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The motivating problem for this paper is to find the expected covering time of a 
random walk on a balanced binary tree with n vertices. Previous upper bounds 
for general graphs of O(1VI jE[)~ll and O(I Vl I-EWdmin) 12) imply an upper bound 
of O(n2). We show an upper bound on general graphs of 0(3 IEI log IV]), 
which implies an upper bound of O(n log 2 n). The previous lower bound was 
f2 ( Ig l log lVI)  for trees, t21 In our main result, we show a lower bound of 
Q(IVI (logam,~ [Vt) 2) for trees, which yields a lower bound of Q(nlog2n).  We 
also extend our techniques to show an upper bound for general graphs of 
O(max{E= Ti} log I VI ). 
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balanced binary tree. 

1. I N T R O D U C T I O N  

The motivating problem for this paper is to find the expected covering time 
of a random walk on a balanced binary tree with n vertices. Previous upper 
bounds for general graphs of o(Igl [El) ~ and O(IV[ [El/dmin) ~21 imply an 
upper bound of O(n2). We show an upper bound on general graphs of 
O(A tEl log IVI), which implies an upper bound O(n log 2 n). The previous 
lower bound was f2(1VI log IVJ) for trees. (2~ In our main result, we show a 
lower bound of f2(I V[ (toga~,ax [ VI )2) for trees, which yields a lower bound 
of f2(n log 2 n). We also extend our techniques to show an upper bound for 
general graphs of O(max{E, 7",.} log I VI ). 
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2. N O T A T I O N  

Our graph is G = (V, E), V being the vertex set and E the edge set. 
L ~  V is the set of leaves for a tree G. Our random walk is {X,}. The 
corresponding edge process is the sequence { (Xn, X,, + 1) } of directed edges 
traversed. 

For the following definitions we assume u, v ~ V: Po( ')  denotes the 
probability of (-) in a walk starting at v; E~(-) denotes the expectation of 
( .)  in a walk starting at v; ~z is the stationary distribution; E~(-) denotes 
the expectation of (-) in a walk starting from distribution zt; C is the time 
to cover G; C~ is the time to cover G and then return to v; A is the diameter 
of G; d~ is the degree of v; dma x = max~ {d~}; dmi n = min~ {d~}; d(u, v)is the 
distance between u and v; T o is the time to first reach v; T~ + is the time to 
first reach v, not including time 0. An excursion at v is a walk beginning at 
v and ending the first time v is reached again. N~(G) is the number of 
excursions at v necessary to cover G. We omit the G if it is not ambiguous. 

3. PRELIMINARIES 

The following weli-known lemmas (see Ref. 1) are basic to the theory 
of random walks on graphs: 

Lemma 1. zt(v) = d d 2  Igl. 

Lemma 2. EvT~ = 1 /n (v )=2  [E[/d~. 

Lemma 3. For  {u, v} ~E, E~Tu+E~Tv42 [El, with equality if and 
only if the removal of {u, v} disconnects G. 

Corollary 1. EvTu+E~To<~2 ]E] d(u, v), with equality if G is a tree. 

The following is very useful: 

Proposition 1. Let S be a stopping time such that X s = v. Then, by 
renewal theory (see Ref. 3) 

Ev[ # visits to w before time S]  = re(w)ES 

Corollary 2. In a tree, 

E v [ #  visits to v before visit w] =d~d(v, w) 

Proof. Let S be the first visit to v after visiting w in Proposition 1, 
and observe that Corollary 1 implies ES = 2 JEJ d(v, w). The corollary then 
follows from Lemma 1. �89 
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Corollary 3. E~ C~ = (ENv)(E~ T + ). 

Proof Because C~ is a stopping time, by Proposit ion 1, 

EN~ = E~[# visits to v before time C~] = ~(v)E~C~ [] 

Remark. E~ C can depend heavily on v for a fixed G, as the following 
illustrates: Let G be a complete graph on n vertices union a vertex v, where 
v is connected to only one vertex w in the complete graph. Then it is not 
hard to see that EvC=O(nlogn),  but for uCv, E,C>~E,T~=f2(n2). 

