byzantine Agreement, unpub-
lished manuscript, 1984.

[LR81] D. Lehman and M. O. Rabin, On the advantage of free choice: A symmetric and fully
distributed solution to the dining philosophers problem, in Proc. 8th ACM Symp. on
Principles of Programming Languages, 1981, pp. 133–138.

[Rab82] M. O. Rabin, n-process mutual exclusion with bounded waiting by 4 log2 n-valued shared
variable, J. Comput. System Sci., 25 (1982), pp. 66–75.

[Sai92] I. Saias, Proving probabilistic correctness statements: The case of Rabin‘s algorithm for
mutual exclusion, in Proc. 11th ACM Symp. on Principles of Distributed Computing,
1992, pp. 263–272.

[Yao77] A. C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proc.
18th IEEE Symp. on Foundations of Computer Science, 1977, pp. 222–227.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

