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Abstract

We present the first efficient oblivious sampler that uses an optimal number of random
bits, up to an arbitrary constant factor bigger than 1. Specifically, for any α > 0, it uses
(1 +α)(m+ log γ−1) random bits to output d = poly(ε−1, log γ−1,m) sample points z1, . . . , zd ∈
{0, 1}m such that for any function f : {0, 1}m → [0, 1],

Pr
[ ∣∣∣ 1d ∑d

i=1f(zi)−Ef
∣∣∣ ≤ ε ] ≥ 1− γ.

Our proof is based on an improved extractor construction. An extractor is a procedure which
takes as input the output of a defective random source and a small number of truly random
bits, and outputs a nearly-random string. We present the first optimal extractor, up to constant
factors, for defective random sources with constant entropy rate.

We give applications to constructive leader election and reducing randomness in interactive
proofs.

1 Introduction

Randomization has proved extremely useful in almost all areas of computer science, such as
algorithms, Monte Carlo simulations, cryptography, distributed computing, and network construc-
tions. These uses of randomness have a drawback, however: computers typically don’t have access
to many truly random bits.

Researchers have taken two different approaches to deal with this problem. One approach is to
try to minimize the number of random bits required for a particular task. If the number of random
bits can be sufficiently reduced (usually this means to O(log n)), then a deterministic algorithm
can often be created by cycling through all possible choices for the random seed (see e.g. [Lub86]).
The other approach is to assume that the only random sources available are defective, or weak (e.g.
[Blu86, SV86]). In other words, the “random strings” they output are not uniformly random, but
rather just somewhat random.

In this paper we deal with both approaches. In fact, we show that the two are related: random
sampling using few random bits is essentially equivalent to extracting randomness from general
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Leader Election,” appeared in Proceedings of the 27th ACM Symposium on Theory of Computing, pages 286-295,
1996.
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weak random sources. Moreover, it often helps to think about one approach even if a result is
desired in the other. Here, we obtain good samplers by constructing good extractors for weak
sources.

Oblivious Samplers

One of the most basic uses of randomness is sampling. Suppose f : {0, 1}m → [0, 1] is arbitrary,
and we wish to estimate its mean Ef = 2−m

∑
z∈{0,1}m f(z). If we know nothing about the

function, the most natural approach is to sample randomly. By choosing d = O(ε−2 log γ−1)
sample points z1, . . . , zd uniformly and independently, we obtain an estimate Z = 1

d

∑d
i=1f(zi) such

that Pr[|Z −Ef | ≥ ε] ≤ γ.
We can define more general samplers:

Definition 1.1 An (n,m, d, γ, ε)-sampler1 is a set of two deterministic algorithms A and B, which
works as follows. Let f : {0, 1}m → [0, 1] be arbitrary. On input an n-bit string, A outputs d sample
points z1, . . . , zd ∈ {0, 1}m. On input f(z1), . . . , f(zd), B produces an estimate µ̂ for Ef . When
the n-bit string is chosen uniformly at random, the sampler has the property that |µ̂−Ef | ≤ ε with
probability ≥ 1− γ.

Probably the simplest sampler is one where B simply computes the average of f(z1), . . . , f(zd).
Such a sampler is called oblivious:

Definition 1.2 An (n,m, d, γ, ε)-oblivious sampler is a deterministic algorithm which, on input a
uniformly random n-bit string, outputs a sequence of d sample points z1, . . . , zd ∈ {0, 1}m such that
for any function f : {0, 1}m → [0, 1], we have |1d

∑d
i=1f(zi)−Ef | ≤ ε with probability ≥ 1− γ.

Not surprisingly, many researchers have worked on producing efficient samplers using few ran-
dom bits. A summary is given below. For us, the interesting ranges of parameters are ε = 1/poly(m)
and γ = exp(−Θ(m)).

Due to Method Obliv? Random Bits Sample Points

[CEG95] Lower Bound Any m+ log γ−1 − log(O(d)) Ω(ε−2 log γ−1)

Standard Full Independence Yes O(mε−2 log γ−1) O(ε−2 log γ−1)

[CG89] Pairwise Independence Yes 2m O(ε−2γ−1)

[Gil93] Random Walks on Expanders Yes m+O(ε−2 log γ−1) O(ε−2 log γ−1)

[BGG93] Pair. Ind. + RW’s on Expan. No 2m+O(log γ−1) O(ε−2 log γ−1)

[GW97] [BGG93] + Expan./Hashing No m+O(log γ−1) O(ε−2 log γ−1)

[BR94] Iterated Sampling Yes O(m+ (logm) log γ−1) poly(ε−1, log γ−1, log m)

Here Hash-Based Extractors Yes (1 + α)(m+ log γ−1) poly(ε−1, log γ−1,m)
α > 0 any constant

Note that the pairwise independent sampler doesn’t even run in polynomial time for the pa-
rameters of interest. Thus the only other sampler using a constant times the optimal number of
random bits is that of [BGG93] (and that of [GW97] building upon it). That sampler also has

1Note that in this definition and future ones there are 5 parameters. It may help to remember that the first three
refer to lengths of inputs and outputs: the first is the length of the input, the second is the length of one output
sample, and the third is the number of samples. The last two paramenters refer to the quality of the sampler.
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the advantage of using an optimal number of sample points, up to a constant factor, whereas ours
uses a larger but polynomial number. On the other hand, our sampler has the advantages of being
oblivious and using an optimal number of random bits up to an arbitrary constant factor bigger
than 1. The previous best oblivious sampler used O(logm) random bits times the optimal [BR94].
The importance of obliviousness may not be obvious, but it is what is needed for the applications
in this paper and in [BR94]. Our sampler also runs in NC.

A corollary of our sampler construction is an NC algorithm for deterministic amplification. In
particular, our sampler can be used to convert a BPP (or BPNC) algorithm using m random bits
and achieving error 1/3 into one using (1 +α)(m+k) random bits and achieving error 2−k, for any
α > 0. The only known previous technique requires a larger constant times m+ k even to amplify
RP. It is based on random walks on expanders [AKS87, CW89, IZ89] (the sampler of [BGG93]
builds on this). However, that uses O(k) samples, whereas ours uses poly(m, k) samples. Using the
nice structure of the expanders of [GG81], that can also be made to run in NC.

Non-Constructive Upper Bound

Note that for small γ, our oblivious sampler uses fewer random bits than the non-explicit
construction given in [CEG95], where m+ 2 log γ−1 + log log(2ε)−1 random bits are used. Here we
rectify this situation by showing non-constructively that there is a sampler taking d samples and
using m + log γ−1 − log(ε2d) + 4 random bits, for d ≥ 2(log γ−1)/ε2. We achieve a better bound
than [CEG95] by viewing the sampler as an extractor.

