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Abstract. We give an efficient algorithm to extract randomness from a very weak random
source using a small additional number t of truly random bits. Our work extends that of Nisan and
Zuckerman [J. Comput. System Sci., 52 (1996), pp. 43–52] in that t remains small even if the entropy
rate is well below constant. A key application of this is in running randomized algorithms using such
a very weak source of randomness. For any fixed γ > 0, we show how to simulate RP algorithms
in time nO(log n) using the output of a δ-source with min-entropy Rγ . Such a weak random source
is asked once for R bits; it outputs an R-bit string according to any probability distribution that
places probability at most 2−Rγ

on each string. If γ > 1/2, our simulation also works for BPP; for

γ > 1 − 1/(k + 1), our simulation takes time nO(log(k) n) (log(k) is the logarithm iterated k times).
We also give a polynomial-time BPP simulation using Chor–Goldreich sources of min-entropy RΩ(1),
which is optimal. We present applications to time-space tradeoffs, expander constructions, and to
the hardness of approximation. Of independent interest is our randomness-efficient Leftover Hash
Lemma, a key tool for extracting randomness from weak random sources.
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1. Introduction. Randomness plays a vital role in almost all areas of computer
science, including simulations, algorithms, network constructions, cryptography, and
distributed algorithms. In practice, programs get their “random” bits by using pseudo-
random number generators. Yet even in practice there are reports of algorithms giving
quite different results under different pseudorandom generators; see, e.g., [FLW] for
such reports on Monte-Carlo simulations, and [Hsu, HRD] for the deviant performance
of some RNC algorithms for graph problems.

Other approaches involve using a physical source of randomness, such as a Zener
diode, or using the last digits of a real-time clock. Not only is it unclear whether
such bits will be random, but it is impossible to test them for “randomness.” We
can run certain statistical tests on the bits, but we cannot run all possible ones. It is
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therefore natural and important to ask whether randomness is just as helpful even if
the source of randomness is defective or weak. Thus we model a weak random source
as outputting bits that are slightly random but not perfectly random.

There have been two different directions taken in the study of weak random
sources. The first is an attempt to describe a weak random source arising in practice.
Thus Blum [Blu] looked at the model where bits are output by a Markov chain and
showed how to extract perfectly random bits from such a source. Santha and Vazirani
[SV] then looked at a model where the only fact known about the source is that each
bit has some randomness. More precisely, we have the following.

Definition 1.1 (see [SV]). A semirandom source with parameter α outputs bits
X1X2, . . . , XR, such that for all i ≤ R, and for all x1, . . . , xi ∈ {0, 1},

α ≤ Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1 − α.

Simulations must work for all such sources; we do not want to assume any knowl-
edge about the source, except that it is semirandom with the value of the parameter α
being known. Santha and Vazirani proved that it is impossible to extract even a single
almost-random bit from one such source (so Vazirani [Va1, Va3] used two indepen-
dent sources). In light of this result, one might give up hope of simulating randomized
algorithms with one semirandom source. Nevertheless, [VV] and [Va2] showed how to
efficiently simulate all algorithms in RP and BPP, with one semirandom source, for
any constant α > 0.

Note that these simulations use R = poly(n) bits from the semirandom source,
where n denotes the length of the input to the RP or BPP machine; we shall let n and
R denote “length of the input” and “number of bits requested,” respectively, when
discussing RP or BPP simulations in this paper.

Chor and Goldreich [CG] generalized the Santha–Vazirani model by assuming
that no sequence of l bits has too high a probability of being output. More precisely,
we have the following.

Definition 1.2 (see [CG]). A blockwise δ-source outputs bits as blocks Y1, . . . , Ys,
where Yi has length li, such that for all i, y1, . . . , yi, P r[Yi = yi|Y1 = y1, . . . , Yi−1 =
yi−1] ≤ 2−δli .1

Note that δ and the block-lengths li are assumed to be known parameters of these
sources. Later we will allow the li to vary, but for the first four sections we assume that
all li = l. A semirandom source corresponds to l = 1. For l = O(log n) and constant
δ > 0, Chor and Goldreich showed how to efficiently simulate any BPP algorithm
using one blockwise δ-source. They further showed how to obtain almost-random bits
from four independent such sources at a constant rate.

The other direction researchers have taken is natural mathematically, although
it does not appear to correspond as well to weak sources in practice. These models
are called bit-fixing models: some of the bits are perfectly random, while others are
controlled by an adversary. Cohen and Wigderson [CW] distinguish three models
based on three different adversaries: oblivious bit-fixing sources [CG+], nonoblivious
bit-fixing sources [BL, KKL], and adaptive bit-fixing sources [LLS]. Only for the first
model could researchers do something better than they could for general weak random
sources (see [CW]).

The two directions in weak random sources were united by the model of δ-sources
[Zu1, Zu2], which generalizes all the previous models.

1We modify the notation in [CG] to better conform with ours.
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Definition 1.3. For any number R of random bits requested, a δ-source outputs
an R-bit string such that no string has probability more than 2−δR of being output.

As usual, we associate a source with its distribution D. Let D(x) denote the
probability assigned to x under distribution D.

Definition 1.4. The min-entropy of a distribution D is minx{− log2 D(x) | D(x)
> 0}.

Thus, a δ-source is equivalent to a source with min-entropy at least δR. We often
go back and forth between these two terminologies.

In [Zu2], Zuckerman showed how to efficiently simulate any BPP algorithm using a
δ-source, for any fixed δ > 0. Because a δ-source is the most general model, this implies
that BPP algorithms can be simulated using any model of a source where randomness
is output at a constant rate. In light of this, what is left to do? The answer is to extend
the result for subconstant δ. From an information-theoretic viewpoint, it is necessary
for the R bits to have min-entropy only Rγ , for an arbitrary but fixed γ > 0 [CW].
(Of course, if BPP = P, then no random bits are necessary: this information-theoretic
result holds for an abstract model of BPP, where random bits are really necessary.
Such an abstract model, wherein the “witness set” W can be any sufficiently large
set, is introduced in Definition 2.3.) Can we achieve this information-theoretic lower
bound? Previously, the only weak source where this information-theoretic lower bound
could be achieved was the oblivious bit-fixing source: Cohen and Wigderson showed
how to simulate BPP even if the adversary fixes all but Rγ bits and leaves the other
bits unbiased and independent, matching the above lower bound [CW].

In this paper, we come close to our goal: we give a time nO(log n) simulation for any
RP algorithm using a δ-source with min-entropy Rγ . For γ > 1/2, our simulations
also work for BPP and approximation algorithms. Moreover, for γ > 1 − 1/(k +

1), our simulations take time nO(log(k) n), giving a polynomial-time simulation for
γ > 1 − 1/(2 log∗ n). (Here log(k) denotes the logarithm base 2, iterated k times;
i.e., log(1) x = log2 x, log(2) x = log2 log2 x, etc.) Furthermore, we give a simple
algorithm to simulate BPP and approximation algorithms using the Chor–Goldreich
blockwise δ-source, as long as there are at least Rγ blocks and the min-entropy of
the R bits is at least Rγ (i.e., δR ≥ Rγ), for any fixed γ > 0. (The second condition
may not be implied by the first condition if δl < 1.) Using l = 1, this gives a
simulation of BPP and approximation algorithms for the Santha–Vazirani source with
min-entropy Rγ . We also generalize Cohen and Wigderson’s result on oblivious bit-
fixing sources: it is not necessary for nγ bits to be perfectly independent and uniform,
but only “weakly independent” (see section 7). Our BPP simulations also work for
approximation algorithms, such as the one for approximating the volume of a convex
body [DFK].

Our BPP simulations are corollaries of something even stronger: extractor con-
structions. An extractor is an algorithm which extracts randomness from a weak
source, using a small additional number t of truly random bits. We modify the defi-
nition given in [NZ] to account for general families of sources.

Definition 1.5. Let E : {0, 1}n × {0, 1}t → {0, 1}m, and ε > 0 be a parameter.
E is called an extractor with quasi-randomness ε for a family of sources S on {0, 1}n
if, for any S ∈ S, the distribution of E(x, y) ◦ y induced by choosing x according to S
and y independently and uniformly from {0, 1}t is quasi-random (on {0, 1}m×{0, 1}t)
to within ε. In particular, when S is the class of δ-sources on {0, 1}n, E is called an
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Table 1

Min-entropy t truly random bits (N,M, d,K)-disperser
nγ for for extractor construction

γ > 0 NA (2n, 2Ω(nγ/2/ log n), nO(log n), 2n
γ
)

γ > 1/2 O(log2 n) (2n, 2n
2γ−1/ log n, nO(log n), 2n

γ
)

γ > 2/3 O((logn) log logn) (2n, 2n
3γ−2/ log3 n, nO(log log n), 2n

γ
)

γ > 1 − 1/k O((logn) log(k) n) (2n, 2n
kγ−k+1/ log2k−1 n, nO(log(k) n), 2n

γ
)

γ > 1 − 1/(2 log∗ n) O(logn) (2n, 2
√
n, nO(1), 2n

γ
)

(n,m, t, δ, ε)-extractor.2

As in [NZ], we observe that an extractor that adds t random bits yields a BPP
simulation taking time 2tpoly(n).

In the case when S is the class of δ-sources, it is often convenient to view the
extractors graph theoretically, as in [Sip, San, CW]. Namely, construct a bipartite
graph on {0, 1}n × {0, 1}m, where x ∈ {0, 1}n is adjacent to z ∈ {0, 1}m if and only
if z = E(x, y) for some y. Then any set in {0, 1}n of size at least 2δn expands almost
uniformly into {0, 1}m. In particular, it yields efficient constructions of graphs, which
are called dispersers in [CW].

Definition 1.6. An (N,M, d,K)-disperser is a bipartite graph with N nodes on
the left side, each with degree at most d, and M nodes on the right side, such that
every subset of K nodes on the left side is connected to at least M/2 nodes on the
right. By an efficient construction of a disperser, we mean that given a node on the left
side, its neighbor set can be found in poly(logN + logM + d) time deterministically.

Lemma 1.7. If there is an efficient (n,m, t, δ, ε)-extractor for ε ≤ 1/2, then there
is an efficiently constructible (2n, 2m, 2t, 2δn)-disperser.

