
Journal of Computer and System Sciences 72 (2006) 786–812

www.elsevier.com/locate/jcss

Extractors from Reed–Muller codes

Amnon Ta-Shma a,∗,1, David Zuckerman b,2, Shmuel Safra a

a Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
b Department of Computer Science, University of Texas, Austin, TX 78712, USA

Received 26 February 2002; received in revised form 6 May 2004

Available online 20 February 2006

Abstract

Finding explicit extractors is an important derandomization goal that has received a lot of attention
in the past decade. Previous research has focused on two approaches, one related to hashing and the
other to pseudorandom generators. A third view, regarding extractors as good error correcting codes,
was noticed before. Yet, researchers had failed to build extractors directly from a good code without
using other tools from pseudorandomness. We succeed in constructing an extractor directly from a
Reed–Muller code. To do this, we develop a novel proof technique.

Furthermore, our construction is the first to achieve degree close to linear. In contrast, the best
previous constructions brought the log of the degree within a constant of optimal, which gives poly-
nomial degree. This improvement is important for certain applications. For example, it was used
[E. Mossel, C. Umans, On the complexity of approximating the VC dimension, J. Comput. System
Sci. 65 (2002) 660–671] to show that approximating VC dimension to within a factor of N1−δ is
AM-hard for any positive δ.
© 2006 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: amnon@post.tau.ac.il (A. Ta-Shma), diz@cs.utexas.edu (D. Zuckerman),

safra@post.tau.ac.il (S. Safra).
URLs: http://www.cs.tau.ac.il/~amnon (A. Ta-Shma), http://www.cs.utexas.edu/~diz (D. Zuckerman),

http://www.cs.tau.ac.il/~safra (S. Safra).
1 Some of this work was done while the author was at the University of California at Berkeley, and supported in

part by a David and Lucile Packard Fellowship for Science and Engineering and NSF NYI Grant CCR-9457799.
2 Some of this work was done while the author was on leave at the University of California at Berkeley.

Supported in part by a David and Lucile Packard Fellowship for Science and Engineering, NSF Grants CCR-
0310960, CCR-9912428, and CCR-9457799, and an Alfred P. Sloan Research Fellowship.
0022-0000/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2005.05.010



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 787
Keywords: Extractors; Reed–Muller codes; Expanders; Pseudorandomness; Derandomization; Inapproximability

1. Introduction

1.1. History and background

Sipser [2] and Santha [3] were the first to realize that extractor-like structures can be
used to save on randomness. Sipser and Santha showed the existence of such objects, and
left open the problem of explicitly constructing them. True extractors were first defined
in [4]:

Definition 1. [4] E : {0,1}n × {0,1}t → {0,1}m is an ε-extractor for a class of distribu-
tions X over {0,1}n, if for every distribution X ∈ X the distribution E(X,Ut ) is within
statistical distance ε from Um.3 E is called strong if Ut ◦ E(X,Ut ) is within ε of uniform
(here ◦ denotes concatenation and Ut refers to the same uniform distribution, i.e., not two
independent copies). E is explicit if E(x,y) can be computed in time polynomial in the
input length n + t . E is a (k, ε)-extractor if E is an extractor for all distributions with
min-entropy k.4

Thus, extractors extract the entropy from a defective random source X ∈ X using a
small number t of additional truly random bits. The goal is to construct extractors for any
min-entropy k with t as small as possible and m, the number of output bits, as large as
possible.

Building on earlier work of Zuckerman [5,6], Nisan and Zuckerman [4] built an extrac-
tor with t = O(log2 n) when the entropy of the source k was high, k = Ω(n). Srinivasan
and Zuckerman [7] extended this solution to the case k = n1/2+ε and Ta-Shma [8] further
extended it to any entropy k. Also, Ta-Shma was the first to extract all the entropy from the
source. Zuckerman [9] showed a construction with t = O(logn) working for high entropies
k = Ω(n). All of this work used hashing and k-wise independence in various forms.

Departing from previous techniques, Trevisan [10] showed a connection between
pseudorandom generators for small circuits and extractors. Trevisan used the Nisan–
Wigderson pseudorandom generator [11] to construct a simple and elegant extractor that
achieves t = O(logn) when k = nΩ(1) (and t = O(log2 n) for the general case). Trevisan’s
work was extended in [12–15] to work for every k with only t = O(logn) truly random
bits. These extensions also made the construction more involved and added to the concep-
tual complexity of the extractor.

Thus, in the current state of the art, there are two techniques that are used in various
forms and combinations and different degrees of complexity. Even after all that work, all

3 Ut denotes the uniform distribution on t bits, and E(X,Ut ) denotes the distribution obtained by evaluating
E(x,y) for x chosen according to X and y according to Ut . Also, see Section 2 for the definition of statistical
distance, also known as variation distance.

4 See Section 2 for the definition of min-entropy.



788 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
Table 1
Milestones in building explicit extractors

k t m Ref.

Ω(n) O(logn) Ω(k) [9]

any k O(
log2 n
log k

) k1−α [10]

any k O(logn) k/ logn [14]
k � √

nm log2 n logn + O(log(log∗ m)) m This paper
k � n1/cm logn + O(c2 logm) m This paper
Ω(n) logn + O(log logn) Ω(k) This paper
any k logn + Θ(1) k + t − Θ(1) Optimal. [16]

The error ε is a constant.

known constructions use t � 2 logn (and often much more) while the lower bound is only
t = logn + O(1). This progress is summarized in Table 1 for the case of constant error ε.

1.2. The significance of the extractor degree

Besides their straightforward applications to simulating randomized algorithms using
weak sources, extractors have had applications to many areas in derandomization that
are seemingly unrelated to weak sources. These include constructing expanders that beat
the second eigenvalue method [17], superconcentrators and non-blocking networks [17],
sorting and selecting in rounds [17], pseudorandom generators for space-bounded compu-
tation [4], unapproximability of CLIQUE [6] and certain ΣP

2 minimization problems [18],
time versus space complexities [2], leader election [9,19], another proof that BPP ⊆ PH
[20], random sampling using few random bits [9], and error-correcting codes with strong
list decoding properties [21]. Håstad [22] uses non-explicit dispersers5 in his result that
CLIQUE is unapproximable to within n1−α for any α > 0. The use of non-explicit dis-
persers make the result depend on the assumption that NP �= ZPP; a derandomized version
would assume that NP �= P.

In many of these applications, extractors are viewed as highly unbalanced strong ex-
panders. In this view an extractor is a bipartite graph G = (V ,W,E) with V = {0,1}n,
W = {0,1}m, and an edge (x, z) exists iff there is some y ∈ {0,1}t such that E(x,y) = z.
Thus, the degree of each vertex of V is T = 2t , and the extractor hashes the input x ∈ V to
a random neighbor among its T neighbors in W .

Often this degree T is of more interest than t = logT . For example, in the samplers of
[9] the degree is the number of samples; in the simulation of BPP using weak sources [6]
the degree is the number of calls to the BPP algorithm; in the extractor codes of [21] T is
the length of the code; and in the unapproximability of CLIQUE, the size of the graph is
closely related to T .

As stated before, all previous constructions have degree T which is at least poly(n) =
poly(log |V |) while the lower bound (that matches non-explicit constructions) is only T =
Ω(n) = Ω(log |V |). Our construction breaks the polynomial degree bound and is the first
explicit construction with degree close to linear.

5 A disperser is a one-sided version of extractor.



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 789
Our construction was used by Mossel and Umans [1] to show that it is AM-hard to
approximate VC dimension to within a large factor. In fact, Mossel and Umans only need
that for all δ > 0 there are explicit dispersers with degree n1+δ for sources with min-
entropy nδ , and we supply an even smaller degree.

Recently, Guruswami [23] used our construction to explicitly build error correcting
codes with 1 − ε list-decoding and close to Ω(ε) rate. The list decoding algorithm returns
sub-exponentially many possible solutions. Guruswami also showed [23, Corollary 3] that
extractors with small degree that work for low entropies, lead to close to optimal list-
decodable error correcting codes.

Another inapproximability result that requires dispersers of very low degree is Håstad’s
result [22] that CLIQUE cannot be approximated to within n1−α for any constant α > 0,
assuming NP �= ZPP. The unproven assumption could be relaxed to NP �= P if for any
positive constant γ the following disperser could be efficiently constructed. For sources
with min-entropy k = γ n, the output length should be linear in k (and hence n), and the
degree should be O(n/ log(1 − ε)−1). Note that as the error ε approaches 1, the degree
becomes less than n. This dependence on ε is known non-explicitly and matches lower
bounds. Very recently such a disperser was announced [24].

1.3. Our construction

Our construction uses error-correcting codes. Codes are known to be related to extrac-
tors. Trevisan’s extractor can be viewed as first encoding the weak source input x ∈ {0,1}n
with any good binary error correcting code (good here means minimum distance close to
half) and then using the truly random string y to select bits from the encoded string using
designs. A natural question is whether one can use a specific good code to allow y to be
used in a more efficient way. Our extractor construction is the first to do this.