Extractors for Weak Random Sources

Our oblivious samplers are constructed by viewing them in the essentially equivalent form of
extractors for general weak random sources. This view turns out to be quite helpful. Besides
giving our main construction and the non-explicit construction above, it can be used to prove
an unintuitive proposition by translating a result in [WZ95] into the language of samplers. In
particular, if there is an efficient sampler that uses a constant times optimal number of random
bits, then there is one using the optimal number times an arbitrary constant factor bigger than
one. The only loss is that the new sampler uses a polynomially larger number of samples.

First we explain what we mean by general weak random sources. Many models of weak random
sources have been studied (e.g. [Blu86, SV86, CG88, CFG+85, CW89]). We associate a source with
the probability distribution by which it outputs a string. Extending models in [CG88, SV86], the
most general model was studied in [Zuc90]:

Definition 1.3 A distribution D on {0, 1}n is called a δ-source if for all x ∈ {0, 1}n, D(x) ≤ 2−δn.
Improving upon [Zuc90], it was shown in [Zuc96] how to simulate BPP using the output from

such a source, for δ a constant. In [NZ96], an extractor was defined and constructed:

Definition 1.4 E : {0, 1}n×{0, 1}t → {0, 1}m is an (n,m, t, δ, ε)-extractor if, for x chosen accord-
ing to any δ-source on {0, 1}n and y chosen uniformly at random from {0, 1}t, E(x, y) is within
statistical distance2 ε from the uniform distribution on {0, 1}m.

In previous definitions, E(x, y)◦y was required to be close to uniform. Yet this stronger condition
was not used in the important applications ([NZ96, WZ95, Zuc96]; see [Nis96] for a survey). We
can achieve the stronger condition; however, our proofs are cleaner without it.

2See Section 3.1 for a definition of statistical distance, or variation distance.
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Viewing δ, n, and ε as given, the goal is to make t as small as possible and m as large as possible.
This can yield a simulation of BPP using a δ-source. Namely, given a BPP machine M which uses
m random bits to achieve error .1 and an (n,m, t, δ/2, 1/3)-extractor, cycling through all possible
t-bit strings yields a simulation of BPP using n bits from a δ-source and requiring 2t runs of M
[Zuc96]. (What is important above is that .1 + 1/3 < 1/2; an exponentially small error in the
simulation is achieved because the extractor is designed for a δ/2-source rather than a δ-source.)
Thus for this purpose it is desirable to have t = O(log n) and m as large as possible, but at least
nΩ(1).

Most of the recent progress in this area was made for δ = o(1) [SZ94, SSZ95, Ta-96]. In
particular, building upon [SZ94], Ta-Shma [Ta-96] gave an extractor which uses t = polylog(n, ε−1)
truly random bits to extract all δn bits of randomness. Although this work is generally more
impressive than the case of constant δ, constant δ was enough to achieve most of the applications
[NZ96, WZ95, Zuc96]. In this paper, we achieve the optimal results for constant δ, up to constant
factors. It should be noted, however, that the optimal t up to constant factors results in optimal
2t up to polynomial factors. This 2t is the relevant term for the time of the BPP simulation and
the number of samples output by the oblivious sampler.

The following is a history of work for constant δ; the big-Oh terms hide constants related to δ.

Due to t truly random bits m output bits

Lower bound [NZ96] Ω(log n+ log ε−1) dδn+ te
[NZ96] O((log n+ log ε−1) log n) Ω(n)

[Zuc96] O(log n+ ε−2) nΩ(1)

[WZ95] O((log n+ log ε−1) log n) (δ − α)n, any α > 0

[SZ94] O(log n+ log ε−1) δlog∗ nn

Here O(log n+ log ε−1) (δ − α)n, any α > 0

Thus, the main technical contribution of this paper is to eliminate the δlog∗ n factor in the
number of output bits of the extractor in [SZ94]. This yields the first simulation of BPP using
a linear number of random bits from a δ-source. That is, if the original BPP algorithm uses m
random bits to achieve error probability 1/3, then the simulation will use O(m) bits from a δ-source
to achieve error 2−m.

Constructive Leader Election and Dispersers

In the leader election problem, there are M processors or players. All communication is by
broadcast and hence public. That is, each player knows the sender and content of each message.
The goal is to elect a leader. The difficulty is that there is a coalition of βM players that want
one of their members elected and may not follow the protocol. This problem is well-studied in
the cryptographic setting, where there is a constant expected time Byzantine agreement protocol
[FM97]. Here we study the full information model: the bad coalition can have infinite computational
power, and thus cryptographic tools like one-way functions are useless. A protocol is β-immune if
regardless of which βM players are dishonest, the protocol chooses an honest leader with probability
bounded away from 0. Note that such a protocol can also be used to flip a coin that has probability
bounded away from 0 and 1 of being heads: the elected leader simply flips the coin and broadcasts
the result.
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Alon and Naor [AN93] were the first to exhibit a protocol which is β-immune for some constant
β > 0. Non-constructively, [BN] improved upon [AN93] to show that there exists a β-immune
protocol for any constant β < 1/2, which is best possible [Sak89]. These protocols require a linear
number of rounds. The first sublinear protocol was given in [CL95], and recently [ORV94] exhibited
an O(logM) round protocol that is β-immune for β a sufficiently small constant. They also showed
non-constructively the existence of an O(logM) round protocol that is β-immune for any fixed
β < 1/2.

Here we give a constructive O(logM) round protocol that is β-immune for any fixed β < 1/2.
We also resolve another unsatisfactory feature of the [ORV94] protocol: in that protocol each player
had to send polynomially many bits per round. In our protocol the players need only send logM
bits per round. We rely heavily on the work of [ORV94], but modify their protocol to make the
analysis even simpler.

For this application, it is helpful to view the extractor graph-theoretically. The natural way
to do this yields a family of highly-expanding uneven bipartite graphs, which have been called
dispersers [San87, Sip88, CW89]. The dispersers constructed in this way are stronger than those
that can be constructed using eigenvalues in the natural way, and have been used to give near-
optimal explicit constructions for superconcentrators, nonblocking networks, and algorithms for
sorting and selecting in rounds [WZ95]. Applying the dispersers to appropriately pick committees
in the [ORV94] protocol gives our constructive result.

We remark that for this application to leader election, we do not need the new extractor; even
that in [NZ96] would have sufficed. However, the new extractor makes this construction cleaner.

Interactive Proofs with Few Random Bits

Oblivious samplers were used in [BR94] to reduce the number of random bits needed for in-
teractive proofs. Using a theorem in [BR94], our oblivious sampler implies the following. Given a
2g(n) round AM proof for a language L in which Arthur sends l = l(n) random bits per round and
Merlin responds with a q = q(n) bit string, we can construct a g = g(n) round AM proof for L in
which Arthur sends O(l + q) random bits per round and Merlin’s response remains of polynomial
length. The previous best bound was O(l + (q + log g) log l) random bits [BR94].

We also mention that our extractor has been used by [AW] to give pseudo-random generators for
space-bounded machines, yielding a smooth tradeoff between the generators of [Nis92] and [NZ96].