Our RP simulation also yields a disperser, although it is not an extractor. In
Table 1 we summarize our results for δ-sources. The simulations and running times
for the five entries of the table are as follows: The first entry implies an RP simulation,
while the other four are for BPP. The respective running times are nO(log n), nO(log n),

nO(log log n), nO(log(k) n), and poly(n).
Just as extractors and dispersers for constant δ have important applications [NZ,

WZ], so, too, do our results for subconstant δ. The first application is to a relationship
between the RP=P question and time-space tradeoffs. Sipser [Sip] showed that if
certain expander graphs can be constructed efficiently, then for some ε > 0 and
any time bound t(n), either RP = P or all unary languages in DTIME(t(n)) are
accepted infinitely often in SPACE(t(n)1−ε). If we had a polynomial-time simulation
of RP using a δ-source with min-entropy Rγ for some γ < 1, we could construct his

expanders as a corollary. Because our simulations take time nO(log(k) n), we instead

show unconditionally that either RP ⊆
⋂

k DTIME(nlog(k) n) or all unary languages

in DTIME(t(n)) are accepted infinitely often in
⋂

k SPACE(t(n)1−1/ log(k) n).
Our second application is to improve the expanders constructed in [WZ], and

hence all of the applications given there. In [WZ], graphs on n nodes were constructed
such that for every pair of disjoint subsets S1 and S2 of the vertices with |S1| ≥ nδ

and |S2| ≥ nδ, there is an edge joining S1 and S2; the graphs so constructed had

2To remember the five parameters, it may be helpful to note that the first three refer to lengths
of inputs and outputs in (typically) decreasing order of length. The last two parameters refer to the
quality of the sampler.
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essentially optimal maximum degree n1−δ+o(1). These expanders were used in [WZ]
to explicitly construct

(i) a k-round sorting algorithm using n1+1/k+o(1) comparisons;

(ii) a k-round selection algorithm using n1+1/(2k−1)+o(1) comparisons;
(iii) a depth-2 superconcentrator of size n1+o(1); and
(iv) a depth-k wide-sense nonblocking generalized connector of size n1+1/k+o(1).
The reader is referred to [WZ] for the definitions and motivations for these con-

structions. All of these results are optimal to within factors of no(1). In [WZ], these

no(1) factors were 2(log n)4/5+o(1)
, improved to 2(log n)2/3+o(1)

in the final version of [WZ].

Our results further improve these no(1) factors to 2(log n)1/2+o(1)
. In addition, explicit

linear-sized n-superconcentrators of depth (logn)2/3+o(1) were presented in [WZ]; we
improve this to (logn)1/2+o(1) depth. These might seem like small improvements, given
the major improvement of simulations using δ-sources. The reasons for this are that
our extractors require nΩ(1) min-entropy from an n-bit source and that our extractors
do not extract a sufficiently good fraction of the min-entropy.

Our third application is to the hardness of approximating log logω(G), where
ω(G) is the maximum size of a clique in an input graph G. Let P̃ denote quasi-
polynomial time, ∪c>0 DTIME(2(log n)c). In [Zu2], it was shown that if NP̃ *= P̃ , then
approximating logω(G) to within any constant factor is not in P̃ . In [Zu3], a random-
ized reduction was given showing that any iterated log is hard to approximate under
a slightly stronger assumption than NP̃ *= ZPP̃ . In particular, if NP̃ *= ZPP̃ , then
approximating log logω(G) to within a constant factor is not in co− RP̃ . This used
the fact that, with high probability, certain graphs are highly expanding. Our work
allows us to deterministically construct graphs that are almost as highly expanding
as the nonexplicit constructions, thus making this last reduction deterministic, with

a slight loss of efficiency: if NP̃ *⊆ DTIME(2(log n)O(log log n)
), then approximating

log logω(G) to within any constant factor is not in P̃ .
As in [Zu1, Zu2, NZ], we achieve our results using only elementary methods; in

particular, we do not need expander graphs. Our main technical tool is a modification
of the Leftover Hash Lemma. This very useful lemma was first proved in [ILL] and
has been used extensively in simulations using δ-sources [Zu1, Zu2, NZ]. This lemma
is a pseudorandom property of hash functions. However, a drawback of the lemma is
that to hash from s bits to t bits, one needs at least s random bits. We show how
a similar lemma can be achieved using only O(log s + t) random bits. Because this
modification was so useful to us here, we believe it will be useful elsewhere, too. A
similar lemma was proved independently in [GW]; however, our proof is somewhat
simpler. One key consequence of our lemma is an improvement of the extractor of
[NZ]. That is, we show how to add a small number t of truly random bits to a δ-source
in order to extract almost-random bits; we make t much smaller than in [NZ]. By
using this with the ideas of [NZ], we get our first main extractor (see Theorem 5.7).
Section 5.5 then introduces some new techniques for using such extraction procedures
recursively; this helps improve the quality of our extractor when δ is not “too small.”

Section 2 sets up the required preliminary notions. Section 3 presents our first
technical tool, the improved Leftover Hash Lemma; section 4 shows how this new
Leftover Hash Lemma can be used to run BPP algorithms using very weak Chor–
Goldreich sources, and also serves in part as motivation for some of our techniques of
sections 5 and 6. Sections 5 and 6 contain some of our main results: simulating BPP
and RP algorithms using general weak sources with very low min-entropy. Section
7 uses the result of section 4 to generalize a result of [CW] on oblivious bit-fixing
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sources. Applications of our results are presented in section 8. Section 9 concludes
with some recent work that our work has led to, in part, and presents open questions.
In the Appendix, we show some technical details that are largely borrowed from [NZ].

2. Preliminaries. We use capital letters to denote random variables, sets, dis-
tributions, and probability spaces; lowercase letters denote other variables. We often
use a correspondence where the lowercase letter denotes an instantiation of the capital
letter, e.g., &x might be a particular input and &X the random variable being uniformly
distributed over all inputs. We ignore round-off errors, assuming when needed that
a number is an integer; it can be seen that this does not affect the validity of our
arguments. All logarithms are to base 2 unless specified otherwise.

2.1. Basic definitions.
Definition 2.1. RP is the set of languages L ⊆ {0, 1}∗ such that there is a

deterministic polynomial-time Turing machine ML(·, ·) for which

a ∈ L ⇒ Pr[ML(a, x) accepts] ≥ 1/2,

and

a *∈ L ⇒ Pr[ML(a, x) accepts] = 0,

where the probabilities are for an x chosen uniformly in {0, 1}p(|a|) for some polynomial
p = pL. BPP is the set of languages L ⊆ {0, 1}∗ such that there is a deterministic
polynomial-time Turing machine ML(·, ·) for which

a ∈ L ⇒ Pr[ML(a, x) accepts] ≥ 2/3

and

a *∈ L ⇒ Pr[ML(a, x) accepts] ≤ 1/3,

where the probabilities are for an x chosen uniformly in {0, 1}p(|a|) for some polynomial
p = pL.

As is well known, by running ML on independent random tapes we can change the
probabilities 1/2, 2/3, and 1/3 above to 1− 2−poly(|a|), 1− 2−poly(|a|), and 2−poly(|a|),
respectively, while still retaining a polynomial running time.

Distance between distributions. Let D1 and D2 be two distributions on the
same space X. The variation distance between them is

‖D1 −D2‖
.
= max

Y⊆X
|D1(Y ) −D2(Y )| =

1

2

∑

x∈X

|D1(x) −D2(x)|.

A distribution D on X is called ε-quasi-random (on X) if the variation distance
between D and the uniform distribution on X is at most ε.

A convenient fact to remember is that distance between distributions cannot be
created out of nowhere. In particular, if f : X → Y is any function and D1, D2 are
distributions on X, then ‖f(D1) − f(D2)‖ ≤ ‖D1 − D2‖. Also, if E1 and E2 are
distributions on Y , then ‖D1 × E1 − D2 × E2‖ ≤ ‖D1 − D2‖ + ‖E1 − E2‖. Since
this inequality holds for any function, it also holds for random functions f . Next, the
triangle inequality is obvious: ‖D1 −D3‖ ≤ ‖D1 −D2‖ + ‖D2 −D3‖.
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2.2. Simulations using weak random sources. A source that outputs R
bits is a probability distribution on {0, 1}R; we often go back and forth between these
two notions. By a simulation using, say, a Chor–Goldreich source, we really mean
a simulation that will work for all Chor–Goldreich sources. Thus, we talk about a
simulation for a family of sources.

To define what simulating RP means, say we wish to test whether a given string a
is in an RP language L. If a *∈ L, then all random strings cause ML to reject, so there
is nothing to do. Suppose a ∈ L; then we wish to find with high probability a witness
to this fact. Let W be the set of witnesses, i.e., W = {x ∈ {0, 1}r|ML(a, x) accepts},
where r denotes the number of random bits used by ML. One might think that to
simulate RP using a source we would need a different algorithm for each language
in RP. Instead, we exhibit one simulation that works for all W with |W | ≥ 2r−1; in
particular, we do not use the fact that W can be recognized in P.

We note that s ≥ r − O(log r) random bits are required for this “abstract-RP”
problem. For if s random bits are used and the algorithm can output rO(1) r-bit
strings, then the number of possible outputs 2srO(1) must exceed 2r−1. As we can ask
for at most rO(1) bits from the source, this is what gives the Rγ min-entropy lower
bound of [CW].

Definition 2.2. A polynomial-time algorithm simulates RP using a source from
a family of sources S if, on input any constant c > 0 and R = poly(r) bits from
any S ∈ S, it outputs a polynomial number of r-bit strings zi, such that for all W ⊆
{0, 1}r, |W | ≥ 2r−1, P r[(∃i)zi ∈ W ] ≥ 1 − r−c.

If we had a perfect random source, we could make the error exponentially small.
Indeed, with sources like the Chor–Goldreich blockwise δ-source, where we can request
more bits with independence conditions from the first bits, we can always repeat the
algorithm to achieve an exponentially small error. However, with arbitrary sources,
it is not obvious that this can be done. Yet it seems reasonable to insist only on a
polynomially small error, as we want the error to fool polynomial-time machines.

For BPP, we have no “witnesses” to membership, but by an abuse of notation
we use W to denote the set of random strings producing the right answer. As before,
a simulation of BPP will produce strings zi and use these to query whether a ∈ L.
The simulation does not have to take the majority of these answers as its answer, but
since we do so it makes it simpler to define it that way.

Definition 2.3. A polynomial-time algorithm simulates BPP using a source
from a family of sources S if, on input any constant c > 0 and R = poly(r) bits
from any S ∈ S, it outputs a polynomial number of r-bit strings zi, such that for all
W ⊆ {0, 1}r, |W | ≥ 2

32r, P r[majority of zi’s lie in W ] ≥ 1 − r−c.
Such an algorithm A can also be used to simulate approximation algorithms since,

if a majority of numbers lie in a given range, then their median also lies in it. Thus
by taking medians instead of majorities, a good approximation can be obtained with
probability at least 1 − r−c.

Our BPP simulations are actually extractor constructions. As in [NZ], an extrac-
tor construction yields a BPP simulation; the idea is to run the extractor using all
possible 2t strings y, and then produce an appropriate output.

Lemma 2.4. If there is a polynomial-time extractor for S with parameters ε =
n−Ω(1), m = nΩ(1), and t, then there is a simulation of BPP using any source S from
S and running in time 2tnO(1).

Remark. In fact, as observed in [Zu2], for δ-sources we need only ε ≤ 1/3, say, to
achieve even an exponentially small error for δ′ > δ.
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In order to make our statements cleaner and boost the size of the output from
Ω(m) to m for reasonable m, we use the following lemma, which is a corollary of a
lemma in [WZ].

Lemma 2.5 (see [WZ]). Suppose m ≤ δn/4 and, for some integer k, ε ≥
2−δn/(5k). If there is an efficient (n,m/k, t, δ/2, ε/(2k))-extractor, then there is an
efficient (n,m, kt, δ, ε)-extractor.