The quantities E,  C~ are better behaved in that they only differ from 
each other, and from max~ {E~C}, by a factor of 2: 

Lemma 4. E~ C~ ~ E~ Tw + E~. Cw + Ew T, ~ 2E w C .... 

Lemma 5. �89 {E~Co)~<max~ {EvC} ~<max~ {EvC~}. 

Proof The first inequality follows because E v C~ ~< E~ C + 
maxu {E, Tv)~<2 max v {E~C}. The second is obvious. [] 

Remark. The quantities EvC v can differ by a constant factor, as is 
evident in the path of length n, where n is even. If m is the middle of the 
path, and v is an end point of the path, it is not hard to see that EN m = 3n 
and ENv = n. Therefore, by Corollary 3, E m C m = 3n2  and E~ C~ = 2n 2. 

Lemma 6. (4) There exists a spectral representation, i.e., there exists 
an or thonormal  matrix U =  {uij} such that 

i vi 
Pi EX'n = J]  - 7z(j) = zc - ' /2(i)  zrl/2(j) ~ ~n A, k lA ik Hjk 

k = 2  

Lemma 7. (5) Except for a slight modification in the bipartite case, 
the limits 

Zo.= ~ { P i [ X , = j ] - z r ( j ) }  
n = 0  

exist, and are finite. Moreover,  by applying Proposition 1, 

Z i i  
E, Ti - 

n(i) 

Z i i  - Z j i  
E j T , -  ~(i) 
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4. UPPER BOUNDS 

We now show that EvC=O(A [El loglV[) and, using the matrix 
{Z~}, extend our results to E~C = o(max/{E~ T~} log I V[ ). 

Proposition 2. EoC~ [1 + o ( 1 ) ] e l n  IVI maxi, 2 {E, Tj}. 

Proof We can ignore the fact that some times we will use will not be 
integers; these can be rigorously handled by considering the continuous 
time case, or simply by taking the greatest integer. In a walk for time 
t =  e maxi,; {E;T;}, no matter what vertex we start at, the probability of 
not reaching w is at most 1/e. Hence, if we walk for time t' = ton [ V[ + k), 
we have In I VI + k walks of length t, so the probability of missing w is at 
most (l/e) In ivl +k= 1/eklgl. Since this holds for every w, the probability of 
missing at least one vertex is at most e -k, i.e., this walk covers G with 
probability at least 1 -  e -k. Therefore, the expected number of walks of 
length t' needed to cover G is at most 1 / ( 1 - e  k), i.e., E~C~ 
[ 1/(1 - e k)] (ln I VI + k)e max {Ei Tj}. Taking k = (In ] V[ )1/2 proves the 
proposition. [] 

Remark. Proposition 2 allows us to efficiently compute max~ {E~C} 
efficiently to within a factor of O(loglV]), since also maxv{E,C}>~ 
maxi, j {Ei Tj} and maxi, j {Ei Tj} is efficiently computable. 

Corollary 4. E~C<~ [1 +o(1)]  2e A IEI In [Vi. 

Proof We substitute the fact that EiTj<~ 2 IEI A (from Corollary 1) 
into Proposition 2 to obtain the result. [] 

Remark. Because A~<3 I VI/dmin, the previous corollary always 
comes to within O(log I V]) of the bound O(I VI IEl/dmin) in Ref. 2. 

Lemma 8. 

Zii Zjj ~ Zij l2 ~ _ _  

L=(j)J =(i) z~(j) 

Proof Substituting the spectral representation (Lemma 6) into the 
definition of Zij (Lemma 7) and dividing by z~(j), we get 

Zi j = I vI 
7['(Ji ~ 1/2(i)~ l/2(j) E SkUikHj k 

k=2 
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- ~J ~"= 1 / (1-2~) ,  This is also valid for the bipartite case. where sk - Z ,  = o zk 
The lemma follows by noting that Cauchy-Schwartz implies 

/ IVI \ 2  / IVl \ /  IVl \ 

J 2 S 2 

Theorem 1. For all v~ V, E , C ~  [1 + o(1)] 2e In i VI max, {E.T,}. 