2 Equivalence of Samplers and Extractors

In this section we show the essential equivalence of samplers and extractors. It is helpful to do
this by looking graph-theoretically.

2.1 Graph-Theoretic View of Samplers

We now define an uneven bipartite graph that is equivalent to a sampler. To do this, we put
the N = 2n strings representing the random bits on the left, and the M = 2m strings representing
the sample points on the right. We connect a point x on the left with the d sample points on the
right that the sampler outputs on input x. Thus in the following definition think of d� M < N .
Note that we use capital letters for sets and for quantities that are usually exponentially large.
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Definition 2.1 An (N,M, d,K, ε)-approximating disperser is a bipartite multigraph on indepen-
dent sets V and W , such that |V | = N , |W | = M , the degree of every node in V is d, and the
following holds. Let f : W → [0, 1] be arbitrary, and call v ∈ V bad if |1d

∑
w∈Γ(v) f(w)− Ef | > ε.

(Here Γ(v) denotes the neighbors of v.) Then the number of bad vertices in V is at most K.
We use the name approximating disperser because it is related to two types of dispersers previ-

ously defined: one corresponding to RP, and the other to BPP (see [San87, Sip88, CW89]). For the
RP type, a vertex is bad if none of its neighbors lie in some fixed subset S ⊂W , |S| ≥ |W |/2. For
the BPP type, a vertex is bad if a majority of its neighbors lie outside some fixed subset S ⊂ W ,
|S| ≥ 2|W |/3. Note that an approximating disperser is stronger than an RP or BPP type disperser.
The dispersers we construct, and that were constructed in [Zuc90, Zuc96, NZ96, WZ95, SSZ95],
are better than what can be achieved using eigenvalues and have had numerous applications (see
[WZ95, Nis96]).

We also need a notion of efficiently constructibility:

Definition 2.2 An (N,M, d,K, ε)-approximating disperser is efficiently constructible if there is
an efficient algorithm which, on input a node v ∈ V and index i ∈ {1, 2, . . . , d}, computes the ith

neighbor of v.
Since our constructions work in NC, we use the word “efficient” above to mean in NC. Note that

the size of the input to this algorithm is logN , so the parallel running time should be polynomial
in log logN .

We defined approximating-dispersers so that the following lemma is obvious:

Lemma 2.3 There is an efficient (n,m, d, γ, ε)-oblivious sampler iff there is an efficiently con-
structible (2n, 2m, d, γ2n, ε)-approximating disperser.

2.2 Equivalence to Extractors

We will discuss the difference between samplers and extractors by looking graph-theoretically.
Approximating dispersers, and hence samplers, say that the number of bad vertices is small. Ex-
tractors say that a large enough set of vertices is good. These are basically equivalent: a bad set
contains many bad vertices, and the set of bad vertices is a bad set. We need to be slightly careful:
conceivably bad vertices which overestimate Ef can combine with bad vertices which underesti-
mate Ef to form a good set. We get around this by dividing the bad vertices into those which
overestimate and those which underestimate.

There is also another difference. Recall that the output of an extractor is required to be within
statistical distance ε of the uniform distribution, which we call ε-quasi-random:

Definition 2.4 Let D1 and D2 be two distributions on the same space S. The variation distance
(or statistical distance) between them is

‖D1 −D2‖ = max
T⊆S
|D1(Y )−D2(Y )| = 1

2

∑
s∈s
|D1(s)−D2(s)|.

Definition 2.5 A distribution D on S is called ε-quasi-random (on S) if the distance between D
and the uniform distribution on S is at most ε.
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Thus, extractors are defined to have error at most ε with respect to subsets, which are functions
into {0, 1}, whereas samplers are defined with respect to more general functions into [0, 1]. Yet
while it is not clear that samplers good for {0, 1} functions are also good for [0, 1] functions, it is
straightforward to see this for extractors.

Lemma 2.6 Let E : {0, 1}n×{0, 1}t → {0, 1}m be an (n,m, t, δ, ε)-extractor and let f : {0, 1}m →
[0, 1] be arbitrary. Let x be chosen according to any δ-source on {0, 1}n and y be chosen uniformly
at random from {0, 1}t. Then the expected value of f on the output E(x, y) differs from its true
expectation Ef by at most ε.

Proof. The main point is that f can be expressed as a convex combination of functions gi :
{0, 1}m → {0, 1}; that is, f =

∑
i λigi, λi ≥ 0,

∑
i λi = 1. To see this, let z1, . . . , z2m be the points

of {0, 1}m ordered so that f(z1) ≤ f(z2) ≤ . . . ≤ f(z2m). We can then define gi(zj) = 1 if j ≥ i,
and 0 otherwise. Letting λi = f(zi) − f(zi−1), with the convention that f(z0) = 0, we get that
f(z) =

∑2m

i=1 λigi(z).
Let Z be the random variable equal to the output of the extractor when the inputs are chosen

as required by the lemma. Let U be uniformly random on {0, 1}m. Since E is an extractor,
|Egi(Z)−Egi(U)| ≤ ε. We then use the triangle inequality:

|Ef(Z)−Ef(U)| = |
∑
i

λi(Egi(Z)−Egi(U))|

≤
∑
i

λi|Egi(Z)−Egi(U)|

≤
∑
i

λiε = ε.

�

We now show that good extractors are good oblivious samplers:

Proposition 2.7 If there is an efficient (n,m, t, δ, ε)-extractor, then there is an efficiently con-
structible (2n, 2m, 2t, 21+δn, ε)-approximating disperser, and hence an efficient (n,m, 2t, 21−(1−δ)n, ε)-
oblivious sampler.

Proof. The disperser is defined on independent sets V = {0, 1}n and W = {0, 1}m. For each
y ∈ {0, 1}t, x ∈ V is connected with E(x, y). Let f : W → [0, 1] be arbitrary, and let B be the
set of bad vertices (according to Definition 2.1) in V . Assume without loss of generality that the
set B′ = {v ∈ V : 1

d

∑
w∈Γ(v) f(w) > Ef + ε} is at least half the size of B. Since the weak source

which outputs a uniformly random element from B′ violates the conclusion of Lemma 2.6 for f ,
|B′| < 2δn and |B| ≤ 2|B′| < 21+δn. �

Next we show that an approximating disperser yields an extractor:

Proposition 2.8 If there is an efficiently constructible (2n, 2m, 2t, 2δn, ε)-approximating disperser,
then for any δ′ > δ there is an efficient (n,m, t, δ′, ε+ 2(δ−δ′)n)-extractor.