Finally, although we focus on extractors that run in polynomial time, all our
extractors can actually be made to run in NC; see the remark at the end of section 3.

3. The Leftover Hash Lemma using fewer random bits. To understand
the Leftover Hash Lemma intuitively, imagine that we have an element x chosen
uniformly at random from an arbitrary set A ⊆ {0, 1}s with |A| = 2t, t < s. Thus we
have t bits of randomness, but not in a usable form. If we use some additional random
bits, the Leftover Hash Lemma allows us to convert the randomness in x into a more
usable form. These extra bits are used to pick a uniformly random hash function h
mapping s bits to t− 2k bits, where k is a security parameter. Recall that given finite
sets A and B, a family H of functions mapping A to B is a universal family of hash
functions if for any a1 *= a2 ∈ A, and any b1, b2 ∈ B, Pr[h(a1) = b1 and h(a2) = b2] =
1/|B|2, where the probability is over h chosen uniformly at random from H. The
Leftover Hash Lemma guarantees that the ordered pair (h, h(x)) is almost random.

Leftover hash lemma (see [ILL]). Let A ⊆ {0, 1}s, |A| ≥ 2t. Let k > 0, and let
H be a universal family of functions mapping {0, 1}s to {0, 1}t−2k. Then the distri-
bution of (h, h(x)) is quasi-random within 2−k (on the set H × {0, 1}t−2k) if (h, x) is
chosen uniformly at random from H ×A.

One drawback of this lemma is that to pick a universal hash function mapping
s bits to t − 2k bits, one needs at least s bits. One way around this is to use the
extractor of [NZ]; however, that is only useful if t/s is large. Here we show how to
use only O(t + log s) bits and achieve a good result. We first recall the following.

Definition 3.1 (see [NN]). A “d-wise ρ-biased” sample space S of n-bit vectors
has the property that if &X = (X1, . . . , Xn) is sampled uniformly at random from S,
then for all I ⊆ {1, 2, . . . , n}, |I| ≤ d, for all b1, b2, . . . , b|I| ∈ {0, 1},

∣∣∣∣∣Pr $X∈S

[
∧

i∈I

Xi = bi

]
− 2−|I|

∣∣∣∣∣ ≤ ρ.(1)

Simplifying the construction in [NN], d-wise ρ-biased spaces of cardinality
O((d log n/ρ)2) were constructed explicitly in [AG+]. In addition, given the random
bits to sample from S, any bit of &X can be computed in poly(d, log n, log(ρ−1)) time.

Lemma 3.2. Let A ⊆ {0, 1}s, |A| ≥ 2t, k > 0, and ε ≥ 21−k. There is an explicit
construction of a family F of functions mapping s bits to t − 2k bits, such that the
distribution of (f, f(x)) is quasi-random within ε (on the set F ×{0, 1}t−2k), where f
is chosen uniformly at random from F, and x uniformly from A. A random element
from F can be specified using 4(t−k)+O(log s) random bits; given such a specification
of any g ∈ F using 4(t − k) + O(log s) bits and given any y ∈ {0, 1}s, g(y) can be
computed in time poly(s, t− k).

Proof. Any g : {0, 1}s → {0, 1}t−2k can be represented in the natural way by a
vector in {0, 1}%, where ( = (t− 2k)2s. Now let F be a 2(t− 2k)-wise ρ-biased sample
space for (-length bit vectors, where ρ = (ε222k − 1)2−2t+2k; ρ is nonnegative since
ε ≥ 21−k. (That is, F is a family of functions, where each element of F is a function
that maps {0, 1}s to {0, 1}t−2k.) F can be sampled using 2(log(t − 2k) + log log ( +



COMPUTING WITH VERY WEAK RANDOM SOURCES 1441

log ρ−1) + O(1) ≤ 4(t − k) + O(log s) random bits. The lemma’s claim about g(y)
being efficiently computable follows from the above mentioned fact that individual
bits of any string in the support of a small-bias space can be computed efficiently.

We now show that the distribution of (f, f(x)) is quasi-random. We follow the
proof of the Leftover Hash Lemma due to Rackoff (see [IZ]).

Definition 3.3. The collision probability cp(D) of a distribution D on a set S
is Pr[y1 = y2], where y1 and y2 are chosen independently from S according to D.

For the distribution D of (f, f(x)),

cp(D) = Prx1,x2∈A,f1,f2∈F [f1 = f2, f1(x1) = f2(x2)],

where all the random choices are uniform and independent. We show that the collision
probability using F is almost the same as it would be using a universal family of hash
functions. Now,

cp(D) =
1

|F |Prx1,x2∈A,f∈F [f(x1) = f(x2)]

≤ 1

|F | (Prx1,x2∈A[x1 = x2] + Prx1,x2∈A,f∈F [f(x1) = f(x2)|x1 *= x2])

= 2−t/|F | + 1

|F |Prx1,x2∈A,f∈F [f(x1) = f(x2)|x1 *= x2]

≤ 2−t/|F | + 1

|F | max
a1 '=a2

Prf∈F [f(a1) = f(a2)].(2)

For any a1, a2 ∈ A, a1 *= a2,

1

|F |Prf∈F [f(a1) = f(a2)] =
1

|F |
∑

b∈{0,1}t−2kPrf∈F [f(a1) = f(a2) = b]

≤ 1

|F |
∑

b∈{0,1}t−2k(2−2(t−2k) + ρ) (by (1))

=
1

|F |2t−2k
(1 + ε2 − 2−2k).

Thus, from (2), cp(D) ≤ (1 + ε2)/(|F |2t−2k). Now, the rest of Rackoff’s proof shows
that if U is the uniform distribution on F ×{0, 1}t−2k, then cp(D) ≤ (1 + ε2)cp(U) =
(1 + ε2)/(|F |2t−2k) implies the ε-quasi-randomness of D. This concludes the
proof.

Corollary 3.4. The conclusion to Lemma 3.2 holds if x is chosen from any
δ-source, δ = t/s.

Proof. The only place where the distribution of x is needed in the above proof is
in showing that its collision probability is 2−t; note that 2−t is an upper bound on
the collision probability if x is chosen from a δ-source with δ = t/s. This concludes
the proof.

Remark. In order to use Lemma 3.2, we need an irreducible polynomial over GF [2]
for the d-wise ρ-biased spaces. For this we use an algebraic result stating that if an
integer m is of the form 2 · 3t, then f(z) = zm + zm/2 + 1 is an explicit irreducible
polynomial over GF [2] of degree m (see exercise 3.96, page 146 of [LN]). This allows
our extractors to run in NC.
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4. Simulating BPP using a blockwise δ-source with min-entropy Rγ .
We now show how to simulate BPP using a Chor–Goldreich source with min-entropy
Rγ for any fixed γ > 0; in fact, we build an extractor for Chor–Goldreich sources.
Note that δ-sources are much weaker than these sources: in these sources, we know
that each block has “a lot of randomness,” even conditional on the previous blocks’
values. In a δ-source, an adversary can, for instance, locate a lot of the randomness
in certain positions that are unknown to us. Nevertheless, there are two reasons for
the material of this section: to motivate our main results and the reasons for their
difficulty and to construct an extractor that works with sources of min-entropy Rγ

for any fixed γ > 0. Furthermore, this section will be useful in generalizing a result
of [CW] on oblivious bit-fixing sources; see also section 7.

Note that since we are talking about extractors, we use the more usual symbol n
(rather than R) in this section to denote the number of random bits requested from
the source.

Suppose we are given a blockwise δ-source with m (= n/l) = nΩ(1) blocks and
with the min-entropy δn of the n bits being at least nΩ(1). First note that we may
always increase the block length by grouping successive blocks together. Suppose we
want the output of E to be quasi-random to within n−c. By choosing the block-
length l appropriately, we may assume that the min-entropy of a block, b = δl,
satisfies b ≥ 4(c + 2) logn. We may also assume that b = Θ(logn), since a blockwise
δ-source is trivially a blockwise δ-source, if δ′ < δ. We then choose a family F that
satisfies Lemma 3.2 with parameters k = (c + 2) logn and ε = n−(c+1). Now we use
the following modification of a lemma from the final version of [Zu2] which, using the
Leftover Hash Lemma in the manner of [IZ], essentially strengthened related lemmas
in [Va2] and [CG].

Lemma 4.1. Let F be a function family mapping l bits to b − 2k bits, satisfying
Lemma 3.2 with parameters k = (c + 2) logn and ε = n−(c+1). Let D be a blockwise
δ-source on {0, 1}ml. If &Y = Y1, . . . , Ym is chosen according to D, and f is chosen
uniformly at random from F, then the distribution of (f, f(Y1), . . . , f(Ym)) is quasi-
random to within mε.

Proof. The proof is by backward induction, as in [NZ]. We proceed by induction
from i = m to i = 0 on the statement that, for any sequence of values y1, . . . , yi,
the distribution of (f, f(Yi+1), . . . , f(Ym)) conditioned on Y1 = y1, . . . , Yi = yi is
quasi-random to within (m − i)ε. This is obvious for i = m. Suppose it is true for
i + 1. Fix the conditioning Y1 = y1, . . . , Yi = yi from now on, and let Di+1 denote
the induced distribution on Yi+1. We now use the obvious fact that if a statement is
true for each element of a set, then it is also true for an element chosen randomly
from the set, using any probability distribution. Since, by the induction hypothesis,
for every yi+1, the induced distribution on (f, f(Yi+2), . . . , f(Ym)) is quasi-random
to within (m − i − 1)ε, we have that the distribution (Yi+1, f, f(Yi+2), . . . , f(Ym)) is
within (m− i− 1)ε of the distribution Di+1 ×Ui+1, where Ui+1 is the uniform distri-
bution on F × {0, 1}(m−i−1)(b−2k). Thus, the distribution of (f, f(Yi+1), . . . , f(Ym))
is within (m − i − 1)ε of the distribution of (f, f(Yi+1), zi+2, . . . , zm) obtained by
choosing Yi+1 according to Di+1, and (f, zi+2, . . . , zm) independently and uniformly
at random from F ×{0, 1}(m−i−1)(b−2k) (since ‖g(D1)− g(D2)‖ ≤ ‖D1 −D2‖ for any
two distributions D1 and D2 and any function g). Using Corollary 3.4, the distribu-
tion of (f, f(Yi+1), zi+2, . . . , zm) is quasi-random to within ε, and the lemma follows
from the triangle inequality for variation distance.

Sampling from F requires O(log l+b+log(1/ε)) = O(log n) random bits, and thus
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we have a good extractor for these sources. Using Lemma 2.4, we get the following.
Theorem 4.2. For any fixed γ > 0, BPP can be simulated using a blockwise

δ-source as long as there are at least nγ blocks and if the min-entropy of the n bits is
at least nγ (i.e., δn ≥ nγ). In fact, an explicit extractor E : {0, 1}n×{0, 1}t → {0, 1}s
that runs in NC can be built for this family of sources, with t = O(log n), s = nΩ(1),
and with the quasi-randomness of the output being n−Ω(1).

5. Simulating BPP using a δ-source with min-entropy R1/2+ε. We first
present some intuition and preliminary ideas behind our extractor construction.