Proof From Lemma 8, 

[Z<i[ ~ Z,, Zii"~=max{E,T,,E, Tj} 
re(j) ~ max (re(i) ' g ( j ) J  

Thus, 

max {EiTj}=-max ( )~ZJJ-Z~ ~<2 max {E~T,} 
i,j i,j [ zc(j) J 

The theorem then follows from Proposition 2. [] 

Proposition 3. In a tree, E,C<~ [1 + o ( 1 ) ]  2eln ILl max/e L {E~Ti}. 

Proof A random walk on a tree covers all vertices if and only if it 
covers all the leaves. The proposition follows by restricting w in the proof 
of Proposition 2 to the set of leaves L, and noting that the largest EgTfs 
occur for i and j leaves. [] 

5. LOWER B O U N D  FOR TREES WITH SMALL DEGREE 

We now show that for trees, E~.C= f2(I V[ (loga~,~ [V[)2). The intuitive 
idea can be illustrated in the case where G is a balanced binary tree, say of 
height h ~ log2 [ VI. Let r be the root, and s and t its children. Thus s and t 
are in turn the roots of subtrees G1 and G2, respectively, where each Gi has 
height h - 1 .  Now let n(h)=ENr(G), so n(h-I)=ENs(G~)=ENt(G2). 
Thus, we expect to have to go down directed edges (r,s) and (r, t) 
approximately n(h- 1)/2 times each in order to cover both G1 and G2. If 
these numbers were deterministically fixed at n(h-1)/2 (which they are 
not), then we would expect to need n(h- 1)+  g2 ( [n (h -  1 )] 1/2) visits to the 
root in order to satisfy both of these quotas. Thus, roughly, we expect 
n(h) = n(h - 1) + f2([n(h - 1)] 1/2), which solves to n(h) = g2(h2). Since the 
expected length of an excursion is O([ V]), if we show that the correlation 
does not matter too much, then we will have E,.C=f2(n(h) lVI)= 
f2(I V[ log 2 t VI ). 
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Definition. The neighboring trees in G of a vertex v are the tree com- 
ponents obtained from G by deleting v and all edges incident to v. The root 
of a neighboring tree is the vertex of the neighboring tree adjacent to v. 

Lemma 9. For all v e V, there exists r e V with two neighboring trees 
of size at least I VI/2dmax. Moreover, one of these trees is of size at most 
IVI/2 and does not contain v. 

Proof Start with r = v, and our current tree as the whole tree. Then 
repeat the following process: if the current r satisfies the conditions of the 
lemma, then we are done. Otherwise, move to the largest neighboring tree 
that is a subtree of the current tree, and consider its root as our new r. If 
the size of the current tree is k, then the size of the next tree is between 
( k - 1 ) / ( d m a x - 1 )  and k - 1 .  Thus, at some point our current r has a 
neighboring tree of size between ]Vl/2dma x and I VI/2, and which does not 
contain v. Then the current r must have another neighboring tree of size at 
least (t VL/2- 1 ) / ( d m a  x - -  1). If IV[ ~> 2d . . . .  then this is at least [VI/2dma x. If 
I VI < 2dmax, the lemma is trivial. [] 

We now come to our main lemma, where we get the recursion we 
need, although not in its full generality. 

Lemma 10. Suppose r has two neighboring trees G1 and G 2 ,  with s, t 
being the neighbors of r in G1, G2, respectively, such that ENs(G1)>~ 
( d s - 1 ) k  and EN,(G2)>~ (d , -1)k ,  for some k~>4. (Note that d ~ - 1  is the 
degree of s in G1, and similarly for t.) Then EN,(G) >~ dr(k + ~ ~fk). 