Proof. Define the extractor E in an analogous way to Proposition 2.7. Suppose D is an arbitrary
δ′-source on {0, 1}n and S is an arbitrary subset of {0, 1}m, say of size p2m. By the definition
of approximating disperser, less than 2δn strings in {0, 1}n are bad with respect to the indicator
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function for S, and all good strings provide an estimate of p that is within ε. Since each bad string
has probability at most 2−δ

′n according to D,

|Pr[E(x, y) ∈ S]− p| ≤ 2δn · 2−δ′n + ε,

as required. �

This equivalence allows us to show that oblivious samplers good only for {0, 1} functions (called
oblivious {0, 1}-samplers) are also good for general [0, 1] functions:

Proposition 2.9 If there is an efficient (n,m, d, γ, ε)-oblivious {0, 1}-sampler, then there is an
efficient (n,m, d, 2γ/ε, 2ε)-oblivious sampler.

Proof. Suppose there is an efficient (n,m, d, γ, ε)-oblivious {0, 1}-sampler. Then analogously to
Lemma 2.3, there is an efficient (2n, 2m, d, γ2n, ε)-approximating {0, 1}-disperser. We set 2(δ−δ′)n =
ε and use 2δn = γ2n to get δ′n = log(γ2n/ε). Note that the proof of Proposition 2.8 only requires an
approximating {0, 1}-disperser. This implies that there is an efficient (n,m, log d, (log(γ2n/ε))/n, 2ε)
{0, 1}-extractor. By Lemma 2.6, a {0, 1}-extractor is an extractor with the same parameters. Thus,
by Proposition 2.7, there is an efficient (n,m, d, 2γ/ε, 2ε)-oblivious sampler. �

2.3 Strong Versions

It is sometimes useful to have a somewhat stronger form of oblivious sampler, which corresponds
to a stronger form of approximating disperser and extractor.

Definition 2.10 A strong (n,m, d, γ, ε)-oblivious sampler is a deterministic algorithm which on
input a uniformly random n-bit string outputs a sequence of points z1, . . . , zd ∈ {0, 1}m such that:
for any collection of d functions f1, . . . , fd : {0, 1}m → [0, 1],

Pr
[ ∣∣∣1d∑d

i=1(fi(zi)−Efi)
∣∣∣ ≤ ε ] ≥ 1− γ.

Definition 2.11 A strong (N,M, d,K, ε)-approximating disperser is a bipartite multigraph on in-
dependent sets V and W , such that |V | = N , |W | = M , every node v ∈ V has d ordered neighbors
Γ1(v), . . . ,Γd(v), and the following holds. Let fi : W → [0, 1], i = 1, . . . , d be arbitrary, and call
v ∈ V bad if |1d

∑d
i=1(fi(Γi(v)−Efi)| > ε. Then the number of bad vertices in V is at most K.

Analogous to Lemma 2.3, we have:

Lemma 2.12 There is an efficient strong (n,m, d, γ, ε)-oblivious sampler iff there is an efficiently
constructible strong (2n, 2m, d, γ2n, ε)-approximating disperser.

We can also define a strong form of extractor (which is the way it was originally defined), which
is nearly equivalent to a strong oblivious sampler:

Definition 2.13 E : {0, 1}n×{0, 1}t → {0, 1}m is a strong (n,m, t, δ, ε)-extractor if, for x chosen
according to any δ-source on {0, 1}n and y chosen uniformly at random from {0, 1}t, E(x, y) ◦ y is
ε-quasi-random (where ◦ denotes concatenation).

A similar proof to Lemma 2.6 yields
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Lemma 2.14 Let E : {0, 1}n × {0, 1}t → {0, 1}m be a strong (n,m, t, δ, ε)-extractor and let f :
{0, 1}m × {0, 1}t → [0, 1] be arbitrary. Let x be chosen according to any δ-source on {0, 1}n and
y be chosen uniformly at random from {0, 1}t. Then the expected value of f on E(x, y) ◦ y differs
from its true expectation Ef by at most ε.

Similar proofs to Propositions 2.7 and 2.8 yield the following corresponding propositions:

Proposition 2.15 If there is an efficient strong (n,m, t, δ, ε)-extractor, then there is an efficiently
constructible strong (2n, 2m, 2t, 21+δn, ε)-approximating disperser, and hence an efficient strong
(n,m, 2t, 21−(1−δ)n, ε)-oblivious sampler.

Proof. The disperser is defined on independent sets V = {0, 1}n and W = {0, 1}m. For each
y ∈ {0, 1}t, x ∈ V is connected with E(x, y). Let fi : W → [0, 1], i = 1, . . . , d, be arbitrary, and let
f(x, i) = fi(x), so Ef = 1

d

∑d
i=1Efi. Let B be the set of bad vertices (according to Definition 2.11)

in V . Assume without loss of generality that the set B′ = {v ∈ V : 1
d

∑d
i=1fi(Γi(v) > Ef + ε} is at

least half the size of B. If x is chosen according to a δ-source which outputs a uniformly random
element from B′ and i is chosen uniformly at random, then the expectation of f is the average
of quantities greater than Ef + ε, and hence is greater than Ef + ε. Therefore, by Lemma 2.14,
|B′| < 2δn and |B| ≤ 2|B′| < 21+δn. �

Proposition 2.16 If there is an efficiently constructible strong (2n, 2m, 2t, 2δn, ε)-approximating
disperser, then for any δ′ > δ there is an efficient strong (n,m, t, δ′, ε+ 2(δ−δ′)n)-extractor.

Proof. Similar to Proposition 2.8. �

2.4 Extractor View Helps

We have already seen one example where the extractor view of samplers helped: that samplers
good for {0, 1}-functions are also (almost as) good for [0, 1]-functions. Here we give an example of
how a surprising proposition about samplers becomes more intuitive when viewed from the point of
view of extractors. The proposition about samplers says that if there is an efficient sampler using
a constant times the optimal number of random bits, then there is one using the optimal number
times an arbitrary constant factor bigger than one. The price we pay is a larger polynomial for the
number of samples:

Proposition 2.17 If there is an efficient (O(m + log γ−1),m, d, γ, ε)-oblivious sampler, then for
any α > 0 there is an efficient ((1 + α)(m+ log γ−1),m, dO(1), γ, ε)-oblivious sampler.

Note that in such a statement, and in similar statements throughout the paper, we refer to one
sampler, but we really mean a family of samplers.

The corresponding proposition about extractors is:

Proposition 2.18 [WZ95] If there is an efficient (n,Ω(δn), t, δ, ε)-extractor E, then for any α > 0
there is an efficient (n, (δ − α)n,O(t), δ, ε)-extractor E′.

The intuition for the proof, given in [WZ95], is as follows. When we extract randomness from
x using E and truly random bits y1, even conditional on the output bits E(x, y1) there is a lot of
randomness left in x. There were δn bits of randomness to begin with, and the length of E(x, y) is
only βn for some β < δ, so there should be (δ − β)n bits of randomness left. We can extract the
remaining randomness by using E again with independent truly random bits y2. This time E is
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designed to extract from a (δ − β)-source. Continuing in this manner, we get E′(x, y1 ◦ . . . ◦ ya) =
E(x, y1) ◦ . . . ◦ E(x, ya) for an appropriate constant a, where ◦ denotes concatenation. The proof
shows that this intuition is close enough to the truth.