Our good code is a Reed–Muller code concatenated with a good binary code. Specif-
ically, we view the input x from the weak source as defining a degree h multivariate
polynomial fx : FD → F over some large field F (h is about n1/D , the size of F is slightly
larger than h). We further choose a good binary error correcting code C to encode field
elements. Our code maps x to the sequence of values C(fx(a)), where a goes over all the
elements of FD .

We now use the truly random string y to choose output bits from the encoding of x. We
think of the random string y as indexing an element a ∈ FD and a random position j of the
binary code. The ith output bit of the extractor, E(x;y)i , is

E(x;y)i = C
(
fx

(
a + (i,0, . . . ,0)

))
j
,

i.e., the j th bit of C(fx(a + (i,0, . . . ,0))). Thus, the construction can be viewed as using
a Reed–Muller concatenated with a good binary code for encoding, and selecting the code
evaluation on m consecutive points

a + (1,0, . . . ,0), a + (2,0, . . . ,0), . . . , a + (m,0, . . . ,0)

for the output.
Notice the simple way in which we use the random string y to select the output bits.

Indeed, this gives an extractor using only t = logn + O(log m) truly random bits. For

ε



790 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
simplicity we will focus on the bivariate case, though the multivariate case works as well,
and gives different parameters. We prove:

Theorem 2. For every m = m(n), k = k(n) and ε = ε(n) � 1/2 such that 3m
√

n log( n
ε
) �

k � n, there exists an explicit family of (k, ε) strong extractors En : {0,1}n × {0,1}t →
{0,1}m with t = logn + O(logm) + O(log 1

ε
).

Furthermore, we can reduce the O(logm) term above to O(log(log∗ m)). To do that we
notice that our construction (and also Trevisan’s) can be viewed as an efficient reduction
from the problem of constructing extractors for general sources, to the problem of con-
structing extractors for almost block sources (defined in Section 3.1). We then show an
efficient construction for almost block sources. We get:

Theorem 3. For every m = m(n), k = k(n) and ε = ε(n) such that 3m
√

n log(n/ε) �
k � n and m � Ω(log2( 1

ε
)), there exists an explicit family of (k, ε) strong extractors

En : {0,1}n × {0,1}t → {0,1}Ω(m) with t = logn + O(log ε−1) + O(log(log∗ m)).

Notice that while we dramatically improve the random bit complexity, both construc-
tions work only for entropies k = n1/2+γ and the number of output bits is only kδ for some
δ < γ . We can make the construction work for smaller entropies by using multivariate
polynomials instead of bivariate polynomials, but then we pay in the number of the output
bits and the error. Namely, we prove:

Theorem 4. For every constant D and m = m(n) � (n/ logn)1/D , there exists an
explicit family of (k, ε) strong extractors En : {0,1}n × {0,1}t → {0,1}m with k =
Ω(mD−1n1/D log2 n), t � logn + O(D2 logm), and ε = 1 − 1

8D
.

We can also extract more output bits in the case where the entropy is large, namely,
k = Ω(n). Formally,

Theorem 5. For any constant δ > 0, there exists a constant γ and an explicit family of
(δn,1/ logn) strong extractors E : {0,1}n ×{0,1}t → {0,1}m with t = logn+O(log logn)

and m = γ n.

The ideas of this paper were generalized in [25] and later on in [26] to give the best
known explicit extractors and pseudo-random generators. We note, however, that both [25]
and [26] use O(logn) truly random bits, rather than (1 + o(1)) log(n) truly random bits as
in our construction.

1.4. Our proof technique

At the highest level our proof plan resembles Trevisan’s. That is, we assume that the
distribution E(X,Ut ) is not close to uniform. Also, w.l.o.g., we assume the distribution X

is uniformly distributed on its support (see Fact 6). It is convenient to overload notation and
use X to denote both the distribution and its support. Yao’s lemma gives us a next element



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 791
Fig. 1. Learning fx from m − 1 lines. We have the following stages: (1) We query the value of fx on h − 1
parallel lines. Notice that fx restricted to a line is a univariate degree h polynomial, so this amounts to (m − 1)h

point queries. (2) For each point on the next parallel line, we use the next element predictor to predict the value
of fx on it. (3) We find the unique polynomial that has large agreement with our prediction. (4) We keep learning
consecutive lines until we recover fx , hence also x itself.

predictor that on average can learn the value fx(a1 + i, a2) from the values fx(a1 + 1, a2),

. . . , fx(a1 + i − 1, a2), where fx : F2 → F is the bivariate polynomial representing x. We
then use the predictor to give a small description of the elements in X. We conclude that if
E(X,Ut ) is not close to uniform, then X is small. Equivalently, the contra-positive is that
if the set X is large (so the distribution X has large min-entropy), then E(X,Ut ) is close
to uniform.

We now describe how we use the predictor to give a small description of the elements
in X. We play a mental game. We pick a random line L and assume someone gives us the
correct values of fx on m − 1 consecutive parallel left-shifts of L, i.e., L − (1,0) through
L − (m − 1,0). In other words, each point on L is preceded by m − 1 points for which we
already know the correct value of fx . Hence we can use the predictor to predict that point,
with some moderately good success probability. Overall, the predictor is correct for many
points on L.

We now wish to find the value of fx on the line L. Note that fx restricted to L is a low-
degree polynomial, i.e., a codeword of a Reed–Solomon code. Assume for the moment
that our predictor is correct on, say, 90% of the points on L. Then we could find the unique
low-degree polynomial which agrees with the predicted values 90% of the time. This is the
usual decoding of Reed–Solomon codes.

Proceeding in the same way, we then learn fx restricted to L1 = L + (1,0),
L2 = L + (2,0), etc., until we learn enough lines to reconstruct fx itself. This is illus-
trated in Fig. 1.

In reality, our predictor is only guaranteed to be correct with probability smaller than
half. Hence unique decoding is impossible, and we will have to use “list-decoding” of
Reed–Solomon codes to narrow our choices. We will then have to make additional “line
queries” to determine the correct value of fx restricted to the lines.

Playing this mental game, we can prove that for every set X for which E(X,Ut ) is not
close to uniform, there exists a set of about mh queries (and recall that h is about

√
n and

m is the number of output bits) such that almost every x ∈ X can be reconstructed given the



792 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
answers to these queries. Note that h2 queries can always reconstruct X; our gain is that
we can reconstruct the elements of X using only mh instead of h2 queries. This shows that
|X| � |F|mh, or equivalently that the distribution X has min-entropy at most mh logq . We
conclude that if the distribution X has larger min-entropy, than the distribution E(X,U) is
close to uniform.

The technique was inspired by work done on list decoding of Reed–Muller codes, and
its application to hardness amplification in [27]. Aside from applying an error-correcting
technique to a different information theoretic setting, our proof technique has additional
ideas. For example, we obtain our savings by learning a line using previously learned lines,
and this whole notion of recycling queries makes sense only in our setting and does not
appear in previous constructions.

Our construction is the first purely algebraic extractor construction, and the first to rely
solely on error-correcting codes. We believe this is a clean and elegant way of constructing
extractors.

1.5. Organization of the paper

In Section 2 we give formal definitions, and state the results we use from coding theory.
In Section 3 we give a top-down overview of the construction and the proof. The proof
is given in two parts: first (in Section 3.2), a reduction to almost block sources (that are
defined in Section 3.1), then an extractor for such sources (stated in Section 3.3). In Sec-
tion 3.4 we put everything together to derive Theorems 2 and 3. In Section 3.5 we explain
how to get more output bits and derive Theorem 5. In the later sections we fill the theo-
rems stated in the top-down overview. In Section 4 we show the reduction to almost block
sources and in Section 5 we present explicit extractors for almost block sources. Finally,
in Section 6 we show the higher-dimensional version of our construction and prove Theo-
rem 4.

2. Preliminaries

Notation. Throughout, F = Fq denotes a field of prime size q . As usual, [n] denotes the
set {1,2, . . . , n}. For S ⊆ F and a ∈ F, S + a denotes the set {s + a: s ∈ S}. For two sets
S1, S2 ⊆ F, S1 + S2 = {s1 + s2: s1 ∈ S1, s2 ∈ S2}. All logarithms are to the base 2. We will
assume, when needed, that various quantities are integers. It is not hard to check that this
has only a negligible effect on our analysis.

We will constantly be discussing probability distributions, the distances between them,
and the randomness hidden in them. In this subsection we give the basic definitions used
to allow such a discussion.

A probability distribution X over a (finite) space Λ simply assigns to each a ∈ Λ a pos-
itive real X(a) > 0, with the property that

∑
a∈Λ X(a) = 1. For a subset S ⊆ Λ we denote

X(S) = ∑
a∈S X(a). A distribution is flat if it is uniformly distributed over its support.

The uniform distribution U on Λ is defined as U(a) = 1/|Λ| for all a ∈ Λ. Uk denotes the
uniform distribution over {0,1}k .