Proof For  neighbors v of r, let Rv be the number of times needed to 
traverse the directed edge (r, v) in a walk starting at r in order to cover the 
neighboring tree of r containing v. Then the R~'s are independent. 
Moreover,  

1 
ER~= 1 + d-~-I ENd(G1) >~ k 

ERt >~ k 

Now let Rs, be the sum of times over directed edges (r, s) and (r, t) in 
order that the individual numbers are at least R~ and Rt, respectively. The 
basic idea of the lemma is that the number of times down (r, s) given the 
sum of times down (r, s) and (r, t) is binomially distributed. Thus, by 
insisting that both of our quotas of R s and Rt are met, ERs, must be an 
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additive factor of f2(x//'k ) larger than ERe+ ER,. To prove this, note first 
that 

Rst>~ Rs+ R, (5.1) 

Moreover, 

E[Rs, I R,, R,]  >~ 2 max(Rs, R,) (5.2) 

Now assume without loss of generality that R,~> Re. Then after R, + R, 
times over the directed edges (r, s) and (r, t), if the number of times over 
edge (r, t) is (R, + Rt ) /2 -x  for x >0,  then we expect to go at least 2x 
more times over (r, s) and (r, t) before time R,t. Thus, if {S,} is a random 
walk on the integer line, then the number of additional times over (r, s) 
and (r,t) is 2Eo[max{O,S.}]--E[IS.I]>~�89 where n=R,+R, .  
Therefore, 

E[R~,IR,, Rtq >j R, + R, + �89 + Rt) ~/2 (5.3) 

We consider two cases: 

Case 1. P(Rs+R,>k)>2/3. Then from (5.1) and (5.3) 

E[R,,] >1 + CIRri)+  (E[Rs] + e [R, ]  + �89 ,fi)/> 2k+ ,,/-s 
Case 2. P( R, + R, > k) <~ 2/3. Then without loss of generality we may 

assume P(R, > k/2) <~ 5/6. Then from (5.2) 

E[Rs,] >~ 2(E[R,  [ R, <<. k/23 + E[R, I R~ > k/23) 

>1 2(E[Rs + k/21Rs <<. k/2] + E[R s[Rs > k/Z]) 

>-2 E[R,] +-~ >~2k+-~k 

In either case, for k/> 4, we conclude that 

d, ( k  gl EN, >~ E[R,,] >~ dr + w/-k/ 

The following lemma is useful because it says that we expect to visit 
vertices outside of G1 a lot before covering Gt. 

Lemma 11. For all v not in G1, 

E,[# times visit v before covering Gz] =doERs 

Proof Consider the corresponding edge process. Let S be the first 
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time directed edge (s, r) is traversed after covering GI. Using an analog of 
Proposition 1, for any directed edge (v, w), 

1 E(s,r)[# times visit (v, w) before S] = - ~ E ~ S  

which is independent of (v, w). Taking (v, w)= (r, s), we see that this 
quantity is ER~. Thus, for v not in G~, 

E~[ # times visit v before covering G1] 

= E~[ # times visit v before S] 

= ~ E(s,~)[# times visit (v, w) before S] = d~ER, [] 
{v,w}es 

We now generalize Lemma 10 to show that our recursion holds even if 
v is not the vertex with large neighboring trees. 

Lemma 12. Suppose we have the same hypotheses as in Lemma 10. 
Then for any v, ENd(G) >~ dv(k + ~ x/-k). 

Proof Suppose without loss of generality that v is not in G1. We 
distinguish two cases: 

Case 1: d(v, r)>~x/-k. By Corollary 2, E~,[# times visit v before 
visit r] = dvd(v, r). When r is first reached, nothing in G1 has been visited. 
Therefore, by Lemma 11, the expected number of additional times we visit 
v before C is d, ERs>~d~k. Thus, EN~>~d~(d(v, r)+k). 

Case 2." d(v, r) < ~ x ~ '  Then 

E~C~>~ E~C~- E~T~- E~T~= ( E N ~ ) - ~ - 2  [El d(v, r) 

>1-2 [E[ [k+~x/s  

The lemma then follows because EN~--(dd2 [E[)E~C~. [] 

We now evaluate our recursion. 