When we translate this proof to the language of samplers, we see that we build a new sampler
by increasing the length of the sample points, rather than decreasing the number of random bits.
Thus, we are exploiting the fact that we have a family of samplers, and not just one sampler.

In fact, we exploit this in the extractor proof above as well, although to a lesser extent. The
extractor E′ will have error O(ε), but by starting with an extractor E with error a small enough
constant fraction of ε, we can make E′ have error ε.

2.5 A Non-Explicit Construction

Another instance where the extractor view helps is in a non-explicit construction. We show
that there exists samplers with better parameters than achieved in [CEG95] by first showing the
existence of the corresponding extractor.

Proposition 2.19 Let positive n, m, δ and ε be given, and set k = δn. Suppose d ≥ (2 ln 2)(2m−k+
n− k + 3)/ε2. Then there is an (n,m, t = log d, δ, ε)-extractor.

Note that we can take k = m, in which case d = O(n/ε2) and t = log n+ 2 log ε−1 +O(1).

Proof. We show that picking the outputs of the extractor uniformly at random from {0, 1}t yields
an extractor of the above quality with high probability. It may be easier to visualize the extractor
as a bipartite graph on {0, 1}n × {0, 1}m in the natural way. For each vertex in {0, 1}n, we pick d
neighbors from {0, 1}m uniformly at random.

Note that since any δ-source is a convex combination of flat δ-sources, where a flat δ-source
outputs a uniformly random element from a set of size 2k, it suffices to show the extractor property
for flat sources. Thus, the random graph above is not an extractor if and only if there exists a set
B ⊆ {0, 1}n of size 2k and a set S ⊆ {0, 1}m such that the following holds. If x is chosen uniformly
at random from B, and z is a uniformly random neighbor of x, then |Pr[z ∈ S]−|S|2−m| > ε. The
probability q that such B and S exists can be upper bounded by summing over all B and S:

q ≤
(

2n

2k

)
22m(2e−ε

22kd/2).

Now (
2n

2k

)
≤ 22nH(2k−n) ≤ 2(n−k+2)2k ,

where we use H(p) ≤ p log(4/p), where H is the binary entropy function. This gives

q ≤ 21+2m+2k(n−k+2−(log e)ε2d/2).

By the bound on d,
n− k + 2− (log e)ε2d/2 ≤ −(2m−k + 1).

Thus
q ≤ 21+2m−2k(2m−k+1) < 1,

as required. �

This yields the following sampler:
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Proposition 2.20 Let 0 < ε, γ < 1 and integers d,m ≥ 2 be given, such that d0 = d− 2(ln 2)(4 +
log γ−1)/ε2 is positive. Let n ≥ m + (log γ−1) + 2 − log(ε2d0). Then there exists an (n,m, d, γ, ε)
oblivious sampler.

Note that for d ≥ 2(log γ−1)/ε2 and larger than some constant, d0 ≥ d/4 and we can take the
number of random bits to be n = m+ (log γ−1) + 4− log(ε2d).

Proof. We use Proposition 2.7. By using k = n− 1− log γ−1, we get that d ≥ (2 ln 2)(2m−k + n−
k + 3)/ε2 is equivalent to d0 ≥ 2m+2−n(ln 2)/(γε2), which in turn is equivalent to the bound on n
in the statement of the proposition. Thus Proposition 2.19 gives the proposition. �

3 The Extractor and Sampler Construction

As mentioned earlier, we construct a good sampler by constructing a good extractor, and then
using Proposition 2.7. In fact, our extractor is a strong extractor, and we can use Proposition 2.15
to get a strong oblivious sampler.

This section is the most technical. The reader willing to accept Theorems 3.14, 3.16, and 3.17
should skip to the next section.

3.1 Preliminaries

To ease readability we assume, when necessary, that various quantities are integers. It is not
difficult to see that this does not affect our analysis. The notation log denotes the logarithm to the
base 2.

A convenient fact to remember is that distance between distributions cannot be created out of
nowhere. In particular if f : S → T is any function and D1, D2 are distributions on S then ‖f(D1)−
f(D2)‖ ≤ ‖D1 −D2‖. Here f(D) denotes the distribution of f(X), where X has distribution D.
Also if E1 and E2 are distributions on Y then ‖D1 × E1 −D2 × E2‖ ≤ ‖D1 −D2‖+ ‖E1 − E2‖.

Definition 3.1 A distribution D on the space {0, 1}l1×{0, 1}l2×· · ·×{0, 1}lk is called a block-wise
δ-source if, for 1 ≤ i ≤ k and for all values x1 ∈ {0, 1}l1 , . . . , xi ∈ {0, 1}li,

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 2−δli ,

where the vector of random variables X1 . . . Xk is chosen according to distribution D. A block-wise
δ-source is the same as the PRB-source of [CG88] except that here the block length is allowed to
vary.

3.2 The Construction

In this section, we use the word “efficient” to mean in NC. The reader is advised to ignore the
lower bounds on δ and ε on the first reading, and think of δ as a constant and ε = 1/poly(n).

Our construction uses and improves the construction in [SZ94]. The following is from the final
version of [SZ94]:

Theorem 3.2 [SZ94] There is a constant c such that for any β > 0 and any parameters δ = δ(n)
and ε = ε(n) with δ ≥ n−1/2 log∗ n and ε ≥ exp(−δlog∗ nn1−β), there is an (n,m = δlog∗ nn, t =
c(log n+ log ε−1), δ, ε)-extractor which runs in NC.
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Remark 3.3 We can relax the condition on ε slightly by using random walks on expanders: we
may then take ε ≥ exp(−δ2 log∗ nn). However, this is usually not in the range of interest.

Thus, our goal is to improve the output length m from δlog∗ n to (δ − α)n while not increasing
t by more than a constant factor. In fact, by using Proposition 2.18, the tool used in [WZ95], it
suffices to improve the output length to Ω(n). Before we outline our construction, we set up the
suitable framework, and outline the construction in [NZ96], which uses ideas from [Zuc90, Zuc96].
As in [NZ96], our extractor is composed of a block-wise converter and a block-wise extractor, defined
explicitly in [SZ94].

Definition 3.4 E : {0, 1}n × {0, 1}t → {0, 1}l1+...+ls is an (n, (l1, . . . , ls), t, δ, δ
′, ε) block-wise con-

verter if, for x chosen from a δ-source on {0, 1}n and y uniformly from {0, 1}t, E(x, y) is within ε
of some block-wise δ′-source with block lengths l1, . . . , ls.

Definition 3.5 E : {0, 1}l1+···+ls×{0, 1}t → {0, 1}m is an ((l1, . . . , ls),m, t, δ, ε) block-wise extrac-
tor if, for x chosen from a block-wise δ-source with block lengths l1, l2, . . . , ls and y uniformly from
{0, 1}t, E(x, y) is ε-quasi-random on {0, 1}m.