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 793
We identify a random variable with the probability distribution it induces. Thus, if X is
a random variable, then x ∈ X denotes picking an element x according to the distribution
the random variable X induces. We denote random variables and distributions by capital
letters, and use small letters a, x, z, . . . to denote elements in the probability space.

The statistical distance (or variation distance) between two distributions D1 and D2
on the same space S is maxT ⊆S |D1(T ) − D2(T )| = 1

2

∑
s∈S |D1(s) − D2(s)|. We say

two distributions are ε-close if their statistical distance is at most ε. The min-entropy of a
distribution D on a probability space S is mins∈S{− log2 D(s)}.

An element x ∈ Λ1 × · · · × Λm, for some domains Λi , is an m-tuple, x = x1 ◦ · · · ◦ xm.
Similarly, a distribution X over Λm defines m correlated distributions X = X1 ◦ · · · ◦ Xm.
For 1 � i � j � m let X[i,j ] denote the random variable Xi ◦ · · · ◦ Xj and similarly for x.
Thus, Pr(X[i,j ] = x[i,j ]) is a shorthand for Pr(Xi = xi ∧ · · · ∧ Xj = xj ).

Extractors. We gave the definition of an extractor in Section 1.1. As we said there,
E : {0,1}n × {0,1}t → {0,1}m is a (k, ε) extractor iff it is an ε extractor for all distrib-
utions with k min-entropy. It is well known that every distribution with k min-entropy,
for an integer k, can be expressed as a convex combination of flat distributions with k

min-entropy. In particular,

Fact 6. E is a (k, ε) extractor iff E is an ε extractor against all flat sources with k min-
entropy.

This means that to show that E : {0,1}n × {0,1}t → {0,1}m is a (k, ε) extractor, it suf-
fices to concentrate on flat distributions X that are uniformly distributed over some large
set X of cardinality at least 2k . For each such X we need to show that E(X,Ut ) is ε-close
to uniform.

Polynomials. We will use the following lemma due to Sudan.

Lemma 7. [28] Given m distinct pairs (xi, yi) ∈ F2, there are less than 2m/a degree h

polynomials p such that p(xi) = yi for at least a values of i ∈ [m], provided that a �√
2hm.

2.1. Binary codes

Definition 8. A binary code has combinatorial list decoding property α if every Hamming
ball of relative radius 1/2 − α has O(1/α2) codewords.

We will use codes from the following code construction due to [29].

Fact 9. [29] There is a polynomial-time (in fact, Logspace) constructible [n, k] code with
combinatorial list decoding property α, where n = O(k/α4).

Simpler and more efficient constructions can be achieved with somewhat worse para-
meters, e.g., [30,31].



794 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
Reed–Muller codes. In an (h,D) Reed–Muller code over Fq the message specifies a
polynomial f in D variables over Fq of total degree at most h, and the output is all the
values of f over FD

q . Every polynomial in D variables of total degree � h can be repre-

sented by the coefficients of the different monomials x
i1
1 · · ·xiD

D with i1 +· · ·+ iD � h, and
there are exactly

(
h+D

D

)
such monomials. It follows that such a code has length qD and

dimension
(
h+D

D

)
.

3. Top–down overview

3.1. Almost block sources

Block sources were defined and studied in many early papers, most notably [4,7,32,33].
We extend this definition to a β-almost block source:

Definition 10. A distribution W = W1 ◦· · ·◦Wb is a β-almost ((n1, k1), . . . , (nb, kb)) block
source if for every i = 1, . . . , b, Wi is distributed over {0,1}ni and

Pr
w[1,i−1]∈W[1,i−1]

[
H∞(Wi | W[1,i−1] = w[1,i−1]) < ki

]
� β.

If β = 0 we say W is an ((n1, k1), . . . , (nb, kb)) block source.

The following lemma shows that a β-almost block source with b blocks is bβ close to
a block source. Notice, that the penalty bβ depends linearly on the number of blocks, a
dependence that is sometimes too costly for us.

Lemma 11. A β-almost ((n1, k1), . . . , (nb, kb)) block source Z = Z1 ◦ · · · ◦ Zb is bβ close
to an ((n1, k1), . . . , (nb, kb)) block source Z′.

Proof. We build a sequence Zb+1, . . . ,Z1 of distributions. We set Zb+1 = Z and we define
Z′ to be Z1. Suppose we built Zb+1, . . . ,Zi+1 so far, we explain how to build Zi . We call
w[1,i−1] a bad prefix if H∞(Zi | Z[1,i−1] = w[1,i−1]) < ki . The idea is to redistribute the
weight of every bad prefix w[1,i−1] uniformly over {0,1}ki . Formally,

• We let Zi have the same distribution on the first i − 1 blocks as Zi+1, i.e., Zi
[1,i−1] =

Zi+1
[1,i−1] = Zb+1

[1,i−1] = Z[1,i−1].
• Now, for every bad prefix w[1,i−1] we let (Zi

i | Zi
[1,i−1] = w[1,i−1]) be the uniform

distribution, and for all other prefixes we let (Zi
i | Zi

[1,i−1] = w[1,i−1]) = (Zi+1
i |

Zi+1
[1,i−1] = w[1,i−1]) = (Zi | Z[1,i−1] = w[1,i−1]).

• Finally, for j > i, if Pr(Zi+1
[1,j−1] = w[1,j−1]) > 0 we let (Zi

j | Zi
[1,j−1] = w[1,j−1]) =

(Zi+1
j | Zi+1

[1,j−1] = w[1,j−1]), otherwise we let (Zi
j | Zi

[1,j−1] = w[1,j−1]) be the uni-
form distribution.



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 795
By definition, at each stage in the process at most β fraction of the prefixes are bad, and
so at most bβ of the weight is redistributed. Thus, Z′ = Z1 is bβ close to Z.

Also, for any i and any prefix w[1,i], (Z1
i+1 | Z1[1,i] = w[1,i]) is either uniform or (Zi+1

i+1 |
Zi+1

[1,i] = w[1,i]). In the later case, if the prefix w[1,i] is bad this is the uniform distribution,
and otherwise it is (Zi+1 | Z[1,i] = w[1,i]) and has at least ki+1 min-entropy (because the
prefix w[1,i] is not bad). In either case, H∞(Z′

i+1 | Z′[1,i] = w[1,i]) � ki+1.
It follows that Z′ is bβ close to Z and is an ((n1, k1), . . . , (nb, kb)) source as de-

sired. �
Nisan and Zuckerman [4] showed a simple technique for constructing efficient ex-

tractors for block sources. Suppose we are given an ((n1, k1), . . . , (nb, kb)) block source,
and b strong extractors E1, . . . ,Eb with Ei : {0,1}ni × {0,1}ri → {0,1}ri−1−ri . We denote
E′

i (x;y) = y ◦Ei(x;y), so E′
i : {0,1}ni ×{0,1}ri → {0,1}ri−1 . Define F ′ : {0,1}n1+···+nb ×

{0,1}rb → {0,1}r1 by

F ′(z1, . . . , zb;y)
def= E′

1

(
z1; . . .E′

b−1

(
zb−1;E′

b(zb;y)
)
. . .

)
.

Notice that F ′(x;y) = y ◦ F(x;y) for some function F : {0,1}n1+···+nb × {0,1}rb →
{0,1}r1−rb .

The following lemma is implicit in [4] and explicit in [7], though without the mention
of strong extractors.

Lemma 12. [4,7] If each Ei is a (ki, εi) strong extractor than F is a strong ε = ∑b
i=1 εi

extractor for ((n1, k1), . . . , (nb, kb)) block sources.

We finally observe that any ((1, k1), . . . , (1, k1)) block source with 2−k1 = 1/2 + α is
bα close to uniform:

Lemma 13. A ((1, k1), . . . , (1, k1)) block source Z = Z1 ◦ · · · ◦ Zb , with 2−k1 = 1/2 + α,
is bα close to the uniform distribution.

Proof. We notice that for every prefix the probability of the next bit being 0 or 1 is at most
1/2 + α. We can again induct from i = b to i = 1 and redistribute the weight such that
it is perfectly uniform, in much the same way as is done in the proof of Lemma 11. The
resulting difference is again at most bα. �
3.2. A reduction to almost block sources

We now present our reduction from general sources to block sources. Let F = Fq be
a field of size q � √

n, q prime. The reduction begins by viewing the n-bit input string
x ∈ {0,1}n as a bivariate polynomial fx : F2 → F of total degree at most h − 1. We would
like different inputs to map into different bivariate polynomials. Every degree h − 1 bi-
variate polynomial f can be specified using

(
h+1

2

)
coefficients from Fq and so we need(

h+1
2

)
logq � n which sets h = Θ(

√
n/ logn).

We now present a function Z : {0,1}n × F2 × [�̄] → {0,1}m. We will later show Z re-
duces high entropy sources to almost block sources. We define:



796 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
The function Z

Input: x ∈ {0,1}n.
Parameters: α,β > 0 error parameters. m is a parameter specifying output length.
Setting: Set h = 
3

√
n/ logn�, q the first prime with q � Ω( h

α4β4 ) and F a field of size q .
Binary code: C is a linear binary code of dimension � = logq , combinatorial list decoding

property αβ
4 (see Definition 8) and length �̄ = poly(α−1, β−1) (see Fact 9).