5.1. Intuition and preliminaries. To construct an extractor for a given δ-
source D outputting n-bit strings, we follow the same high-level approach as does
[NZ]; the crucial differences arise from the fact that the work of [NZ] focused on
constant δ, while we need to work with a δ that goes to zero (fairly quickly) with n.
We then introduce additional new ideas to bootstrap this construction in subsection
5.5.

The high-level idea is to first convert the output of D into a blockwise δ′-source
with suitable block-lengths l1, l2, . . . , ls; this construction is called a blockwise con-
verter and is described in subsection 5.3. (δ′ = δ1−o(1).) This construction is a
slight modification of that in [NZ] and hence, many of the details are shown in the
Appendix (one important difference is that the li values are chosen differently). We
output O(log n) blocks, expending O(log n) truly random bits for each block; hence,
we use O(log2 n) random bits here in total. Once this is done, we need to extract
quasi-random bits from such a blockwise δ′-source, and such a construction, called a
blockwise extractor, is presented in subsection 5.2. Here is where we need to replace
the application of the Leftover Hash Lemma by our improved version; only O(log n)
truly random bits are needed for this task.

The reason why the above approach works only for min-entropy n1/2+Ω(1) is as
follows. In constructing the blockwise converter, our approach can ensure an output
that is (close to) a blockwise δ′-source only if, in particular,

∑
i li = O(δn). Given

O(δn) bits from a δ-source, one can intuitively expect these to have at most O(δ2n)
bits of randomness; thus, since we wish to extract nΩ(1) (quasi-)random bits, we need
δ2n = nΩ(1), i.e., δ = n−1/2+Ω(1), which is equivalent to min-entropy n1/2+Ω(1).

The above outline suggests an extractor for min-entropy n1/2+Ω(1), using O(log2 n)
bits. How can this be improved (to O(log n) ideally)? We present a partial solution
as a bootstrapping approach in subsection 5.5, which has a lesser randomness require-
ment for relatively “large” δ, e.g., for δ = n−1/3+Ω(1). An interesting open question is
whether we can efficiently construct an appropriate blockwise converter that outputs
a total of O(n) bits using only O(log n) truly random bits; this will suffice to give a
near-optimal extractor.

We now proceed formally. We use our new Leftover Hash Lemma to modify the
extractor developed in [NZ]. Part of the extractor there used the original Leftover
Hash Lemma to show how to extract quasi-random bits from a certain kind of block-
wise δ-source B. However, since the original Leftover Hash Lemma needs a number
of random bits proportional to the logarithm of the size of the domain of the hash
functions, the block-sizes in B had to decrease at the rate of (1 + δ/4), thus requir-
ing O((log n)/δ) blocks overall. However, our new construction allows the block-sizes
of B to decrease at a constant rate independent of δ, thus requiring only O(log n)
blocks. This is because now, if we need to hash from a δ-source on l bits to δl/2 bits,
Lemma 3.2 and Corollary 3.4 guarantee a hash function family having error 21−δl/4

which can be described using 3δl + O(log l) bits (this is at most 4δl bits, provided
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1/δ ≤ cl/ log l for a sufficiently small constant c). To see this, just plug in s = l,
t = δl, k = δl/4, and ε = 21−k in Corollary 3.4.

As in [NZ], our extractor first converts a δ-source into a blockwise δ-source with
blocks of varying lengths and then extracts good bits from the blockwise δ-source.
Unlike [NZ], we define these two intermediate constructions explicitly here.

Definition 5.1. (i) E : {0, 1}n × {0, 1}t → {0, 1}l1+···+ls is an (n, (l1, . . . , ls),
t, δ, δ′, ε) blockwise converter if, for x chosen from a δ-source on {0, 1}n and y inde-
pendently and uniformly at random from {0, 1}t, E(x, y) ◦ y is within ε of a distribu-
tion D × U, where D is some blockwise δ′-source with block-lengths l1, . . . , ls and U
is the uniform distribution on {0, 1}t. (ii) E : {0, 1}l1+···+ls × {0, 1}t → {0, 1}m is
an ((l1, . . . , ls),m, t, δ, ε) blockwise extractor if, for x chosen from a blockwise δ-source
with block-lengths l1, . . . , ls and y independently and uniformly at random from {0, 1}t,
E(x, y) ◦ y is ε-quasi-random on {0, 1}m.

Lemma 5.2, implicit in [NZ], shows how to combine a blockwise converter and a
blockwise extractor.

Lemma 5.2. Suppose we are given an efficient (n, (l1, . . . , ls), t1, δ, δ′, ε1) blockwise
converter and an efficient ((l1, . . . , ls),m, t2, δ′, ε2) blockwise extractor. Then we can
construct an efficient (n,m, t1 + t2, δ, ε1 + ε2)-extractor.

Proof. For the proof, just run the converter on the output of the δ-source and
then run the extractor on the output of the converter.

Given Lemma 5.2, we now focus on constructing an appropriate blockwise con-
verter and a blockwise extractor; these are described in subsections 5.2 and 5.3,
respectively.

5.2. A blockwise extractor. Lemma 4.1 gives a blockwise extractor. However,
our blockwise converter will be useful only if the number of blocks s in the blockwise
δ-source is small; Lemma 4.1 results in s = nΘ(1), which is too high for our purposes.
We therefore use the following blockwise extractor C, which is similar to the one in
[NZ] except that we use our improved version of the Leftover Hash Lemma.

Function C. The function C has four parameters: r, the number of bits used to
describe a member of the hash family; s, the number of blocks; ls, the smallest block
size; and δ, the quality of the source. (To avoid details that may be distracting at
this point, we discuss the reasons for the bounds on some of these parameters at the
end of this subsection.) C works only if r bits suffice to hash from ls bits to δls/2
bits to get a distribution that is quasi-random to within 21−r/16, as prescribed by
Corollary 3.4. Thus, as explained in the last paragraph of this subsection,

c log ls ≤ r ≤ 3δls + O(log ls) ≤ 4δls(3)

for a suitably large constant c.
We define rs= r and ri−1/ri=9/8, and then the block lengths li=max(ri/(4δ), ls).

Then Lemma 3.2 ensures for each i a fixed family of hash functions Hi = {h :
{0, 1}li → {0, 1}δli/2} with |Hi| ≤ 2ri , so we assume |Hi| = 2ri .

1. INPUT: x1 ∈ {0, 1}l1 , . . . , xs ∈ {0, 1}ls ; y ∈ {0, 1}r.
2. hs ← y.
3. For i = s down to 1 do hi−1 ← hi ◦ hi(xi).
4. OUTPUT (a vector in {0, 1}r0−r): h0, excluding the bits of hs.

By choosing s large enough, we can ensure that l0 = r0/(4δ). Specifically, suppose
s ≥ log9/8(4δls/r). Then, r0/(4δ) = r(9/8)s/(4δ) ≥ ls and hence, by the definition of
li, r0 = 4δl0.

Lemma 5.3. C is an ((l1, . . . , ls), r0 − r, r, δ, 4 · 2−r/16) blockwise extractor.
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Proof. This proof is very similar to a corresponding proof in [NZ]. Let &X =
X1, . . . , Xl be chosen according to D, a blockwise δ-source on {0, 1}l1+···+ls , and Y
be chosen uniformly from {0, 1}r. Let rs = r and ri−1/ri = 9/8. Then ri ≤ 4δli. We
will prove by induction from i = s down to i = 0 the following claim, which clearly
implies the lemma.

Claim. For any sequence of values x1, . . . , xi, the distribution of hi conditioned
on X1 = x1, . . . , Xi = xi is quasi-random to within εi, where εi =

∑s
j=i+1 21−rj/16.

This claim is clearly true for i = s. Now suppose it is true for i + 1. Fix the
conditioning X1 = x1, . . . , Xi = xi, and let Di+1 denote the induced distribution on
Xi+1. Since, by the induction hypothesis, for every xi+1 the induced distribution on
hi+1 is quasi-random, we have that the distribution (Xi+1, hi+1) is within εi+1 of the
distribution Di+1 × Ui+1, where Ui+1 is the uniform distribution on Hi+1. Thus,
the distribution of hi is within εi+1 of the distribution obtained by choosing xi+1

according to Di+1, and hi+1 independently and uniformly at random in Hi+1. Using
Corollary 3.4 this second distribution is quasi-random to within 21−ri+1/16.

We now explain (3). If the upper bound on r does not hold, then the error cannot
be made small enough: the error will be O(2−δls/4) rather than O(2−r/16). If the lower
bound does not hold, then the domain is too large for our hash family to work. Next,
to understand the equations li = max(ri/(4δ), ls), the reader should first think of
r = 4δls and li−1/li = 9/8. The reason we choose ls larger is to reduce the error ε
of the blockwise converter in Lemma 5.5. Note that Lemma A.1 allows smaller errors
for larger values of l.

5.3. A blockwise converter. Our blockwise converter is a small modification
of that in [NZ]. For our simulations of RP and BPP, it would suffice to change the
k-wise independence in [NZ] to pairwise independence, as was done in [Zu2]. However,
by using an improved analysis of k-wise independence from [BR], we can give a good
extractor for a wider range of parameters. The results of this subsection are essentially
taken from [NZ], with the only changes being this improved analysis of [BR]. Thus,
in order to not obscure the main new ideas, we just present a sketch of the blockwise
converter and leave the necessary details to the Appendix.

In order to define our blockwise converter, we first show how to extract one block
from a δ-source. The way to do this is as follows. Intuitively, a δ-source has many
bits which are somewhat random. We wish to obtain l of these somewhat random
bits. This is not straightforward, as we do not know which of the n bits are somewhat
random. We therefore pick the l bits at random using k-wise independence.

Choosing l out of n elements. We divide the n elements into disjoint sets
A1, . . . , Al of size m = n/l, i.e., Ai = {(i − 1)m + 1, (i − 1)m + 2, . . . , im}. We then
use k log n random bits to choose X1, . . . , Xl k-wise independently, where the range
of Xi is Ai. (In other words, each Xi is uniformly distributed in Ai, and any k of the
Xi’s are mutually independent.) Our (random) output is S = {X1, . . . , Xl}. Methods
to construct such k-wise independent random variables using k log n random bits are
well known; see, e.g., [ABI, Lub].

Extracting one block. The function B. B has two parameters: l, the size of
the output, and k, the amount of independence used.

1. INPUT: x ∈ {0, 1}n; y ∈ {0, 1}t (where t = k log n).
2. Use y to choose a set {i1, . . . , il} ⊂ {1, . . . , n} of size l using k-wise indepen-

dence, as described above.
3. OUTPUT (a vector in {0, 1}l): xi1 , . . . , xil (here xj is the jth bit of x).

The next key lemma, Lemma 5.4, is proved in the Appendix.
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Lemma 5.4. If D is a δ-source on {0, 1}n and &X is chosen according to D, then
for all but an ε fraction of y ∈ {0, 1}t the distribution of B( &X, &y) is within ε from a
δ′-source. Here δ′ = cδ/ log δ−1, k ≤ (δ′l)1−β , and ε = (δ′l)−cβk for some sufficiently
small positive constant c.