The following trivial lemma, implicit in [NZ96] and explicit in [SZ94], states that together these
constitute an extractor:

Lemma 3.6 Given an efficient (n, (l1, . . . , ls), t1, δ, δ
′, ε1) block-wise converter and an efficient

((l1, . . . , ls),m, t2, δ
′, ε2) block-wise extractor, we can construct an efficient (n,m, t1 + t2, δ, ε1 + ε2)-

extractor.
We always use the same block-wise converter, but recursively build stronger block-wise ex-

tractors to get our new extractor. Our block-wise converter is from [NZ96], which uses k-wise
independence. Actually, the parameters here come from the improved analysis in the final version
of [SZ94] (or the algorithm in [NZ96] using random walks on expanders).

Lemma 3.7 [NZ96] There is a constant c such that the following holds. Let δ ≤ 1/2, n, and ni,
1 ≤ i ≤ k, be such that

∑k
i=1 ni ≤ δn/4, and let δ′ = δ/c log δ−1. Then for any ε there is an

efficient (n, (n1, n2, . . . , nk), ck(log n+ log ε−1), δ, δ′, ε) block-wise converter.
The block-wise extractor in [NZ96] uses a recursive construction of hash functions. It starts

with a (weak) extractor built from hash functions: E(x, h) = h(x) ◦ h. The Leftover Hash Lemma
of [ILL89] implies that this is an extractor. A block-wise extractor is then constructed as follows.
The block-wise source has blocks with geometrically-decreasing lengths n1 > n2 > . . . > nk. A
small number tk of truly random bits are used to extract mk bits from the block of length nk.
These mk bits are then used as the tk−1 truly random bits to extract mk−1 bits from the block of
length nk−1. We continue in this manner until we output m1 bits from the block of length n1. The
proof in [NZ96] shows that this procedure works (and it makes use of the fact that the procedure
starts with the last block and works backwards).

We will use the same recursive construction, except we replace the above weak extractor by an
arbitrary extractor. This idea was used in [SZ94], although the following lemma was not stated
explicitly, nor exploited in full. The reader should think of mi = ti−1 below; we state it as mi ≥ ti−1

as it is sometimes convenient not to worry about making them exactly equal, and then we can ignore
the extra bits.
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Lemma 3.8 Let δ, ni, ti,mi, εi, 1 ≤ i ≤ k, be given such that mi ≥ ti−1, 2 ≤ i ≤ k and there are ef-
ficient (ni,mi, ti, δ, εi)-extractors Ei, 1 ≤ i ≤ k. Then there is an efficient ((n1, n2, . . . , nk),m1, tk, δ,

∑k
i=1 εi)

block-wise extractor E.

Proof. Let (X1, X2, . . . , Xk) be the output blocks from a block-wise δ-source with block lengths
n1, n2, . . . , nk. Let Y be the truly random input. The extractor E computes Zk = Y and Zi−1 =
last ti−1 bits of Ei(Xi, Zi) for i = k down to 1 (we interpret t0 = m1). We claim that Z0 is

quasi-random to within
∑k

i=1 εi. The proof of this, by induction, is basically the same as the proof
in [NZ96] for the special case of this lemma when the Ei correspond to the weak hash extractors
described above. We include the proof here for completeness.

We will prove by induction from i = k down to i = 0 the following claim, which clearly implies
the lemma.

Claim: For any sequence of values x1 . . . xi, the distribution of Zi conditioned on X1 = x1, . . . , Xi =
xi, is quasi-random to within

∑k
j=i+1 εj .

This claim is clearly true for i = k. Now suppose it is true for i; we prove it for i− 1. Fix the
conditioning X1 = x1, . . . , Xi−1 = xi−1, and let Di denote the induced distribution on Xi. Since,
by the induction hypothesis, for every xi, the induced distribution on Zi is quasi-random, we have
that the induced distribution on (Xi, Zi) is within

∑k
j=i+1 εj of the distribution Di × Ui, where Ui

is the uniform distribution on {0, 1}ti .
Thus, the distribution of Zi−1 is within

∑k
j=i+1 εj of the distribution obtained by picking xi

according to Di, and Zi independently and uniformly at random in {0, 1}ti . By the definition of
extractor, this second distribution is quasi-random to within εi. The claim follows. �

Using Lemma 3.6 to combine the block-wise converter of Lemma 3.7 and the block-wise extractor
of Lemma 3.8 gives an extractor:

Lemma 3.9 Let n, t, δ ≤ 1/2, ε and ni,mi, ti, εi, 1 ≤ i ≤ k, be given such that mi ≥ ti−1,
2 ≤ i ≤ k and 2

∑k
i=1 εi ≤ ε. Define δ′ as in Lemma 3.7. Further suppose that there are effi-

cient (ni,mi, ti, δ
′, εi)-extractors Ei, 1 ≤ i ≤ k, and

∑k
i=1 ni ≤ δn/4. Then there is an efficient

(n,m1, ck(log n+ log ε−1) + tk, δ, ε)-extractor, where c is from Lemma 3.7.
This lemma will be the key to our construction. For the following discussion assume δ is a

constant and ε = 1/poly(n). The idea is to choose the extractors E1, . . . , Ek so that tk = O(log n),
m1 = Ω(n), and k = O(1), while ensuring mi ≥ ti−1 (the reader can think of mi = ti−1).

A first attempt would be to use the (ni,Ω(ni), O(log2 ni), δ, 1/poly(ni))-extractors in [NZ96],
with varying ni, as follows. Setting n1 = δn/8, we let E1 be a (δn/8,m1 = Ω(n), t1 = c log2 n, δ′, 1/poly(n))-
extractor. We now wish to choose E2 so that t2 = O(log n) and m2 ≥ t1 = c log2 n. We can
do this by choosing n2 small enough: n2 = 2

√
logn. That is, for this n2 we take E2 to be an

(n2,m2 = Ω(n2) ≥ t1, t2 = O(log2 n2) = O(log n), δ′, 1/poly(n2))-extractor. Lemma 3.9 then yields
an (n,Ω(n), O(log n), δ, 1/poly(n2))-extractor. This seems to be what we want, except that the
error is 1/poly(n2) rather than 1/poly(n). Indeed, this is enough to get the simulation of BPP
using a linear number of bits from a δ-source, for constant δ.

Instead of building E2 from the original [NZ96] extractor, we use the [SZ94] extractor, given in
Theorem 3.2. We can now take n2 = n1 = δn/8. Thus t2 = O(log n) and m2 = δlog∗ nn, which is
bigger than t1 = O(log2 n). This gives our result, although in some sense it seems wasteful because
m2 � t1. Therefore, for E1, we use a somewhat more appropriate extractor than the [NZ96]
extractor, in order to improve the dependence on δ. This more appropriate extractor is built from
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the basic [SZ94] extractor given below, which is similar to the [NZ96] extractor except it has much
better dependence on δ:

Theorem 3.10 [SZ94] There is a constant c such that for any β > 0 and any parameters δ =
δ(n) and ε = ε(n) with δ ≤ 1/2 and ε ≥ exp(−δ2n1−β), there is an (n,m = δ2n/c log δ−1, t =
c log n(log n+ log ε−1), δ, ε)-extractor which runs in NC.