Random coins: a = (a1, a2) ∈ F2, j ∈ [�̄].
Output: We associate with x ∈ {0,1}n a function fx : F2 → F of total degree at most h−1.

We define

Z(x;a, j)i = C
(
fx(a1 + i, a2)

)
j
.

For a subset X ⊆ {0,1}n let Ut ◦Z(X,Ut ) denote the random variable obtained by pick-
ing x uniformly at random from X, y uniformly at random from F2 × [�̄] and computing
y ◦ Z(x;y). We claim:

Theorem 14. Let n, α,β > 0 be arbitrary and set h,q and a field F of size q as above. Let
m � √

n. For every subset X ⊆ {0,1}n of cardinality at least qmh the distribution

Ut ◦ Z(X,Ut ) = Ut ◦ Z1 ◦ Z2 ◦ · · · ◦ Zm

is a β-almost ((t, t), (1, f (α)), . . . , (1, f (α))) block source with 2−f (α) = 1/2 + α. Fur-
thermore t � logn+O(log( 1

αβ
)) and Z can be computed in O(logq) space and poly(q) =

poly(n, 1
αβ

) time.

We first verify parameters. Since(
h + 1

2

)
logq � h2

2
logh � 9n

2 logn

1

2
(logn − log logn) � n

two different inputs give rise to two different bivariate polynomials. Next, note that
the number of truly random bits t = log(q2) + log �̄. Using Fact 9, �̄ = logq

poly(α,β)
, so

t = log(q2 logq) + O(log((αβ)−1)) = logn + O(log((αβ)−1)). The running time of Z
is dominated by the complexity of evaluating fx(a), which can be done with O(logq)

space and poly(q) time. We prove the reduction correctness in Section 4.

3.3. An ε-almost block extractor

An extractor working on a general distribution over n input bits requires at least t �
logn−O(1) truly random bits, even when the allowed error ε is a constant [16]. In contrast,
the following theorem shows that extractors for block sources require only t = O(1) truly
random bits and explicitly construct such an extractor.

Theorem 15. Let k1 � 1 be a constant. For every ε = ε(n) � 0, there exists a strong extrac-
tor F : {0,1}m × {0,1}r → {0,1}m′

for β-almost ((1, k1), . . . , (1, k1)) block sources with



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 797
r = O(log ε−1), m′ = k1
2 m − O(log4 1

ε
+ log∗ m · log ε−1) output bits, and

ε + O(β · log∗ m) error.

We prove Theorem 15 in Section 5.

3.4. Putting it together

Proof of Theorem 2. Suppose m = m(n), k = k(n) and ε = ε(n) are such that
3m

√
n log( n

ε
) � k � n. Let us set α = β = ε

2(m+1)
and q and h as in Theorem 14. We

claim E(x;y) = Z(x;y) is the desired (k, ε) strong extractor.
By Fact 6 we can concentrate on high min-entropy flat distributions. Let X be

a flat distribution over a subset X ⊆ {0,1}n of cardinality at least K = 2k . Then
k � mh logq and so K = 2k � qmh. By Theorem 14, Ut ◦ Z(X;Ut) is a β-almost
((t, t), (1, f (α)), . . . , (1, f (α))) block source, with 2−f (α) = 1/2 + α.

By Lemma 11 every almost block source is close to a block source, and so Ut ◦Z(X;Ut)

is (m + 1)β close to a ((t, t), (1, f (α)), . . . , (1, f (α))) block source. Also, by Lemma 13,
a block-source with one-bit blocks is close to uniform, and so Ut ◦ Z(X;Ut) is (m + 1) ×
(α + β) = ε close to uniform, as desired. �

To reduce the O(logm) additive penalty in the number of truly random bits we can use
the extractor for almost block sources:

Proof of Theorem 3. Suppose m = m(n), k = k(n) and ε = ε(n) are such that
3m

√
n log( n

ε
) � k � n and m � 2 log2 1

ε
. Let us set α = 0.1, β = Θ( ε

log∗ m
). This deter-

mines q to be Θ( h

α4β4 ) = Θ(
√

n
logn

1
β4 ). Let F(X;U) be the strong extractor for β-almost

block sources, of Theorem 15. Our extractor is

E(x;y1, y2) = F
(
Z(x;y1);y2

)
.

That is, we first apply Z on the input x using the truly random string y1, and then we apply
the extractor F for β-almost block sources using a fresh truly random string y2.

Correctness: Let X be a flat distribution over a subset X ⊆ {0,1}n of cardinality at least
K = 2k . As before, |X| � 2k � qmh. By Theorem 14, Ut ◦ Z(X;Ut) is a β-almost
((t, t), (1, f (α)), . . . , (1, f (α))) block source, with 2−f (α) = 1/2 + α. As F is a
strong extractor for almost block sources, by Theorem 15, Ut ◦ E(X;Ut) is O(ε)

close to uniform.
Parameters: By Theorem 14, the length of y1 is logn + O(log(1/β)) + O(1) = logn +

O(log(log∗ m)) + O(log ε−1). By Theorem 15 the length of y2 is O(log ε−1).
Thus the number of truly random bits used is as required. The output length of Z
is m, and thus the output length of F is at least f (α)

2 m − O((log∗ m)2 log ε−1) �
f (α)

m provided that m � Ω(log2 1 ). �
4 ε



798 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
3.5. Increasing the output length

Proof of Theorem 5. We combine our extractor with a known extractor and block extrac-
tor, whose properties we describe.

• The strong block extractor of Reingold et al. [14] is a family of functions

RSW = RSWn : {0,1}n × {0,1}t → {0,1}m
with the property that for every δ there exists γ = γ (δ) > 0 such that for all flat
distributions over subsets X of cardinality at least |X| � 2δn, the distribution of
Ut ◦ B(X;Ut) ◦ X is within 1

4 logn
of a(

(t, t),

(
δ

2
n,2γ n

)
,

(
n,

δ

4
n

))
block source. A remarkable property of the construction is that the seed length t is
very small, t � O(log logn).

• We also take any explicit strong extractor family with

NZ = NZn : {0,1}n × {0,1}t → {0,1}m
which is a (2γ n,1/n) strong extractor with m = γ n and t = polylog(n), e.g., the
extractor of [4].

We first use the block extractor RSW with O(log logn) truly random bits y1 to output
a block source W1 ◦ W2 ◦ W3. Say RSW(x;y1) = (w1,w2,w3). Our extractor then uses a
fresh truly random string y2 and outputs

w1 ◦ NZ
(
w2;E(w3;y2)

)
,

where E is the extractor from Theorem 2 (or the more complicated Theorem 3) with
polylog(n) output bits and ε = 1

4 logn
error.

To prove correctness we apply Lemma 12 with three extractors E1,E2 and E3 where E1
is the identity function E1(x, y) = x, E2 = NZ and E3 = E the extractor from Theorem 2.
The number of truly random bits is the sum of those used for the block extractor RSW and
the extractor E3 = E, which is logn+O(log logn). The total error is the sum of the errors
from the block extractor and the two extractors, which is less than 1/ logn. �

4. The reduction to almost block sources

To prove Theorem 14, we show that if Z is not as required, then there exists a large
subset X′′ of X such that the answers to a small number of queries distinguish elements
of X′′. This shows that X′′ is small, and therefore X itself is small. The reader may want
to review the outline given in Section 1.4. We begin with some definitions.

Let f : F2 → F. A query to f is either

• a point query of the form, “what is f (v)?” for some point v ∈ F2, or,



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 799
• a line query of the form “which polynomial among p1, . . . , pB is equal to f restricted
to the line L, denoted f |L?” If none of the polynomials in p1, . . . , pB equals f |L the
answer is “quit.”

We will be interested in the number of possibilities a query distinguishes among. This is q

for the point queries and B for the line queries. The number of possibilities a set of queries
distinguishes is the product of the possibilities for each query in the set.

A predictor P for bivariate polynomials is a probabilistic function which on input
a ∈ F2 makes queries Q(a) about a bivariate polynomial f : F2 → F. The set Q(a) may be
chosen at random and may or may not depend on a. On receiving the answers to the queries
from an oracle, P computes a subset P(a) ⊆ F. P has preprocessed queries if Q(a) does
not depend on a, and P is deterministic if it does not use random coins (neither to choose
Q nor to compute its answer).

P has A possible answers if for every a ∈ F2, every possible set of queries and every set
of answers, the size of P(a) is at most A. P predicts f : F2 → F with success p if, when
the oracle answers the queries according to f ,

Pr
a∈F2, coins of P

[
f (a) ∈ P(a)

]
� p,

P predicts S ⊆ {0,1}n with success p if, for every x ∈ S, P predicts fx with success p.
Suppose P is a predictor for bivariate polynomials and f : F2 → F is a bivariate poly-

nomial. P
f
Q(a) denotes the subset P(a) when the queries are Q(a) and the oracle answers

according to f . Whenever the set of queries Q is clear from the context we denote it by
P f (a). If P is deterministic, the set of queries Q is completely determined by a and we
always denote it by P f (a).