5.3.1. The blockwise converter. We can now define our blockwise converter
A. A has parameters (l1, . . . , ls), the lengths of the output blocks, and k, the amount
of independence.

1. INPUT: x ∈ {0, 1}n; y1 ∈ {0, 1}k logn, . . . , ys ∈ {0, 1}k logn.
2. For i = 1, . . . , s do zi ← B(x, yi). (We use B with parameters li and k.)
3. OUTPUT: z1 ◦ · · · ◦ zs.

Using essentially the same proof as in [NZ], we can show the following.
Lemma 5.5. Let lmin = min(l1, . . . , ls), and suppose k ≤ (δ′lmin)1−β and

l1 + · · ·+ ls < δn/4. Then A is an (n, (l1, . . . , ls), sk log n, δ, δ′, ε) blockwise converter.
Here δ′ = cδ/ log δ−1 and ε = 2s(δ′lmin)−c′βk, where c′ is from Lemma 5.4 and
c = c′/4.

In order to make the error small for the blockwise converter, we set the length of
the smallest block ls = nΘ(1). This gives the following.

Corollary 5.6. Suppose l1 + · · · + ls < δn/4 and, for some constant β > 0, all
li ≥ nβ(log ε−1)/δ. Then we can construct an efficient (n, (l1, . . . , ls), O(s log ε−1), δ,
δ′, ε) blockwise converter, where δ′ = cδ/ log δ−1, c from Lemma 5.5.

Proof. Choose k = c′′(log ε−1/ log n) for a large enough constant c′′.

5.4. Choosing parameters and the basic extractor. It may help the reader,
in the following discussion, to keep in mind the sample parameter values δ = n−1/4

and ε = 1/n. The general parameter list for the extractor is given after Corollary 5.8
for reference.

From the discussion about the parameters of function C, all parameter lengths
are determined by the smallest block-length ls. We choose ls ≥ n1/4 and large enough
so that the error from C is small, but small enough to ensure s ≥ log9/8(4δls/r).
Therefore, by the remark after the description of C, r0 = 4δ′l0 and the output m is
large enough. These choices are summarized below. E is our main extractor, obtained
by combining the converter A with the blockwise extractor C and invoking Lemma 5.2
using the following values for the parameters.

Parameters of E for δ = n−1/4, ε = 1/n, and β = 1/4.
1. The parameter n is given.
2. δ′ = cδ/ log δ−1, where c is from Lemma 5.5. Thus δ′ = Θ(n−1/4/ log n).
3. r is chosen to be the smallest integer such that 4 · 2−r/16 ≤ ε/2. So, r =
Θ(log n).

4. ls = nβ/2r/δ′; thus ls = Θ(n3/8 log2 n).
5. Set li = max((r/4δ′)(9/8)s−i, ls).
6. s is chosen to be the largest integer such that

∑s
i=1 li ≤ δn/4; thus s =

Θ(logn).
7. k is chosen so that 2s(δ′ls)−c′kβ/2 ≤ ε/2, where c′ is from Lemma 5.4. So,

k = Θ(1).
8. The length of the second parameter to E is given by t = s(k log n) + r. Thus

t = Θ(log2 n).
9. The length of the output of E is m = 4δ′l0 − r = Θ(

√
n/ log n).

Thus, by Lemmas 5.2 and 2.5, we deduce the following.



COMPUTING WITH VERY WEAK RANDOM SOURCES 1447

Theorem 5.7. For any β > 0 and any parameters δ = δ(n) and ε = ε(n)

with 1/
√
n ≤ δ ≤ 1/2 and 2−δ2n1−β ≤ ε ≤ 1/n, there is an efficient (n,m =

δ2n/ log δ−1, t = O((log n) log ε−1), δ, ε)-extractor.
Proof. Using Lemma 5.2 gives output m = Ω(δ2n/ log δ−1); by applying Lemma

2.5 we can improve this to m = δ2n/ log δ−1 while increasing t by a constant
factor.

Then Lemma 2.4 gives Corollary 5.8.
Corollary 5.8. Any BPP algorithm can be simulated in nO(log n) time using a

δ-source, if the min-entropy of the R output bits is at least Rγ for any fixed γ > 1/2.
We now present the parameter list of E in full generality.

Parameters of E. General case.
1. The parameters n, δ, and ε are given. We assume 1/

√
n ≤ δ ≤ 1/2 and for

some constant β > 0, 2−δ2n1−β ≤ ε ≤ 1/n.
2. δ′ = cδ/ log δ−1, where c is from Lemma 5.5.
3. r is chosen to be the smallest integer such that 4 · 2−r/16 ≤ ε/2. Thus r =
Θ(log ε−1) = O(δ2n1−β).

4. ls = nβ/2r/δ′. We need 4δ′ls ≥ r for function C. Also, ls = O(δn1−β/2 log δ−1).
5. Set li = max((r/4δ′)(9/8)s−i, ls).
6. s is chosen to be the largest integer such that

∑s
i=1 li ≤ δn/4. Since s =

O(log n), sls = o(δn); this and l0 = Θ(δn) imply (r/4δ′)(9/8)s = Θ(δn).
Therefore s ≥ log9/8(4δ

′ls/r), as required for the function C.

7. k is chosen so that 2s(δ′ls)−c′kβ/2 ≤ ε/2, where c′ is from Lemma 5.4. Since
δ′ls ≥ nβ/2, k = Θ((log ε−1)/ log n). Also, since δ′ls ≥ nβ/2 log ε−1, k ≤
(δ′l)1−β/2.

8. The length of the second parameter to E is given by t = s(k log n) + r. Thus
t = O((log n) log ε−1).

9. The length of the output of E is given by m = 4δ′l0 − r. Thus m = Ω(δ2n/
log δ−1).

5.5. Bootstrapping to improve the extractor. We now use extractor E
above recursively to get extractors which need fewer truly random additional bits, if δ
is “much larger” than n−1/2, say, δ = n−1/4. In particular, we show that BPP can be
simulated in polynomial time if δlog

∗ RR = RΩ(1), where R is the number of random
bits requested from the δ-source. Thus, taking R ≥ n2, say, as long as δ > n−1/ log∗ n,
we can simulate BPP in polynomial time; this is a significant extension of the work
of [Zu2]. All of this follows from Lemma 5.9, which shows how, by bootstrapping, to
get away with fewer truly random bits than E above needs. Basically, we replace one
of the hash functions in the function C by the t bits output by an extractor. This
way, we replace truly random bits by quasi-random bits that we extract from the
source itself (i.e., we use the source’s own randomness to further extract more bits).
Therefore, instead of repeatedly hashing to build up an nΩ(1)-bit string, we need only
build up a t-bit string and then apply the extractor.

Lemma 5.9. Suppose we are given an efficient (n, (n0, l1, l2, . . . , ls−1), t1, δ, δ′, ε1)
blockwise converter A, an efficient ((l1, . . . , ls−1),m0, t2, δ′, ε2) blockwise extractor C,
and an efficient (n0,m, t0 = m0, δ′, ε3)-extractor E. Then we can construct an efficient
(n,m, t1 + t2, δ, ε1 + ε2 + ε3)-extractor.

Proof. Use A to add t1 bits Y1 and output a blockwise δ-source with blocks
X0, X1, . . . , Xs−1 with lengths n0, l1, . . . , ls−1. Use C to add t2 bits Y2 and convert
X1, . . . , Xs−1 into a nearly uniform string Y0 of length m0 = t0. As in the proof of



1448 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

Lemma 5.3, the distribution of (X0, Y0, Y1, Y2) is within ε1 + ε2 of some distribution
D × U , where D is a δ′-source and U is the uniform distribution on t0 + t1 + t2-
bit strings. Therefore, by the extractor property for E, (E(X0, Y0), Y1, Y2) is quasi-
random to within ε1 + ε2 + ε3.

Ideally, the extractor would add O(log ε−1) truly random bits (for ε ≤ 1/n). The
following corollary shows how an extractor using u log ε−1 truly random bits can be
improved to one using O((log u)(log ε−1)) additional bits.

Corollary 5.10. Suppose n, δ, and ε are such that 1/
√
n ≤ δ ≤ 1/2 and for

some constant β > 0, 2−δ2n1−β ≤ ε ≤ 1/n. Set n0 = δn/8 and δ′ = cδ/ log δ−1, where
c is from Lemma 5.5. Then, given an efficient (n0,m, t = u log ε−1, δ′, ε′)-extractor
for t ≤ c′δn/ log n for a sufficiently small constant c′, we can construct an efficient
(n,m,O((log u)(log ε−1)), δ, ε+ ε′)-extractor.

Proof. We first modify the blockwise extractor defined in subsection 5.2 so that
its output is of length t = u log ε−1. This requires only s = O(log u) blocks. More
precisely, we define ls and li as in subsection 5.4, but we choose s to ensure that
the output length r0 − r = t. Since r = Θ(log ε−1) and ri−1/ri = 9/8, this gives s =
O(log u), as claimed. We therefore have an ((l1, . . . , ls), t, O(log ε−1), δ′, ε/2) blockwise
extractor.

We then use an (n, (n0, l1, l2, . . . , ls−1), O((log u) log ε−1), δ, δ′, ε/2) blockwise con-
verter defined in subsection 5.3. Note that we have n0 + l1 + l2 + · · · + ls < δn/4 as
needed for Lemma 5.5. This inequality follows from l1 + l2 + · · ·+ ls ≤ s · t ≤ c′ ·O(δn),
and we can choose c′ small enough. Now apply Lemma 5.9.

Let log(k) denote the logarithm iterated k times. We can now show the following.
Theorem 5.11. For any β > 0 and any parameters δ = δ(n), ε = ε(n), and

k = k(n) with n−1/k ≤ δ ≤ 1/2 and 2−δkn1−β ≤ ε ≤ 1/n, there is an efficient
(n,m = δkn/(log δ−1)2k−3, t = O((log(k−1) n) log ε−1), δ, ε)-extractor. For the value
k = log∗ n− 1, this gives an efficient (n,m = (δ/ log2 δ−1)log

∗ nn, t = O(log ε−1), δ, ε)-

extractor for δ ≥ n−1/2 log∗ n and 2−δlog
∗ nn1−β ≤ ε ≤ 1/n.

Proof. Apply Corollary 5.10 repeatedly k times. Letting m(n, δ) denote the output
length of the current extractor as a function of the input n and the quality δ, we see
that each application of Corollary 5.10 causes the output length to decrease by a factor
of m(n0, δ′)/m(n, δ), which in our case is Θ(δ/ log2 δ−1). Finally, use Lemma 2.5 to
eliminate the Ω in front of the output m.

Corollary 5.12. For any constant γ > 1 − 1/(k + 1), any BPP algorithm

can be simulated using a δ-source with min-entropy Rγ in time nO(log(k) n). For γ >
1 − 1/(2 log∗ n), any BPP algorithm can be simulated using a δ-source in polynomial
time.

Remark. By applying random walks on expanders instead of k-wise independence,
as in Lemma A.3, we can construct extractors for slightly smaller values of ε than

given in Theorem 5.11: ε ≥ 2−δ2 log∗ nn. However, this is not usually in the range of
interest.