We also make use of the following lemma in [WZ95], which is the general, more precise statement
corresponding to Proposition 2.18.

Proposition 3.11 [WZ95] Fix positive integers n and k. Suppose that for each δ ∈ [η, 1] we
are given an efficient (n,m(δ), t(δ), δ, ε(δ))-extractor, where t and ε are non-increasing functions
of δ. Let f(δ) = m(δ)/(δn), and suppose f is non-decreasing. Let a = ln(δ/η)/f(η) or, if f
grows at least linearly (i.e. f(cδ) ≥ cf(δ)), let a = 2/f(η). Then we can construct an efficient
(n, (δ − η)n− k, a · t(η), δ, a(ε(η) + 2−k))-extractor.

We now choose η = δ/4 and k = δn/4, and apply Proposition 3.11 to Theorem 3.10. This yields
an extractor equivalent to the [NZ96] extractor for constant δ, but better than that for δ = o(1).

Lemma 3.12 There is a constant c such that for any β > 0 and any parameters δ = δ(n) and
ε = ε(n) with δ ≤ 1/2 and ε ≥ exp(−δ2n1−β), there is an (n,m = δn/2, t = c log n log δ−1(log n +
log ε−1)/δ, δ, ε)-extractor which runs in NC.

This gives:

Lemma 3.13 There is a constant c such that for δ = δ(n) and ε = ε(n) with n−1/2 log∗ n ≤ δ ≤ 1/2
and ε ≥ exp(−δlog∗ nn1−β), there is an (n,m = δ2n/c log δ−1, t = c(log n+ log ε−1), δ, ε)-extractor
which runs in NC.

Proof. Apply Lemma 3.9 with k = 2 using the extractors E1 from Lemma 3.12 and E2 from
Theorem 3.2, with n1 = n2 = δn/8. Note that t1 = O(log n1 log(δ′)−1(log n+ log ε−1)/δ′ is smaller
than m2 = (δ′)log∗ n2n2. Thus Lemma 3.9 applies and the output is m1 = δ′n1/2 = Θ(δ2n/ log δ−1).
�

We now use Proposition 3.11 to increase the output length m at the expense of t. In the
following theorem we think of α and δ as constants, although we state it more generally.

Theorem 3.14 There is a constant c such that for any β > 0 and any parameters α = α(n) ≤
1/2, δ = δ(n) ≤ 1, and ε = ε(n), with n−1/(2 log∗ n) ≤ α < δ and ε ≥ exp(−αlog∗ nn1−β),
there is an (n,m = (δ − α)n, t = cα(log n+ log ε−1), δ, ε)-extractor which runs in NC, where cα =
c(logα−1)/α.

Proof. Apply Proposition 3.11 to Lemma 3.13 to increase the output length. �

In fact, if we remove part of the output, our extractors are strong extractors. This is because
for the block-wise extractors using hash functions, the input hash function h is part of the out-
put. Therefore, if we remove h from the output, then we will have a strong version of block-wise
extractor. Furthermore, the block-wise converters and extractors of Lemma 3.7, Theorem 3.2, and
Proposition 3.11 hold for strong extractors. We therefore have:

Theorem 3.15 There is a constant c such that for any β > 0 and any parameters α = α(n) ≤
1/2, δ = δ(n) ≤ 1, and ε = ε(n), with n−1/(2 log∗ n) ≤ α < δ and ε ≥ exp(−αlog∗ nn1−β), there
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is a strong (n,m = (δ − α)n, t = cα(log n+ log ε−1), δ, ε)-extractor which runs in NC, where cα =
c(logα−1)/α.

This yields a new disperser:

Theorem 3.16 There is a constant c such that for any β > 0 and any parameters δ = δ(N),
ε = ε(N), and α = α(N) with (logN)−1/(2 log∗N) ≤ α < δ ≤ 1/2 and ε ≥ exp(−αlog∗N (logN)1−β),
there is an efficiently constructible strong (N,M = N δ−α, d = ((logN)/ε)cα ,K = N δ, ε)-approximating
disperser, where cα = c(logα−1)/α.

Proof. Use Proposition 2.15 and Theorem 3.15. Doing this directly would give an extra factor of
2 in front of the N δ; by changing the definition of δ we can hide this factor of 2 in the constant c.
�

This, in turn, yields a sampler:

Theorem 3.17 There is a constant c such that for any β > 0 and any parameters γ = γ(m),
ε = ε(m), and α = α(m) with m−1/2 log∗m ≤ α ≤ 1/2 and ε ≥ exp(−αlog∗mm1−β), there exists a
strong (n,m, d, γ, ε)-oblivious sampler which runs in NC and uses only n = (1 + α)(m + log γ−1)
random bits and outputs d = ((m+ log γ−1)/ε)cα sample points, where cα = c(logα−1)/α.

Proof. Assume α is small enough so that (1 + α)(1 − α/2) ≥ 1. Replacing α by α/2 and
applying Theorem 3.16, there is an efficiently constructible strong (N,N δ−α/2, ((logN)/ε)cα , N δ, ε)-
approximating disperser, where cα = c(logα−1)/α (note that this cα is slightly different than the
one in Theorem 3.16, because of the change from α to α/2). Let n = (1 +α)(m+ log γ−1), N = 2n,
and δ = 1− (log γ−1)/n, so N δ = γN . Then N δ−α/2 = γN ·N−α/2 = γ(2m/γ)(1+α)(1−α/2) ≥ γ2m.
Now Proposition 2.12 yields the theorem. �

Remark 3.18 By Remark 3.3, we can relax the lower bound on ε in the above theorems by using
random walks on expanders. We need only assume ε ≥ exp(−α2 log∗ nn) in Theorems 3.14 and 3.15,
ε ≥ exp(−α2 log∗N logN) in Theorem 3.16, and ε ≥ exp(−α2 log∗mm) in Theorem 3.17.

4 Interactive Proofs with Few Random Bits

To obtain our theorem about interactive proofs, we need only the following theorem from [BR94]:

Theorem 4.1 [BR94] Suppose we have a (AM)2gA (g = g(n)) proof system for L in which Arthur’s
messages are of length l = l(n) and Merlin’s messages are of length q = q(n), and suppose we have
a strong (r = r(n), l, s = s(n), η2−q−1, η)-oblivious sampler for η = η(n) = 1/6g(n). Then we can
construct a (AM)gA proof system for L in which Arthur uses only O(r + log n) random bits and
Merlin’s messages are of length O(sq).