Theorem 14 follows from the following proposition.

Proposition 16. If Ut ◦ Z(X;Ut) is not β-almost ((t, t), (1, f (α)), . . . , (1, f (α))) block
source, 2−f (α) = 1/2 + α, then there exists a deterministic predictor for a set X′′ of size
at least |X′′| � αβ

4 |X|, with 1 possible answer and success 1. There are at most (m − 1)h

point queries and h line queries, all preprocessed, and each line query distinguishes at
most O(1/α3β3) = o(q) possibilities. Hence |X| = o(qmh).

Notice that while in general we need about h2/2 values to determine an arbitrary degree
h − 1 bivariate polynomial, here only about mh queries suffice. This immediately implies
X is small.

We prove Proposition 16 in the next three subsections.

4.1. Evaluating a point

Suppose X is such that Ut ◦Z(X;Ut) is not a β-almost ((t, t), (1, f (α)), . . . , (1, f (α)))

block source and let us fix X. We define a predictor, which depends on the subset X.

EP = EPi0 : Evaluate point

Input: a = (a1, a2) ∈ F2.



800 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
Parameter: 1 � i0 � m.
Queries: The query points are Q(a1, a2) = {(a1 − (i0 − 1), a2), . . . , (a1 − 1, a2)}. Let bi

denote the answer to the query (a1 − i, a2).
Algorithm:

• For every j ∈ [�̄] and b1, . . . , bi0−1 define the set Xj,b1,...,bi0−1 to be all x ∈ X

for which C(fx(a1 − i, a2))j = C(bi)j for every i = 1, . . . , i0 − 1. Let

gj (a) = MAJORITYx∈Xj,b1,...,bi0−1

(
C

(
fx(a)

)
j

)
.

(Ties are broken arbitrarily.)
• Set g(w) = g1(w) . . . g�̄(w).

Output: EP(w) is the set of all codewords of C that have at least 1
2 + αβ

4 relative agreement
with g(w).

Note that EP is deterministic and that the queries depend on the input a. Also, since C has
combinatorial list decoding property αβ

4 for any a, |EPfx (a)| � O( 1
α2β2 ).

Lemma 17. There exists a subset X′ ⊂ X of cardinality |X′| � αβ
2 |X| and 1 � i0 � m

such that EP = EPi0 predicts X′ with at most m − 1 point queries, A = O( 1
α2β2 ) possible

answers and p = αβ
4 success.

Proof. Recall that the random string y ∈ Ut indexes a point a ∈ F2 and a value j ∈ [�̄].
Let Az,a,j be a Boolean random variable that is one when H∞(Zi0 | Z[1,i0−1] = z[1,i0−1],
a, j) < f (α) and zero otherwise. As Ut ◦ Z(X;Ut) is not a β-almost ((t, t), (1, f (α)),

. . . , (1, f (α))) block source, by definition, there exists an i0 ∈ {1, . . . ,m} such that
Pra,j,z∈Z(Az,a,j = 1) � β . Now,

Pr
x∈X,a,j

[
gj (a) = C

(
fx(a)

)
j

]
= Pr

x∈X,a,j
[Az,a,j = 1] · Pr

[
gj (a) = C

(
fx(a)

)
j

| Az,a,j = 1
]

+ Pr
x∈X,a,j

[Az,a,j = 0] · Pr
[
gj (a) = C

(
fx(a)

)
j

| Az,a,j = 0
]

� β

(
1

2
+ α

)
+ (1 − β)

1

2
= 1

2
+ αβ.

An averaging argument shows that there exists a subset X′ ⊂ X of cardinality at least
αβ
2 |X| such that for every x ∈ X′,

Pr
a,j

[
gj (a) = C

(
fx(a)

)
j

]
� 1

2
+ αβ

2
.

Another averaging argument yields for every x ∈ X′

Pr
a

[
Pr

[
gj (a) = C

(
fx(a)

)
j

]
>

1 + αβ
]

� αβ
.

j 2 4 4



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 801
For every a such that Prj [gj (a) = C(fx(a))j ] > 1
2 + αβ

4 it holds that fx(a) ∈ EP(a). It

follows for every x ∈ X′ we have Pra[fx(a) ∈ EP(a)] � αβ
4 as desired. �

4.2. Evaluating a line

We use procedure EP to build procedure EL (for “evaluate line”) that given a line L

makes some specific queries and outputs a single polynomial over F.

EL: Evaluate line

Input: A line L : F → F2 not parallel to the x-axis.
Algorithm:

• For every i = 1, . . . , q:
– Evaluate EP(L(i)) by making the necessary point queries.

• Form the set S = {(i,w) | i ∈ [1, q], w ∈ EP(L(i))}.
• Compute the list G of all univariate polynomials g : F → F of degree at most

h − 1 with agreement at least αβ
8 q with S. We will soon prove that G is always

a small set, |G| � O( 1
α2β2 ).

Output: Query which one of the polynomials in G is equal to f |L, and output this poly-
nomial. If no polynomial in G equals to f |L output “quit.”

We now show that EL does well on random lines.

Lemma 18. For every x ∈ X′:

Pr
L

[
ELfx (L) �= fx(L)

]
� η = O

(
1

αβq

)
.

Once G contains the right polynomial, the answer of ELfx (L) is correct by definition.
The lemma therefore follows from the following claim, which shows that G almost always
contains the right polynomial.

Claim 19. For every x ∈ X′, PrL[fx(L) /∈ G] � O( 1
αβq

).

Proof. Call v ∈ F2 nice for p : F2 → F if p(v) ∈ EPp(v). Fix any x ∈ X′. Let Yi be the
random variable indicating whether L(i) is nice for fx , and Y = ∑q

i=1 Yi . We have E(Y) �
αβ
4 q , i.e., for every x ∈ X′ we expect to see many nice points on a random line L. We say L

is bad for x if Y � αβ
8 q . Since L is a random line, the points on L are pairwise independent.

Therefore,

Pr

[
Y � E(Y)

2

]
� 4 · VAR(Y )

(E(Y ))2
� O

(
αβq

(αβq)2

)
= O

(
1

αβq

)
.

If the line L is bad for x (which happens with probability at most O( 1
αβq

)) we lose. Oth-
erwise, Y >

E(Y)
2 and the line L contains at least αβ

8 q nice points v = L(i). Therefore,
fx(L) ∈ G. �



802 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
We now show that the list decoding process does not return many possible solu-
tions. Since |S| � O(

q

α2β2 ) and q = Ω( h

α4β4 ) we have αβq
8 �

√
2h · |S| and therefore by

Lemma 7, |G| � O(
|S|
αβq

) = O( 1
α2β2 · 1

αβ
) = O( 1

α3β3 ).
We now take a closer look at the point queries done in EL(L). If L is not parallel to the

x-axis then EL(L) makes point queries for each point on each of the i0 −1 lines L− (j,0),
j ∈ [i0 − 1]. However, since the values of fx on a line can be determined by querying h

points on that line, it suffices to query only h points from each line, and the number of
point queries is at most (i0 − 1)h. Denote this set of point queries Q(L).

4.3. Proof of Proposition 16

Proof. We now give a procedure EA (for “evaluate all”) that makes few queries and out-
puts, with good probability, the unique polynomial fx ∈ X′′ that agrees with the queries.

EA: Evaluate all

Input: None.
Algorithm: Pick a random line L, and query the points in Q(L).

For j = 0 to h − i0.
• Evaluate EL(L + (j,0)). Note that all of the point queries needed to evaluate

this have been made or deduced previously. Only the line queries need to be
made.
Output the unique degree h − 1 polynomial consistent with the answers on the

h × h block.

To prove Proposition 16, we need a deterministic predictor, so we show that we can
fix L suitably. Say that a line L is good for f : F2 → F if EAf

L, the output of EAf when
picking the line L, is f , and bad otherwise. Recall that η, defined in Lemma 18, is the error
probability for EL.

Claim 20. For every x ∈ X′, PrL[L is bad for fx ] � hη.

Proof. For each of the h lines we learn, the probability we fail (given the right answers
to the line we use) is at most η. By the union bound (regardless of correlations) the claim
follows. �

Now, hη � O( h
αβq

) � 1/2 and therefore for every x ∈ X′, PrL[L is good for fx] � 1/2.
Hence, there is at least one fixed choice of a line L and a subset X′′ ⊆ X′ of cardinality at
least |X′′| � 1

2 |X′| such that L is good for every x ∈ X′′. Fix this L. EAL is the required
deterministic predictor.