6. Simulating RP using a δ-source with min-entropy Rγ . Recall the RP
simulation problem. We are given some fixed γ > 0, an error parameter κ ∈ [0, 1), any
r, and some hidden W ⊆ {0, 1}r such that |W | ≥ 2r−1; we want to use a distribution
on {0, 1}R with min-entropy Rγ to produce a set of strings which intersects W with
probability at least 1 − κ. (Corollary 5.8 solves this for γ > 1/2; we now focus on an
arbitrary fixed γ > 0.) Call this problem RPSIM(R, γ, κ, r). Since r will not change
throughout our discussion (but R will), we let T (R, γ, κ) denote its time complexity.
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We shall focus on this problem for R = R0
.
= rc(γ), where the constant c(γ) will be

spelled out later; henceforth, R will denote an arbitrary integer in [rγ , R0].
The difficulty in achieving any simulation with min-entropy less than

√
R is that

the basic extractor outputs a string of length less than δ2R. One factor of δ is lost
by the blockwise extractor, Lemma 5.3, and the other by the blockwise converter,
Lemma 5.5. Our approach is to have the converter output a larger string with the
hope of getting a larger blockwise source. If this works, we are done; if not, we show
that the converter’s output is a higher quality source than the original source. We
can then proceed recursively.

This approach will lead to some problems with the error κ becoming too large.
We handle this by using a remark in section 2.3 of [Zu2]. That remark implies the
following useful inequality, which holds for any R, γ′ < γ, and κ < 1:

T (R, γ, κ2R
γ′

−Rγ

) ≤ T (R, γ′, κ).(4)

Here, it will be useful to think of κ as “large,” i.e., close to 1. The bound (4) therefore

says that we can get a high-quality solution for γ (i.e., the “error” κ2R
γ′

−Rγ
is very

low) as long as we can get even a rather low-quality solution (i.e., the error κ is “large”)
for an appropriate γ′ < γ. Concretely, define T1(R, γ)

.
= T (R, γ, 1 − 1/ log2 R) and

T0(R, γ)
.
= T (R, γ, 1/ log2 R0) (the subscripts 0 and 1 refer to κ close to 0 and 1);

recall that R denotes an arbitrary integer in [rγ , R0]. Then (4) shows, for instance,
that

T0(R, γ) ≤ T1(R, γ′ = γ − 1/ logR0).(5)

Our approach will yield an algorithm upper bounding T1(R, γ′) in terms of T0, thus
leading to a recurrence for T0 via (5). Before that, we present some useful prelimi-
naries.

6.1. Some useful results. Given random variables X and Y and elements x and
y in the respective supports of X and Y , let PX,Y (y|x) denote Pr[(Y = y)|(X = x)].
Given this, we can define P(Y |X) to be the random variable which, for all x and y
in the respective supports of X and Y , takes on the deterministic value of PX,Y (y|x)
if X = x and Y = y. Thus, for instance,

PrX,Y [P(Y |X) > b] =
∑

x,y: PX,Y (y|x)>b

Pr[(X = x) ∧ (Y = y)].

Lemma 6.1. Given a source outputting an R-bit string X with associated distri-
bution D, partition {1, 2, . . . , R} into any two sets S1 and S2. Let X1 and X2 be the re-
strictions of X to S1 and S2, respectively, and let D1 be the distribution induced on S1.
If PrX [D(X) ≤ 2−%] ≥ p, then for any p′ ∈ [0, p], either PrX1 [D1(X1) ≤ 2−%/2] ≥ p′

or PrX1,X2 [P(X2|X1) ≤ 2−%/2] ≥ p− p′.
Proof. Given any x ∈ {0, 1}R, let xS1 and xS2 denote its restrictions to S1 and

S2, respectively. Now,

PrX [D(X) ≤ 2−%] =
∑

x∈{0,1}R: D(x)≤2−#

D(x).(6)

For any x ∈ {0, 1}R, D(x) = D1(xS1) · PX1,X2(xS2 |xS1); thus, if D(x) ≤ 2−%, then
D1(xS1) ≤ 2−%/2 or PX1,X2(xS2 |xS1) ≤ 2−%/2. Thus,
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∑

x∈{0,1}R: D(x)≤2−#

D(x) ≤
∑

x∈{0,1}R: D1(xS1 )≤2−#/2

D(x)(7)

+
∑

x∈{0,1}R: PX1,X2 (xS2 |xS1 )≤2−#/2

D(x).

However, by definition, the first and second terms in the right-hand side are, re-
spectively, PrX1 [D1(X1) ≤ 2−%/2] and PrX1,X2 [P(X2|X1) ≤ 2−%/2]. The lemma
now follows from (6) and (7), using the given assumption that PrX [D(X) ≤ 2−%] ≥
p.

Lemma 6.2. Suppose random variables U ∈ {0, 1}r1 and V ∈ {0, 1}r2 are such that
PrU,V [P(V |U) > 2−%] ≤ p. Then, if r2 ≥ (, there is a random variable W ∈ {0, 1}r2
such that (i) for all u and w in the respective supports of U and W, PrU,W [(W =
w)|(U = u)] ≤ 2−%; and (ii) the distribution of U ◦ V is within p of the distribution of
U ◦W.

Proof. Fix any u in the support of U , and let Du denote the distribution of V
conditional on U = u. Let Vu = {v : PU,V (v|u) > 2−%}. Consider a distribution
D′

u obtained by altering Du such that for all v ∈ Vu, D′
u(v) = 2−%; this is done

by increasing the probabilities Du(v′) for v′ ∈ {0, 1}r2 − Vu in some way. Now the
condition r2 ≥ ( guarantees a way of doing this such that for all v′ ∈ {0, 1}r2 − Vu,
D′

u(v′) ≤ 2−%; it is now immediate that we have satisfied requirement (i) of the lemma.
In the above process, the only strings u◦v whose probabilities were decreased were

those such that PU,V (v|u) > 2−%. Now, it is easily seen that for any two distributions
D1 and D2 on the same set S,

‖D1 −D2‖ =
∑

a∈S:D1(a)>D2(a)

(D1(a) −D2(a)) ≤
∑

a∈S:D1(a)>D2(a)

D1(a).

Thus, since PrU,V [P(V |U) > 2−%] ≤ p by assumption, requirement (ii) of the lemma
is proved.

6.2. The algorithm. We now present an algorithm for RPSIM(R, γ′ = γ −
1/ logR0, 1 − 1/ log2 R, r); we will bound its running time T1(R, γ′) in terms of T0.
Fix a δ-source outputting R-bit strings with min-entropy Rγ′

; thus, δ = δ(R, γ′)
is given by δR = Rγ′

(so δ = Rγ′−1). We may assume that the number of bits
used to describe a hash function in the function C is r = 4δls, because a larger ls
was necessary only to reduce the error ε of the extractor. Since r = Θ(logR), we
have ls = Θ(R1−γ′

/ logR). We also set k = 2 in the function B, i.e., use pairwise
independence; thus, the error parameter ε in the statement of Lemma 5.4 is at most
R−α, where α is a positive constant that depends only on γ. We also let δ′ denote
c(δ/2)/ log(2/δ) = Θ(δ/ logR), where c is from the statement of Lemma 5.4. The
block-lengths li are given by li = ls(9/8)s−i; we defer the presentation of s for now,
but just note here that s will be Θ(logR).

Since k = 2, the function B from subsection 5.3 uses strings of length 2 logR to
index l-element subsets of {1, 2, . . . , R}. For y ∈ {0, 1}2 logR, denote this subset by
S(l, y). Given x ∈ {0, 1}R and any S ⊆ {1, 2, . . . , R}, let xS denote the sequence of bits
of x indexed by S. Thus Bl(x, y) = xS(y,l) (note that we are subscripting the function
B by the output length l). Recall that the output of the blockwise converter A, with
parameters (l1, . . . , ls) and k = 2, is A(x, (y1, . . . , ys)) = Bl1(x, y1) ◦ Bl2(x, y2) ◦ · · · ◦
Bls(x, ys).

The following lemma will be crucial.
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Lemma 6.3. Let &X denote a random string drawn from the given δ-source. For
each i, 1 ≤ i ≤ s, at least one of the following holds:

(P1) There exist y1, y2, . . . , yi ∈ {0, 1}2 logR such that the distribution of Bl1( &X, y1)◦
· · ·◦Bli( &X, yi) is within i(ε+1/(3s)) of the distribution of a blockwise δ′-source
with block-lengths l1, l2, . . . , li; or

(P2) there exist y1, y2, . . . , yi−1 ∈ {0, 1}2 logR such that the distribution of Bl1( &X, y1)
◦· · ·◦Bli−1( &X, yi−1) is within 1−1/(3s) of a distribution on {0, 1}l1+l2+···+li−1

with min-entropy Rγ′
/2.

Proof. The proof is by induction on i. (P1) is true for the base case i = 1, by
Lemma 5.4. We assume the lemma for i = j ≥ 1 and prove for i = j + 1. If (P2) is
true for i = j, so it is for i = j +1; so we assume that (P1) is true for i = j and prove
the lemma for i = j + 1.

Let y∗1 , y
∗
2 , . . . , y

∗
j be the values of y1, y2, . . . , yj that make (P1) true for i = j. Let

S = S(y∗1 , l1) ∪ S(y∗2 , l2) ∪ · · · ∪ S(y∗j , lj), and let D1 denote the distribution placed

by the given δ-source on &XS . Substituting p = 1, p′ = 1/(3s), ( = Rγ′
, S1 = S,

and S2 = {1, 2, . . . , n} − S1 in Lemma 6.1, we see that one of two cases holds: (a)

Pr $X [D1( &XS) ≤ 2−Rγ′
/2] ≥ 1/(3s) or (b) Pr $X [P( &XS2 | &XS) > 2−Rγ′

/2] ≤ 1/(3s).
If case (a) holds, we see by substituting r1 = 0 in Lemma 6.2 that (P2) holds for

i = j + 1, with y∗1 , y
∗
2 , . . . , y

∗
j being the corresponding values of y1, y2, . . . , yj .

So, let us suppose case (b) holds. Then, it is easy to see that Pr $X [P( &X| &XS) >

2−Rγ′
/2] ≤ 1/(3s). So Lemma 6.2 shows that the distribution of &XS ◦ &X is within

1/(3s) of the distribution of &XS ◦ V , where (i) V ∈ {0, 1}R; and (ii) for all x in the
support of &XS and for all v ∈ {0, 1}R, Pr[(V = v)|( &XS = x)] ≤ 2−(δ/2)R. Thus,
by Lemma 5.4, there is at least one y∗j+1 ∈ {0, 1}2 logR such that the distribution

of &XS ◦ &XS(y∗
j+1,lj+1) is within ε + 1/(3s) of the distribution of &XS ◦ V ′, where (i′)

V ′ ∈ {0, 1}lj+1 ; and (ii′) for all x in the support of &XS and for all v′ ∈ {0, 1}lj+1 ,
Pr[(V ′ = v′)|( &XS = x)] ≤ 2−δ′lj+1 . This, combined with the inductive assumption
that y∗1 , . . . , y

∗
j are values of y1, . . . , yj that make (P1) true for i = j, shows that (P1)

is also true for i = j + 1, with y1 = y∗1 , y2 = y∗2 , . . . , yj+1 = y∗j+1.
Recall that if (P2) is true for i, it is also true for i + 1. Thus, substituting i = s

in Lemma 6.3 and noting that the min-entropy does not decrease if we add more bits,
we deduce the following.