Lemma 13. For all v~ V, EN~>~(1/590) d~(lOg2dm~x IV[ + 1) 2. 

Proof We proceed by induction on 1og2ama~ I VI- For the base cases, 
where 1og2dmax [V[ ~<290, pick w with d(v, w))A/2.  Then using A>~ 
logzam~ [V[ and Corollaries 1 and 3, 

(EN~)(E~T~ )=- E~C~>~ E~Tw+ E~T~>~ A [El 
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Thus, using Lemma 2, 

1 d~ 
E N o ~ d ~ A ~ l d ,  log2am.,,IVl~ (log2a~,, I V) + 1) 2 

2 ' 

For the inductive step, we apply Lemma 9 to find two subchildren having 
size at least [V[/2d~. Using the recursive relation given by Lemma 12, 

ENJdv ~ 1 (log2a~ [ V[ )2 + 
1 1 

(lOg2dmax I V!) 
12 

1 1 
/ > ~  (Iog2ama ' )V[ )2 + 2 ~  (log2am" [V[) 

1 1 
- 590 (l~ ] Vl )2 + 2-~ (logeum,, J VI) + - -  

1 1 
>/5"~ (1Og2dmax I VI )2 + ~ (1og2dmax I VI) + - -  

t 
= 59---6 (1og~dm"x I VI + 1)2 

3 
292. 295 (log2am.x I V)) 

1 
5902 

[] 

We are finally ready for the following theorem. 

T h e o r e m  2. EvC>~ (1/600) IV[ (1og2am,x I VI) 2 

Proof We would like to say something like EvC=E[#  excur- 
sions] E[time/excursion], but unfortunately the two random variables on 
the right are correlated. We get around this by getting the number of 
excursions from one subtree and the time per excursion from the others. 
Our key tool is Lemma 11. 

For ]VI~<60, ]Vl(log4]V])2~<540, so we assume ]VI>60. By 
Lemma 9, we find a vertex r with a neighboring tree G1 with root s, where 
[Vl/2dmax~ tGll ~<lVI/2 and G1 does not contain v. Now we ignore the 
part of our walk before we first reach r. Therefore, by Lemmas 11 and 13, 
for all w not in G1, 

E~[- # times visit w before C] 

dw >1 d,,,ER, - EN.JG~) 
d~-l 

,v )2 
"1 590 l~ 2d~ax + 1 /> IV[ d~ ~ ~E~ (log2dm~ Iv] )2 



156 

The result follows because 

E~ C >1 
w ~ G  G 1 

and 

E~[ # times visit w before C] 

d w  

w E G - -  

Zuckerman 

[] 

6. O T H E R  LOWER B O U N D S  

It would be nice if we could obtain a better bound for a bounded 
degree tree, given its diameter 3. If G is a balanced binary tree with a path 
attached to the root, and v is the end of the path, then it is not hard to see 
that EoC=O(A2+IVI log2lVI). Thus, the best we can hope for is an 
additional bound of f2(A2). We do this below for general trees: 

Proposition 4. For a tree, E~C>/A2/4. 

Proof By Ref. 6, for an edge {i,j}, EiTj=2 [A#I- 1, where Aij is the 
subtree containing i obtained by deleting edge {i, j}. The proposition 
follows by considering the path from v to a w with d(v, w)>~ A/2. [] 

Remark. From the main result of Ref. 7 it is not hard to see that for 
general graphs, E~C = s I VI ). 

We can improve the previous result for trees if we are concerned with 
max~ {E~C}: 

Proposition 5. In a tree, max. {E.C} >~ IEI A, 

Proof From Corollary 1 and Lemma 5, 

max {E.C} >~Jmax {EvC.) >~�89 {E.Tw+EwT.} = Igl A 
v v v ,  w 

[] 

Remark. This is not true for general graphs. For example, in the 
two-dimensional torus, which has diameter x / ~ ,  m a x ~ { E . C } =  
O(I V] log: l VI ). 
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