Note that the number of point queries is at most (i0 − 1)h � (m − 1)h, and the
number of line queries is at most h − i0 + 1 � h. Also, the line queries distinguish
at most O(1/(α3β3)) � o(q) possibilities. Thus the predictor distinguishes at most



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 803
q(m−1)h(o(q))h � o(qmh) possibilities. Since 1/(α3β3) = O(αβq), we also conclude that
|X| � 4

αβ
|X′′| � o(qmh). Proposition 16 and hence Theorem 14 follow. �

5. Extractors for almost block sources

5.1. Reducing a β-almost block source to a block source with smaller penalty

We saw that a β-almost block source with m blocks is mβ close to a block source
(Lemma 11). However, it is important for us to avoid this mβ penalty. The key observation
is that at a price of losing at most half the entropy, if we group � consecutive blocks, then
instead of being �β close to the behavior we expect from a block source we are 2β close
to it.

Lemma 21. Suppose Z = Z1 ◦ · · · ◦ Zm is a β-almost ((n1, k), . . . , (nb, k)) block source.
For every 1 � a � b � m

Pr
z[1,a−1]∈Z[1,a−1]

[
H∞(Z[a,b] | Z[1,a−1] = z[1,a−1]) � 1

2

b∑
j=a

k

]
� 2β.

Proof. We say i ∈ [m] is bad for z[1,i−1] ∈ support(Z[1,i−1]) if H∞(Zi | Z[1,i−1] =
z[1,i−1]) < k. We say i is bad for z ∈ Z if i is bad for z[1,i−1]. By assumption, for all
i, Prz∈Z[i is bad for z] � β . Hence, using Markov,

Pr
z∈Z

[
at least half of i ∈ [a, b] are bad for z

]
� 2β.

Whenever at most half of i ∈ [a, b] are bad for z, Pr[Z[a,b] = z[a,b] | Z[1,a−1] =
z[1,a−1]] �

∏
i: i is not bad for z 2−k � 2−k(b−a)/2 and the lemma follows. �

Thus given, e.g., a β-almost ((1, f (α)), . . . , (1, f (α))) block source with m blocks and
some constant α, we can group the m blocks into, say, b meta-blocks such that each meta-
block contains at least half the desired amount of entropy. We can then redistribute the
weight of the bad strings in the same way as is done in the proof of Lemma 11 (and by
Lemma 21 these are at most O(bβ) fraction of all strings) and get a block source with b

blocks and the desired entropy. The error term O(bβ) is significantly smaller than mβ if b

is small. In the next subsection we follow this outline for a specific choice of parameters
that suits our needs.

5.2. An extractor for a block source with very small seed

Lemma 22. Let γ be a positive constant and ε = ε(n) > 0. There exists b = b(n) =
O(log∗ n) and n1, . . . , nb , n1 + · · · + nb = n, and a strong ε-extractor for ((n1, γ n1), . . . ,

(nb, γ nb)) block sources, using t = O(log 1
ε
) random bits, and outputting γ n−O(log∗ n ×

log ε−1 + log4 1 ) output bits.

ε



804 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
Proof. We choose the integers ni as follows:

• nb = O(log4 1
ε
),

• nb−1 = 1
ε2 , and

• ni−1 = 2n
1/6
i for i < b.

It can be verified that ni−2 � 2ni and hence it follows that b = O(log∗ n). We will need
two basic extractors:

• The RRV family of strong extractors [34, Theorem 4]:

ERRV
n : {0,1}n × {0,1}t → {0,1}m,

which is a (k, ε) strong extractor, with t � c0 log3 n log ε−1 and m = k − 2 log ε−1 −
O(1), for some constant c0.

• The Zuckerman family of strong extractors [9]:

EZ
n : {0,1}n × {0,1}t → {0,1}m,

which is a (k = Ω(n), ε) strong extractor, with t � O(logn+ log ε−1) and m = Ω(k).

We want to apply Lemma 12. For that we choose (ki = γ ni, εi = ε
2·2b−i ) strong extrac-

tors:

Ei : {0,1}ni × {0,1}ri → {0,1}ri−1−ri .

We choose Eb to be EZ
nb

with rb = O(lognb + log ε−1) = O(log ε−1), and we choose Ej

to be ERRV
nj

for j < b. We need to verify that the extractors Ei indeed support an output
length ri−1 − ri .

Indeed, for Eb we have a constant entropy rate and rb = O(lognb + log ε−1), hence we
have rb−1 = Ω(nb) = Ω(log4 1

ε
) output bits, which is larger than c0 log3(nb−1) log( 1

εb−1
) =

8c0 log3 1
ε

log( 1
εb−1

) ≈ 8c0 log4 1
ε

for the appropriate choice of constant in the choice of nb.

For Ej , j < b, it is easy to verify that ri � c0 · log3 ni · log 1
εi

as needed.
Having that, Lemma 12 assures us that we get a strong extractor F : {0,1}m ×{0,1}rb →

{0,1}r1−rb with error at most
∑

εi � ε. The number of truly random bits is rb =
O(log ε−1) as desired. To analyze the number of output bits, we notice that in applying
Eb we lose at most O(nb) = O(log4 1

ε
) entropy, and applying each Ej , j < b, we lose at

most 2 log ε−1 + O(1). Altogether, we lose at most O(b log ε−1 + log4 1
ε
) entropy. �

5.3. Putting it together

We now prove Theorem 15.

Proof of Theorem 15. Let Z = Z1 ◦ · · · ◦ Zm be a ((1, k1), . . . , (1, k1)) block source. We
partition the m blocks into b meta-blocks, the ith block being of length ni (as in Lemma 22)
and

∑b
ni = m. We look at Z as W1 ◦ · · · ◦Wb with each Wi distributed over {0,1}ni . By
i=1



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 805
Lemma 21, W1 ◦ · · · ◦ Wb is O(bβ) close to a ((n1,
k1
2 n1), . . . , (nb,

k1
2 nb)) block source.

We now apply the block source extractor of Lemma 22 with γ = k1/2.
The number of truly random bits used is rb = O(log ε−1). The error is O(bβ) because

of the reduction from an almost block source to a block source, plus ε from Lemma 22. The
entropy loss is k1

2 n because of the reduction from almost block sources to block sources
(by far the most significant loss), plus the entropy loss from Lemma 22. Theorem 15 fol-
lows. �

6. The multivariate extractor

We now describe a generalization of the bivariate extractor to D dimensions, where
D � 3. Let h be the smallest integer such that

(
h+D

D

)
log(h) � n. Let F = Fq be a field of

prime size q � h. We view the n-bit input string x ∈ {0,1}n as a function fx : FD → F of

total degree at most h. As it takes
(
h+D

D

)
logq �

(
h+D

D

)
logh � n bits to specify a polyno-

mial, different inputs map to different polynomials.

The function MED

Input: x ∈ {0,1}n.
Setting: h = 
D( n

logh
)1/D − D� (and so

(
h+D

D

)
logh � n). F is a field of size q where q is

the smallest prime larger than Ω(mmax(4,D−1)h).
We identify x ∈ {0,1}n with a function fx :HD → F of total degree h.

Binary code: C is a linear binary code with dimension � = logq , length �̄ and combinato-
rial list decoding property α = 1

8m
(see Section 2.1).

Random coins: a ∈ FD , d ∈ [D − 1], j ∈ [�̄].
Output: ME(x;a, d, j)i = C(fx(a + ied))j for i ∈ [m]. Here ed denotes the basis vector

in FD with a 1 in the d th position and 0’s elsewhere.

We now give a top-level proof of Theorem 4.

Proof of Theorem 4. We first check parameters:

t � D logq + logD + log

(
logq ·

(
m

ε

)4)
� D log

(
mD−1h

) + logD + log logq + O(logm)

� O
(
D2 logm

) + log
(
hD

) + log logq

� O
(
D2 logm

) + O(D logD) + logn − log logh + log logq

= logn + O
(
D2 logm

)
.

For the correctness proof, we suppose Ut ◦ ME(X,Ut ) is not ε close to uniform for
some X with |X| � 2k , and fix X. We first establish that the assumption that ε is close to 1
(ε = 1 − 1

8D
) implies that there are next-bit predictors in each orthogonal direction except

the last.



806 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
Lemma 23. If Ut ◦ME(X,Ut ) is not ε = 1− 1
8D

close to uniform for some X with |X| � 2k

then there are tests T1, . . . , TD−1 : {0,1}m−1 → {0,1} and a subset X′ ⊆ X of cardinality
at least 1

2 |X| such that for every x ∈ X′ and every d ∈ [D − 1]:

Pr
x∈X,a∈F

D, j∈[�̄]
y∈ME(x;a,d,j)

[
Td(a, d, j, y1, . . . , ym−1) = ym

]
� 1

2
+ 1

4m
. (1)

We use the next-bit predictors to define procedures EP(a, d) that try to predict fx(a)

given its evaluation on the m− 1 preceding points in the d th dimension. As in the bivariate
case, EP(a, d) always returns a small set of possible answers of cardinality at most A �
O(1/α2) = O(m2), and we prove that for every x ∈ X′ and d ∈ [D − 1], Pra[fx(a) ∈
EPfx (a, d)] � α = O(1/m).