Corollary 6.4. There exist y1, y2, . . . , ys ∈ {0, 1}2 logR such that the distribu-
tion of A( &X, (y1, . . . , ys)) = Bl1( &X, y1) ◦ Bl2( &X, y2) ◦ · · · ◦ Bls( &X, ys) is either (a)
within sε + 1/3 = 1/3 + o(1) of the distribution of a blockwise δ′-source with block-
lengths l1, l2, . . . , ls; or (b) within 1−1/(3s) of a distribution on {0, 1}l1+l2+···+ls with
min-entropy Rγ′

/2.
Recall that we want an algorithm for RPSIM(R, γ′, 1 − 1/ log2 R, r). Also recall

that li = ls(9/8)s−i; we now choose s = Θ(logR) as the largest integer such that∑s
i=1 li ≤ R1−γ′/2. We first apply our function C (we deterministically cycle through

all the RO(1) possible choices for the random input seed for C) one by one on &XS(y1,l1)◦
&XS(y2,l2) ◦· · ·◦ &XS(ys,ls), for all the RO(logR) possible choices for (y1, y2, . . . , ys). Thus,
if case (a) of Corollary 6.4 were true, at least one of the strings output would be quasi-
random to within 1/3+o(1). Note that all the output strings will have length Ω(δ′l1) =
Ω(Rγ/2/ logR). Thus, as long as this is at least r, the probability of at least one of the
output strings hitting W is at least 1/2−1/3−o(1) = 1/6−o(1), which is much greater
than the required 1 − (1 − 1/ log2 R) = 1/ log2 R for RPSIM(R, γ′, 1 − 1/ log2 R, r).
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However, since we do not know if case (a) of Corollary 6.4 holds, we also have
to consider the remaining possibility (case (b) of Corollary 6.4) that there exist
y1, y2, . . . , ys ∈{0, 1}2 logR such that the distribution of A( &X, (y1, . . . , ys))=Bl1( &X, y1)
◦ Bl2( &X, y2) ◦ · · · ◦ Bls( &X, ys) is within 1 − 1/(3s) of a distribution on {0, 1}l1+···+ls

with min-entropy Rγ′
/2. To handle this possibility, we once again exhaustively con-

sider all the RO(logR) possible choices for (y1, y2, . . . , ys); for each such choice we run

RPSIM(R1−γ′/2, γ
′−1/ logR
1−γ′/2 , 1/ log2 R0, r) on A( &X, (y1, . . . , ys)). Thus, if case (b) of

Corollary 6.4 holds, then by the definition of RPSIM, we will hit W with probability
at least 1 − (1 − 1/(3s)) − 1/ log2 R0 = Θ(1/ logR), which is again greater than the
required 1/ log2 R for RPSIM(R, γ′, 1 − 1/ log2 R, r).

The total time taken is

RO(logR) + RO(logR)T

(
R1−γ′/2,

γ′ − 1/ logR

1 − γ′/2 , 1/ log2 R0

)
,

= RO(logR)T0

(
R1−γ′/2,

γ′ − 1/ logR

1 − γ′/2

)
.

Thus, noting that γ′−1/ logR
1−γ′/2 = (γ − Θ(1/ log r))/(1 − γ/2), the time complexity of

this algorithm can be summarized as

T1(R, γ′) ≤ RO(logR)T0(R
1−γ′/2, (γ −Θ(1/ log r))/(1 − γ/2)).

Combining with (5), we see that

T0(R, γ) ≤ RO(logR)T0(R
1−γ′/2, (γ −Θ(1/ log r))/(1 − γ/2)).(8)

The termination condition for this recurrence given by our extractor E is, say,
T0(R, 2/3) = rO(log r). Letting γ0 = γ > 0 be the initial value of γ, the sequence of
values taken by the second argument in (8) is given by γi+1 ≥ (γi −Θ(1/ log r))/(1−
γi/2). Since the Θ(1/ log r) term can be made sufficiently small relative to γ0 by taking
r large enough, it is not hard to prove by induction on i that γi ≥ γ0/(1−γ0/4)i. Hence,
the termination condition γi ≥ 2/3 is achieved after a constant number of iterations,
for any given constant γ0 > 0; thus, T0(R, γ) = rO(log r). It is also not hard to check
that all the output strings have length Ω(Rγ/2/ logR). Thus, there are constants c1(γ)

and c2(γ) such that as long as we choose R0 such that Rγ/2
0 / logR0 ≥ c1(γ)r, i.e., as

long as R0 ≥ c2(γ)(r log r)2/γ , then all the output strings will have length at least r,
which suffices for the above process to work.

Theorem 6.5. Any RP algorithm can be simulated in nO(log n) time using a
δ-source, if the min-entropy of the R output bits is at least Rγ for any fixed γ > 0.

Correspondingly, there is an efficient construction of a (2n, 2Ω(nγ/2/logn), nO(log n), 2n
γ
)-

disperser.

7. Sources with many weakly independent bits. As an application of The-
orem 4.2, we now show how to simulate BPP using a generalization of the oblivious
bit-fixing source of [CW], using Lemma 4.1. Here again, we actually build an extractor
for these sources. We need the following definition.

Definition 7.1. A bit Xi from a distribution on X1X2, . . . , Xn has weak inde-
pendence α if α is the maximum value in [0, 1/2] such that for every setting X1 =
x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn of all the other bits,

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn] ≤ 1 − α.
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Thus, a bit of the oblivious bit-fixing source that is not fixed has weak indepen-
dence 1/2. Note the difference between this definition and the semirandom source of
[SV]: we look at a bit conditioned on all the other bits, not just on the previous
bits. Indeed, it is not necessarily true that every bit of a semirandom source with
parameter α has weak independence close to α.

Theorem 7.2. For a source S outputting n bits (X1, X2, . . . , Xn), let αi denote
the weak independence αi of bit Xi. For any fixed γ > 0, there is an efficient (explicitly
given) extractor E : {0, 1}n×{0, 1}t → {0, 1}m for the class of sources with

∑n
i=1 αi ≥

nγ , where t = O(log n) and m = nΩ(1); the output of the extractor is n−Θ(1)-quasi-
random. The extractor need only know the value γ and not the quantities αi.

Note that this is best possible: if the Xi’s are independent with Pr(Xi = 0) = αi,
then the entropy of (X1, X2, . . . , Xn) is k

.
=

∑n
i=1 H(αi), where H(x) = −x log2 x −

(1 − x) log2(1 − x) is the usual binary entropy function, with H(0) = H(1)
.
= 0. If∑n

i=1 αi = β, then k is maximized when each αi equals β/n, by the concavity of H;
so k = O(β log(n/β)). Thus if β = no(1), then the entropy of (X1, X2, . . . , Xn) is also
no(1); hence such an extractor construction would not be possible. Thus we indeed
need

∑n
i=1 αi ≥ nγ , for some fixed γ > 0.

Proof. Although the min-entropy is at least nγ , we do not know as much about
the “location” of the “good bits” as we do for Chor–Goldreich sources. We proceed
by showing how to use O(log n) purely random bits to obtain a source that is a Chor–
Goldreich source with high probability; the theorem then follows from Lemma 4.1.
The idea is to take a pairwise independent permutation of the bits as in [Zu2] and
then divide our string into blocks. We then argue that many weakly independent bits
fall in each block. The reason we need weak independence is because a bit’s weak
independence does not change if the bits are permuted. Thus, we do not need to pick
the blocks independently, as in [NZ], or use more complicated methods, as in [Zu2].

Assume, without loss of generality, that n is prime and that
∑n

i=1 αi = nγ , and
associate the finite field on n elements with {1, 2, . . . , n}. Pick a to be a random
nonzero element of the field and b to be a random field element; the map π is then
π(i) = ai+ b. Since a *= 0, π is a permutation. Divide the n bits into m = nγ/3 blocks
B1, . . . , Bm of length l = n1−γ/3, according to π; i.e.,

Bi = (Xπ−1((i−1)l+1), Xπ−1((i−1)l+2), . . . , Xπ−1(il)).

It suffices to show that with high probability, each of these blocks gets many weakly
independent bits: this will give a Chor–Goldreich source. Fix i ∈ {1, 2, . . . ,m} ar-
bitrarily. Define the random variable Wi as the weak independence of block Bi, i.e.,∑n

j=1 Yj , where Yj = αj if π(j) ∈ {(i− 1)l + 1, (i− 1)l + 2, il}, and 0 otherwise. Note

that E[Yj ] = αj l/n = αj/nγ/3 and hence, E[Wi] =
∑n

j=1 E[Yj ] = n2γ/3. Now since π
is a pairwise independent permutation, Pr[π(i1) = j1 and π(i2) = j2] = 1/(n(n− 1)),
for any distinct i1 and i2, and any distinct j1 and j2. Thus for any j, k, j *= k,

E[YjYk] = |Bi||Bi − 1| αjαk

n(n− 1)
≤ αjαk

n2γ/3
= E[Yj ]E[Yk].

Thus, the variance V ar[Wi] of Wi is

V ar[Wi] =
∑

j

(E[Y 2
j ] − (E[Yj ])

2) + 2
∑

j<k

(E[YjYk] − E[Yj ]E[Yk])

≤
∑

j

(E[Y 2
j ] − (E[Yj ])

2) ≤
∑

j

E[Y 2
j ] =

∑

j

α2
j

nγ/3
≤ n2γ/3/2.
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So, using Chebyshev’s inequality, Pr[Wi < n2γ/3/2] ≤ 2n−2γ/3 and hence, Pr[(∃i)Wi

< n2γ/3/2] ≤ 2n−γ/3. Hence, with probability at least 1 − 2n−γ/3, we have the
output of a Chor–Goldreich source with min-entropy nΩ(1). Thus, if we now run
the extractor of Lemma 4.1 on this output, the quasi-randomness of the final output
is at most ε′+2n−γ/3 = n−Θ(1), where ε′ = n−Θ(1) is the amount of quasi-randomness
introduced by the extractor of Lemma 4.1.

8. Applications. Our applications rely heavily on previous work involving these
applications. It is often helpful to use the graph-theoretic, or disperser, view of our
results.

8.1. Time-space tradeoffs. Our first application is to time-space tradeoffs.
Sipser defined the class strong-RP [Sip] as follows.

Definition 8.1. A ∈ strong-RP if there is an RP machine accepting A using
q(n) random bits and achieving an error probability of at most 2−(q(n)−q(n)α) for some
fixed α < 1.

He then showed the following.
Theorem 8.2 (see [Sip]). P equals strong-RP or, for some ε > 0 and for any

time bound t(n) ≥ n, all unary languages in DTIME(t(n)) are accepted infinitely often
in SPACE(t(n)1−ε).