As a corollary to Theorem 3.17, we deduce

Theorem 4.2 Suppose we are given a 2g(n) round AM proof system for L, where in each round
Arthur uses l(n) random bits and Merlin responds with a q(n) bit string. Then we can construct a
g(n) round AM proof system for L where in each round Arthur uses only O(l(n) + q(n)) random
bits (and Merlin’s response remains of polynomial length).
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5 Constructive Leader Election

Recall that in the leader election problem, there are M players and at most βM dishonest
players, β < 1/2 a constant. All communication is by broadcast and hence public. That is, each
player knows the sender and content of each message. The goal is to elect a leader such that an
honest player is selected with probability bounded away from 0. The dishonest players may cheat,
i.e. not follow protocol and share information, in their attempt to elect a dishonest player.

A protocol proceeds in rounds. In each round a player broadcasts a message. Ideally, the
messages would be transmitted in parallel. However, in a distributed system some players may
receive messages before others, and dishonest players may wait until they receive other messages
before transmitting their own. The players are synchronized between rounds: all messages sent in
round i are received before any are sent in round i+ 1.

As in many leader election protocols, the protocol of [ORV94] works by forming committees.
Each committee is a multi-set of players, and each player can be in several committees. One of
these committees is selected by some protocol, and then recursively the committee selects a leader
from among its own members.

Each recursive level of the [ORV94] protocol is composed of O(logM) rounds, where in each
round some of the committees are eliminated. If there are N ′ committees left after a round, then
in the next round each of the M players eliminates N ′/M committees at random (of course, the
dishonest players may not eliminate their committees at random). The recursive layer ends the
first time there are less than 2M committees left (the choice of 2M is designed to minimize the
impact of round-off errors).3 Then an arbitrary committee from the remaining ones, say the lowest
numbered one, is chosen to recursively select a leader.

We now analyze the behavior of one recursive level. Let ε < 1/2−β be given. Call a committee
dangerous if it has more than β + ε fraction of dishonest players. The proof of correctness in
[ORV94] proceeds by showing that with high probability, a dangerous committee is not selected.

Our modification of the [ORV94] protocol is to select the committees differently. We will use a
disperser to select the committees. We also simplify their analysis via the following lemma:

Lemma 5.1 Let there be M players and N committees. Suppose there is a p > 0 such that

1. No more than half the committees are eliminated in any round.

2. For each round i and remaining committee C, conditional on previous rounds,
Pr[C is eliminated in round i] ≥ p.

3. At most Np/2 of the committees are dangerous.

4. N ≥ (2M)2/p.

Then, with probability greater than 1−1/M , the protocol ends after (lnN)/p rounds and a dangerous
committee is not selected.

Proof. We use ideas from [ORV94]. Let s = log N
2M . By the first assumption, the number of

committees left after s rounds is at least 2−sN = 2M , so the protocol has not yet terminated.

3Note that our use of M for the number of players and N for the number of committees is the opposite of [ORV94];
however, this will correspond with the letters we use for dispersers.

16



Note that the first two assumptions of the lemma imply that p ≤ 1/2. Thus the fourth assumption
implies that N ≥ (2M)4 and s ≥ logN3/4 = 3

4(log e) lnN > lnN .
From the second assumption of the lemma, the expected number of dangerous committees

surviving after s rounds is at most

Np/2(1− p)s < Np/2e−ps < Np/2N−p = N−p/2 < 1/(2M).

Then, by Markov’s inequality, the probability that there exists a dangerous committee after s
rounds is less than 1/(2M). As the protocol lasts at least s rounds, the probability of the protocol
selecting a dangerous committee is less than 1/(2M).

Similarly, the expected number of committees left after s′ = (lnN)/p rounds is at most

N(1− p)s′ < Ne−ps
′

= 1.

Since the protocol ends when there are fewer than 2M committees left, the probability that the
protocol has not ended after s′ rounds is less than 1/(2M). Adding the two probabilities gives the
lemma. �

We now modify the protocol of [ORV94] to achieve the first two preconditions of the lemma
where each player uses at most logN random bits per round. Number the N ′ remaining committees
0, 1, 2, . . . , N ′ − 1. Each player then picks a uniformly random non-negative integer r less than N ′,
and eliminates committees r, r + 1, r + 2, . . . , r − 1 +N ′/(2M), where the committee numbers are
viewed modulo N ′.

The first condition is easily seen to be satisfied. The probability that a committee does not get
eliminated is (1− 1/(2M))(1−β)M < e−1/4, thus satisfying the second condition for p = 1− e−1/4 >
1/5.

To achieve the third and fourth preconditions of the lemma, we use the (N,M = Np/4, (logN)O(1), Np/2, ε)-
approximating disperser given by Theorem 3.16. The M independent vertices represent the players,
and the N independent vertices represent committees. A committee is connected to the players
that it contains. By the definition of approximating disperser there are at most Np/2 dangerous
committees.

This allows us to prove:

Theorem 5.2 For any constant β < 1/2 there is an O(logM) round leader election protocol that
is β-immune, where each player transmits only logM bits per round.

We remark that there is no need for the players to transmit logN = c logM bits per round:
they can transmit logM bits per round if we increase the number of rounds by a factor of c.

Proof. After s = O(logM) rounds the above protocol reduces the problem to one of size
(logM)O(1). As suggested in [ORV94], we then recurse twice more, and are left with a problem
of size o(log logM). We can then use the non-constructive sequential protocol of [AN93], proved
optimal by [BN], which is constructive and fast enough for such a small problem size. �

We remark that in [ORV94], the committees had size O(logM), so their protocol had only two
levels of recursion, whereas we have three.
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6 Open Questions

One open question is to improve the number of samples. Is there an oblivious sampler that
simultaneously uses a constant times optimal number of random bits and constant times opti-
mal number of sample points? A non-oblivious sampler with these properties was constructed in
[BGG93].

Another open question is whether the number of random bits in the sampler can be improved
to m+ log γ−1, without any constant. This would correspond to constructing an extractor that
extracted all δn bits of randomness. Such an improvement would result in strong improvements in
the expanders constructed in [WZ95] and in the applications there. Ta-Shma [Ta-96] can extract
all the randomness by adding polylog truly random bits, which amounts to a quasi-polynomial
number of samples.

Indeed, Ta-Shma’s extractor works for any amount of entropy δn. This brings up another
important extractor question: is there an extractor which adds O(log n) truly random bits to a
δ-source with δn = nβ and outputs nβ

′
bits, where 0 < β′ ≤ β < 1? Saks, Srinivasan, and Zhou

[SSZ95] achieved the corresponding result for RP. Ta-Shma can almost construct the extractor, but
is off by a factor of a logarithm iterated any constant number of times.

For leader election protocols, the natural open problem is whether similar results can be achieved
for a protocol using o(logM) rounds. Perhaps an easier question is to achieve similar results with
an O(logM) round protocol where each player broadcasts 1 bit per round, and not logM .

Finally, it would be interesting to find more applications of extractors.
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