To evaluate everything, we pick a random line and call Eval(d,L). Eval(d,L) tries to
compute fx on the set Ud,L = L + span{e1, . . . , ed} (for the definition of the + operation
on sets see Section 2). Thus, for d = 0 we have U0,L = L and we try to learn the values
of fx on the one-dimensional line L. For d = 1 we try to learn the values of fx on a two-
dimensional affine subspace U1,L = L + span{e1} and so forth, eventually learning fx on
the whole space FD , i.e., learning x itself. We conclude that if the extractor fails then the
set X′ has a small description. Hence the set X′ (and therefore the set X) are small sets, and
the random variable X has low min-entropy. The contrapositive of this is Theorem 4. �
6.1. Preliminaries

We record a generalization of Lemma 7.

Lemma 24. Let F be a field of size q , h < q and δ > 0 such that q � 16A2h/δ2. For
each element u ∈ FD assign a set Su ⊆ F of size at most A. Then there are less than 4A/δ

D-variate polynomials p of total degree h such that p(u) ∈ Su for at least a δ fraction of
points, provided that δ � 2

√
2hA/|F|.

Proof. The case D = 1 is a weakening of Lemma 7; the main difference is that Lemma 7
is stated with absolute agreement size whereas this lemma is stated with relative agreement
size.

We now prove for general D by reducing to Lemma 7. Suppose there was a set P of
4A/δ such polynomials. Pick a random line L, and consider a polynomial p ∈ P restricted
to L. By Chebychev, with probability at least 1 − 2

δq
, at least a δ/2 fraction of points u ∈ L

satisfy p(u) ∈ Su. By the union bound, the probability there exists a polynomial p ∈ P that
does not satisfy the above is at most 8A

δ2q
, which by our choice of q is smaller than half.

Also, for any two different degree h polynomials, their restrictions to a random line
are equal with probability at most h/q (because a random line in particular contains a
random point).6 The probability that there exists two such polynomials in P is at most(4A/δ

2

)
h
q

< 8A2h

δ2q
� 1/2.

6 The bound can be obviously improved, but the improvement is not necessary for what we need.



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 807
We conclude that there exists a line L that splits P (i.e., the polynomials in P have
different restrictions to L) and such that each p ∈ P has a δ/2 fraction of agreement on the
line. However, this contradicts Lemma 7. �
6.2. A predictor in each direction

Proof of Lemma 23. Assume there exists a test T : {0,1}m → {0,1} that ε = 1 − 1
8D

distinguishes Ut ◦ ME(X,Ut ) from the uniform distribution, i.e.,

Pr
[
T

(
Ut,ME(X,Ut )

) = 1
] − Pr

[
T (Ut+m) = 1

] = ε = 1 − 1

8D
.

Let Ud denote the uniform distribution on a ∈ FD, j ∈ [�̄] with d ∈ [D − 1] held fixed,
and let δd be the advantage T has on Ud , i.e.,

Pr
[
T

(
Ud,ME

(
X,Ud

)) = 1
] − Pr

[
T (Ut+m) = 1

] = 1 − δd

and notice that we must have δd > 0 for every d ∈ [D − 1] (otherwise ε cannot be that
close to 1). Then, 1

D−1

∑
δd � 1

8D
and therefore

∑
δd < 1/8. By a Markov argument, for

each d , for at least a 1 − 4δd fraction of x ∈ X,

Pr
[
T

(
Ud,ME

(
x,Ud

)) = 1
] − Pr

[
T (Ut+m) = 1

]
� 3

4
. (2)

Therefore, the fraction of x ∈ X for which (2) holds for all j is at least 1 − 4
∑

δd > 1/2.
This set is X′. Now, for every d ∈ [D − 1] we use Yao’s next element predictor argument
to convert T into a predictor Td with advantage 1

4m
= 2α. By the symmetry of ME, we can

assume that the predictor predicts the last bit well. We obtain that for all x ∈ X′, Eq. (1)
holds. �
6.3. Evaluating a point using a given direction

We introduce our point evaluator EP.

EP: Evaluate point

Input: a ∈ FD , d ∈ [D − 1].
Parameters: α = 1

8m
.

Queries: The query points are a − (m − 1)ed, a − (m − 2)ed, . . . , a − ed ; the answers are
b1, . . . , bm−1.

Algorithm: For all j ∈ [�̄] compute

gj (a) = Td

(
a, d, j,C(b1)j , . . . ,C(bm−1)j

)
and set g(a) = g1(a) · · ·g�̄(a).

Output: EP(a, d) is the set of all codewords of C that have at least 1/2 + α agreement
with g(a).



808 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
We note that the best possible predictor Td chooses the majority vote for C(fx(a))j
over all x that are consistent with C(b1)j , . . . ,C(bm−1)j , as in Section 4, and so we could
have given an alternative definition of gj (a) using that best predictor rather than Td .

The proof of the following lemma is identical to that of the second half of Lemma 17.

Lemma 25. For every x ∈ X′ and d ∈ [D − 1], Pra[fx(a) ∈ EPfx (a, d)] � α.

Also, as C has combinatorial list decoding property α, for every x and d we must have
|EP(a, d)| � A = O(1/α2).

6.4. Evaluating all

To evaluate everything, we pick a random line and call Eval(d,L). Eval(d,L) tries to
compute fx on the set Ud,L = L + span{e1, . . . , ed}. Thus, for d = 0 we have U0,L = L

and we try to learn the values of fx on the one-dimensional line L. For d = 1 we try to
learn the values of fx on the set U1,L = L + span{e1} and so forth.

Notice that as L itself is a one-dimensional affine subspace, Ud,L is also an affine sub-
space. Also, as L is picked at random, with high probability, L does not belong to an
affine translation of span{e1, . . . , ed−1}, and so for every d , span{e1, . . . , ed−1,L} will be
d-dimensional. Thus, our goal is to learn UD−1,L.

Also, if we define

Ud,L,i
def= L + span{e1, . . . , ed−1} + ied

then it is an affine translation of Fd , and so there is an affine translation map φi : Fd → Ui .
In the bivariate case, this corresponds to viewing the line as a one-dimensional (affine)
subspace over F.

We are now ready to present the reconstruction algorithm:

Evalf (d,L)

Input: A line L and a dimension d . The queries are answered by f .
Algorithm: If span{e1, . . . , ed−1,L} is not d-dimensional we fail and output “don’t know”.

Otherwise:

If d = 0: U = L. Query U on h points, interpolate the unique polynomial p of
degree less than h, and deduce f (x) for all x ∈ L.

For d = 1, . . . ,D − 1:
• For i = 0, . . . ,m − 2 perform Eval(d − 1,L + ied).

After this we deduce a (hopefully correct) value f̃ (y) for each i =
0, . . . ,m − 2 and y ∈ L + ied + span{e1, . . . , ed−1}.

• For i = m − 1 to h − 1:
– For every u ∈ Ui

def=L+ ied + span{e1, . . . , ed−1} evaluate EP(u, d).
Note that the queries needed for EP(u, d) have been made or pre-
viously deduced.



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 809
– Define an affine map φi : Fd → Ui and form the set S = {(v,w) |
v ∈ Fd , w ∈ EP(φi(v), d)}.
Compute the list G of all d-variate polynomials g : Fd → F of de-
gree at most h with agreement at least α

2 qd with S.
– Pick Δ = Δd = Θ(d logq + log 1

α
) random points a1, . . . , aΔ ∈ Fd .

Query the points φi(a1), . . . , φi(aΔ), and let b1, . . . , bΔ be the an-
swers.
If there is a single polynomial g ∈ G such that g(ai) = bi for i ∈
[�], then deduce that for all v, f (φi(v)) = g(v). Otherwise output
“don’t know”.

Lemma 26. PrL[Eval(d,L) �= fx(Ud,L)] � O(md−1h
αq

).

Proof. The probability that span{e1, . . . , eD−1,L} is not D-dimensional is at most 1/q . If
span{e1, . . . , eD−1,L} is D-dimensional then for every d = 1, . . . ,D − 1 it must be that
span{e1, . . . , ed−1,L} is d-dimensional. From now on we assume span{e1, . . . , eD−1,L} is
D-dimensional.

Let us define errord to be the probability (over choosing a random line L) that
Eval(d,L) �= fx(Ud,L), given that all queries are answered correctly. Clearly, error0 = 0.
Also, we will soon prove the recursion:

Claim 27. errord � (m − 1) errord−1 +O( h
αq

)

and solving the recursion we get our result. �
Proof of Claim 27. The first term in the recursion comes from the stage where i runs from
0 to m − 2 and we call Eval(d − 1, ·), which has probability of errord−1 to fail.

Each i from m − 1 to h − 1 causes an additional error, which we analyze analogously
to EL. Call v ∈ FD nice for p : FD → F if p(v) ∈ EPp(v, d). We know that:

• for every x ∈ X′, Prv∈FD [v is nice for fx ] � α and
• for every p : FD → F and v, |EPp(v)| � A � O(1/α2).

Fix any x ∈ X′. Points in Ui are indexed by s ∈ F and a ∈ span{e1, . . . , ed−1}, the point
corresponding to s, a being Ui(s, a) = L(s) + ied + a. For an index v = (s, a), let Yv be
the indicator random variable that is 1 iff Ui(v) is nice for fx , and Y = ∑

v Yv . We have
E(Y) � α|Ui | = αqd , i.e., for every x ∈ X′ we expect to see many nice points in Ui . We
say Ui is bad for x if Y � E(Y)/2.

Every point in Ui is uniform over all possible values (over a random choice of L).
We would like to claim that the points in Ui are pairwise independent. If we look at two
points, one indexed by v1 = (s1, a1), the other by v2 = (s2, a2), and s1 �= s2, then clearly
the two points are independent (over a random choice of L). On the other hand, they may
be dependent for s1 = s2. Let us denote v1 ∼ v2 iff s1 = s2. We have:

VAR(Y ) =
∑

VAR(Yv) + 2
∑

COVAR(Yv1 , Yv2)
v v1,v2



810 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
�
∑
v

E(Yv) + 2
∑
v1

∑
v2∼v1

E(Yv1Yv2)

� E(Y) + 2
∑
v1

∑
v2∼v1

E(Yv1)

= E(Y) + 2qd−1E(Y) �
(
2qd−1 + 1

)
E(Y).

Hence,

Pr

[
Y � E(Y)

2

]
� 4VAR(Y )

(E(Y ))2
� O

(
qd−1E(Y)

(E(Y ))2

)
� O

(
qd−1

αqd

)
= O

(
1

αq

)
.

If for some i ∈ [h − 1,m − 1], Ui is bad for x we lose, and this accounts for the second
error term of O( h

αq
). Otherwise, Y > E(Y )/2 and Ui contains at least α

2 qd nice points.
Therefore, fx(L) ∈ G.

We check and see that α/2 � 2
√

2hA/|F| (because A = O(1/α2) = O(m2) and |F| �
O(hm4)). Also q � Ω(A/δ2) = Ω(m4) and q � Ω(A2h) = Ω(nm4). Thus, we can apply
Lemma 24 to bound the number of polynomials in G, and we deduce that |G| � 4A

α/2 =
8A/α. Now, a1, . . . , aΔ ∈ Fd are taken uniformly from Fd . The probability two different
polynomials of degree at most h agree on Δ random points is at most (h/q)Δ. Therefore,
the probability there are two or more solutions that agree with the query on fx(L(ai)) for
all i ∈ [Δ] is at most(|G|

2

)(
h

q

)Δ

< O

(
A2

α2

(
h

q

)Δ)
� O

(
1

α6

(
1

2

)Δ)
� 1

qd
.

This accounts to a third error term of order O(h/qd) which is swallowed by the second
error term.

Otherwise, for every i = m−1, . . . , h−1, Ui has enough nice points, we therefore have
the correct answer in G, and the filtering leaves us with a single answer that must be the
correct answer. Thus, we learn Ud,L correctly. �

Now let queriesd denote the number of queries made in Eval(d, ·).
Lemma 28. queriesd � md−1(m + Δ)h.

Proof. Note that queries0 = h, and for d � 1

queriesd � (m − 1)queriesd−1 + (h − m + 1)Δ � (m − 1)queriesd−1 + hΔ.

Now solve the recursion. �
In particular, for d = D − 1 we have ΔD−1 = Θ(D log(q) + log(m)) = Θ(D log(h) +

D2 log(m)) = Θ(log(n) + D2 log(m)). Since we take D to be a constant, this is merely
Θ(log(n)). We thus see that the total number of queries, queriesD−1, is bounded
by mD−2(m + Δ)h � O(mD−1h log(n)) (with the log(n) term disappearing if m �
log(n)), and each query is log(q) bits. In bits, this amounts to querying at most
O(mD−1n1/D log2(n) bits.

We remark that there is nothing special about our choice of e1, . . . , eD−1. Any set of
D − 1 independent vectors will do for the construction.



A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812 811
Acknowledgments

We thank Chris Umans, Ronen Shaltiel, Oded Goldreich, and Avi Wigderson for helpful
discussions and comments. We thank the anonymous referees for numerous corrections and
many suggestions that improved the paper presentation.

References

[1] E. Mossel, C. Umans, On the complexity of approximating the VC dimension, J. Comput. System Sci. 65
(2002) 660–671.

[2] M. Sipser, Expanders, randomness, or time vs. space, J. Comput. System Sci. 36 (1988) 379–383.
[3] M. Santha, On using deterministic functions in probabilistic algorithms, Inform. and Comput. 74 (3) (1987)

241–249.
[4] N. Nisan, D. Zuckerman, Randomness is linear in space, J. Comput. System Sci. 52 (1) (1996) 43–52.
[5] D. Zuckerman, General weak random sources, in: Proceedings of the 31st Annual IEEE Symposium on

Foundations of Computer Science, 1990, pp. 534–543.
[6] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica 16 (1996) 367–391.
[7] A. Srinivasan, D. Zuckerman, Computing with very weak random sources, SIAM J. Comput. 28 (1999)

1433–1459.
[8] A. Ta-Shma, On extracting randomness from weak random sources, in: Proceedings of the 28th Annual

ACM Symposium on Theory of Computing, 1996, pp. 276–285.
[9] D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures Algorithms 11 (1997) 345–

367.
[10] L. Trevisan, Extractors and pseudorandom generators, J. ACM 48 (4) (2001) 860–879.
[11] N. Nisan, A. Wigderson, Hardness vs. randomness, J. Comput. System Sci. 49 (1994) 149–167.
[12] R. Impagliazzo, R. Shaltiel, A. Wigderson, Near-optimal conversion of hardness into pseudo-randomness,

in: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, 1999, pp. 181–
190.

[13] R. Impagliazzo, R. Shaltiel, A. Wigderson, Extractors and pseudo-random generators with optimal seed
length, in: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000, pp. 1–10.

[14] O. Reingold, R. Shaltiel, A. Wigderson, Extracting randomness via repeated condensing, in: Proceedings of
the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000, pp. 22–31.

[15] A. Ta-Shma, C. Umans, D. Zuckerman, Loss-less condensers, unbalanced expanders, and extractors, in:
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 143–152.

[16] J. Radhakrishnan, A. Ta-Shma, Bounds for dispersers, extractors, and depth-two superconcentrators, SIAM
J. Discrete Math. 13 (1) (2000) 2–24.

[17] A. Wigderson, D. Zuckerman, Expanders that beat the eigenvalue bound: Explicit construction and applica-
tions, Combinatorica 19 (1) (1999) 125–138.

[18] C. Umans, Hardness of approximating Σ
p
2 minimization problems, in: Proceedings of the 40th Annual IEEE

Symposium on Foundations of Computer Science, 1999, pp. 465–474.
[19] A. Russell, D. Zuckerman, Perfect-information leader election in log∗ n + O(1) rounds, J. Comput. System

Sci. 63 (2001) 612–626.
[20] O. Goldreich, D. Zuckerman, Another proof that BPP ⊆ PH (and more), Technical report TR97-045, Elec-

tronic Colloquium on Computational Complexity, 1997.
[21] A. Ta-Shma, D. Zuckerman, Extractor codes, IEEE Trans. Inform. Theory 50 (2004) 3015–3025.
[22] J. Håstad, Clique is hard to approximate within n1−ε , Acta Math. 182 (1999) 105–142.
[23] V. Guruswami, Better extractors for better codes?, in: Proceedings of the 36th Annual ACM Symposium on

Theory of Computing, 2004, pp. 436–444.
[24] D. Zuckerman, Linear degree extractors and inapproximability, manuscript, 2005.
[25] R. Shaltiel, C. Umans, Simple extractors for all min-entropies and a new pseudo-random generator, in:

Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp. 648–
657.



812 A. Ta-Shma et al. / Journal of Computer and System Sciences 72 (2006) 786–812
[26] C. Umans, Pseudo-random generators for all hardnesses, in: Proceedings of the 34th Annual ACM Sympo-
sium on Theory of Computing, 2002, pp. 627–634.

[27] M. Sudan, L. Trevisan, S. Vadhan, Pseudorandom generators without the XOR lemma, in: Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 537–546.

[28] M. Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, J. Complexity 13 (1997)
180–193.

[29] V. Guruswami, J. Hastad, M. Sudan, D. Zuckerman, Combinatorial bounds for list decoding, IEEE Trans.
Inform. Theory 48 (2002) 1021–1034.

[30] J. Naor, M. Naor, Small-bias probability spaces: Efficient constructions and applications, SIAM J. Com-
put. 22 (4) (1993) 838–856.

[31] N. Alon, O. Goldreich, J. Håstad, R. Peralta, Simple constructions of almost k-wise independent random
variables, Random Structures Algorithms 3 (3) (1992) 289–303.

[32] M. Santha, U.V. Vazirani, Generating quasi-random sequences from semi-random sources, J. Comput. Sys-
tem Sci. 33 (1986) 75–87.

[33] B. Chor, O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication
complexity, SIAM J. Comput. 17 (2) (1988) 230–261.

[34] R. Raz, O. Reingold, S. Vadhan, Extracting all the randomness and reducing the error in Trevisan’s extrac-
tors, in: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 149–158.