We would like to replace strong-RP in the above theorem by RP. Note the rele-
vance of δ-sources to strong-RP as follows.

Lemma 8.3. Strong-RP equals RP if and only if RP can be simulated using a
δ-source with min-entropy Rα for some α < 1. (For the equivalence, we assume
nonoblivious simulations; i.e., the simulation could be different for different languages.)

Proof of Lemma 8.3. Let L ∈ RP , and suppose M recognizes L using a δ-source
with min-entropy Rα for some α < 1. Then M errs on fewer than 2R

α
R-bit strings.

Setting q(n) = R shows that M is a strong-RP machine recognizing L. Conversely,
suppose strong-RP equals RP, and again let L ∈ RP . Say M accepts L with error
probability at most 2−(q(n)−q(n)α) for some α < 1. Then M errs on at most 2q(n)α

strings. Thus for a fixed β, α < β < 1, M accepts L with error probability at most
2q(n)α−q(n)β if the random bits come from a δ-source with min-entropy Rβ .

As we did not quite show that RP equals strong-RP, substituting our result into
Sipser’s proof gives the following.

Theorem 8.4. RP ⊆
⋂

k DTIME (n log ( k )n ) or, for any time bound t (n)
≥ n, all unary languages in DTIME ( t (n ) ) are accepted infinitely often in⋂

k SPACE(t(n)1−1/ log(k) n).

8.2. Explicit expanders and related problems. Our second application is
to improving the expanders constructed in [WZ], and hence all the applications given
there. Call an N -vertex undirected graph N δ-expanding if there is an edge connecting
every pair of disjoint subsets of the vertices, of size N δ each. In [WZ], such graphs
with essentially optimal maximum degree N1−δ+o(1) were constructed in polynomial
time. They were used to explicitly construct some useful combinatorial structures, as
mentioned in section 1. All of these results are optimal to within factors of No(1). In

[WZ], these No(1) factors were 2(logN)2/3+o(1)
. Our results improve these No(1) factors

to 2(logN)1/2+o(1)
.

We first borrow the following lemmas from the final version of [WZ].
Lemma 8.5 (see [WZ]). If there is an (n,m, t, δ, 1/4)-extractor computable in

linear space, then there is an N δ-expanding graph on N = 2n nodes with maximum
degree N21+2t−m constructible in Logspace.
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The next lemma shows how to modify an extractor so it extracts almost all the
randomness of a δ-source. The intuition is that if x is output from a δ-source and the
output of the extractor E(x, y) has length m = βn, then the string E(x, y)◦x is close
in distribution to a uniform m-bit string concatenated with a (δ − β)-source. Thus,
we can apply an extractor E′ for a (δ−β)-source with an independent t-bit string y′,
and output E(x, y) ◦ E′(x, y′). The following is based on recursing on this idea.

Lemma 8.6 (see [WZ]). Fix positive integers n and k. Suppose that for each
δ ∈ [η, 1] we are given an efficient (n,m(δ), t(δ), δ, ε(δ))-extractor, where t and ε are
nonincreasing functions of δ. Let f(δ) = m(δ)/(δn). Let r = ln(δ/η)/f(η) or, if f
grows at least linearly (i.e., f(cδ) ≥ cf(δ)), let r = 2/f(η). Then we can construct an
efficient (n, (δ − η)n− k, r · t(η), δ, r(ε(η) + 2−k))-extractor.

We can now prove our improved construction.
Theorem 8.7. There is a polynomial-time algorithm that, on input N (in unary)

and δ, where 0 < δ = δ(N) < 1, constructs N δ-expanding graphs on N nodes with

maximum degree N1−δ2(logN)1/2+o(1)
.

Proof. Assume, without loss of generality, that N is a power of 2, with N = 2n. Set
η = (log3 n/n)1/2, ε = 1/n, and k = log n. If δ < 2η, then the complete graph satisfies
the theorem. Otherwise, apply Lemma 8.6 to the extractor given by Theorem 5.7 to
build an

(n,m = (δ − η)n− log n, t = O(log2 n log η−1/η), δ, ε = O(1/ηn))-extractor.

Then Lemma 8.5 gives an N δ-expanding graph with maximum degree N1−δ2O(nη),

i.e., N1−δ2(logN)1/2+o(1)
.

8.3. The hardness of approximating NP-hard problems. Our third ap-
plication is to the hardness of approximating log logω(G), where ω(G) is the clique
number of G. In [Zu2], it was shown that if NP̃ *= P̃ , then approximating logω(G)
to within any constant factor is not in P̃ (recall that P̃ denotes quasi-polynomial
time). In [Zu3], a randomized reduction was given showing that any iterated log is
hard to approximate; in particular, if NP̃ *= ZPP̃ , then approximating log logω(G)
to within a constant factor is not in co−RP̃ . This used the fact that with high prob-
ability, certain graphs are dispersers. The disperser implied by our RP construction is
almost as good. This makes the last reduction above deterministic, with a slight loss

of efficiency: if NP̃ *⊆ DTIME(2(log n)O(log log n)
), then approximating log logω(G) to

within any constant factor is not in P̃ .

Let quasi-poly(x) be shorthand for 2(log x)O(1)
. We now present a lemma, which is

implicit in the results of [Zu2, Zu3] on the hardness of approximation.
Lemma 8.8 (see [Zu2, Zu3]). Suppose there is an explicit construction of an (N =

N(n), nΘ(1), d = d(n),K = K(n))-disperser, for all integers n. Let g1, g2: [1,∞) →
3+ be functions satisfying g1(y) ≤ g2(y) for all y ∈ [1,∞). Suppose that for any
input graph G, a number h(G) ∈ [g1(ω(G)), g2(ω(G))] can be computed in P̃ . Then if
g1(N) > g2(K), we have NP ⊆ DTIME( quasi-poly (N + 2d)).

Theorem 8.9. If NP̃ *⊆ DTIME(2(log n)O(log log n)
), then approximating log log

ω(G) to within any constant factor is not in P̃ . In other words, if we can compute,
for some fixed t > 1, a number in the range

[2(logω(G))1/t , 2(logω(G))t ]

in P̃ , then NP̃ ⊆ DTIME(2(log n)O(log log n)
).
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Proof. For any fixed γ ∈ (0, 1], Theorem 6.5 implies that an (N,nΘ(1), d,K)-
disperser is efficiently constructible in the notation of Lemma 8.8, where N =

2(log n)O(1/γ)
, d = (logn)O(log log n), and K = 2(logN)γ . Thus, by taking γ < 1/t2, g1(y)

=2(log y)1/t , and g2(y) = 2(log y)t , we invoke Lemma 8.8 to conclude that NP and hence

NP̃ , by a simple padding argument, is contained in DTIME(2(log n)O(log log n)
).

9. Later work and open problems. Some of our main contributions—the
improved Leftover Hash Lemma and its use in extractors—have served as building
blocks for several recent results. First, Saks, Srinivasan, and Zhou [SSZ] have im-
proved our RP simulation to poly(n) time. Second, substantial progress on the BPP

simulation question has been made by Ta-Shma [Ta-S], where an RO(log(k) R) algo-
rithm is given for every fixed positive integer k. Third, ideas from this paper have
been extended by Zuckerman to give optimal extractors for constant-rate sources, as
well as randomness-optimal samplers [Zu4]. In an exciting new result, Andreev et al.
have shown how to simulate BPP using δ-sources with min-entropy Rγ for any fixed
γ > 0, in polynomial time [AC+].

An important open question is to efficiently construct, for the class of δ-sources
with min-entropy Rγ for any fixed γ > 0, efficient extractors which use O(logR)
purely random bits to extract as many as (1 − o(1))Rγ bits, which are quasi-random
to within R−Θ(1). It is easy to show that such extractors exist nonconstructively. In
[Ta-S] it is shown that polylog(R) bits suffice to do this. Constructing a near-optimal
family of dispersers may be an interesting step in this direction.

See [Nis] for a survey of some of the recent results in this area.

Appendix. Details of the blockwise converter. A property of such k-wise
independent random variables that we will require follows.

Lemma A.1. Let T ⊆ {1, 2, . . . , n}, |T |/n ≥ δ. Suppose k is even, 4 ≤ k ≤
(δl)1−β/8 for some β > 0. If S is chosen at random as described above, then

Pr[|S ∩ T | ≤ δl/2] ≤ 8(δl)−βk/2.

We use the following lemma from [BR].
Lemma A.2. For k ≥ 4 an even integer, let Y1, . . . , Yl be k-wise independent 0-1

random variables, Y =
∑l

i=1 Yi, and µ = E[Y ]. Then for α > 0, P r[|Y − µ| ≥ α] ≤
8((kµ + k2)/α2)k/2.

Proof of Lemma A.1. Define the random variables Yi to be 1 if and only if Xi ∈ T ,
and 0 otherwise. Then, E[Yi] = |T ∩Ai|/m. Thus for Y =

∑l
i=1 Yi, E[Y ] =

∑l
i=1 |T ∩

Ai|/m = |T |/m ≥ δl. Setting α = δl/2 in Lemma A.2 concludes the proof.
We remark that for certain parameters of the extractor (e.g., if δ = Ω(1)), it may

be better to use the following lemma from [NZ]. The parameters where this is useful

are mostly uninteresting: ε = 2−δ2n1−o(1)
.

Lemma A.3 (see [NZ]). There is an absolute constant c > 0 such that the follow-
ing holds: Suppose ck ≤ δ2l. Then we can use O(k/δ+log n) random bits to pick l ran-
dom variables X1, . . . , Xl in {1, 2, . . . , n} such that Pr[≥ δ2l/16 of the Xi’s lie in T ] ≥
1 − 2−k.

Proof of Lemma 5.4. To prove Lemma 5.4, we proceed as in [NZ]. Fix a δ-source
D. We need the following definitions that are relative to D.

Definition A.4. For &x ∈ {0, 1}n and 1 ≤ i ≤ n, let pi(&x) = Pr $X∈D[Xi =
xi|X1 = x1, . . . , Xi−1 = xi−1]. Index i is called good in &x if pi(&x) < 1/2 or if pi(&x) =
1/2 and xi = 0.
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The part of the definition with pi(&x) = 1/2 ensures that exactly one of xi = 0
and xi = 1 is good, for a given prefix.

Definition A.5. &x is α-good if there are at least αn indices which are good in
x. For S ⊆ {1, 2, . . . , n}, &x is α-good in S if there are at least α|S| indices in S which
are good in &x; S is α-informative to within β if Pr $X∈D[ &X is α-good in S] ≥ 1 − β.

Denote by Sy the set of l indices chosen using the (k-wise independent) random
bits &y, as described in section 5.3. A useful result shown in [NZ] is that for any set of
indices {i1, . . . , il} that is δ′-informative to within ε, the distribution of Xi1 , . . . , Xil

induced by choosing &X according to D is ε-near a δ′-source. This result, together with
Lemma A.6, will clearly prove Lemma 5.4.

Lemma A.6. Pr$Y [SY is δ′-informative to within ε] ≥ 1 − ε.
Proof. We first need the following result from [NZ]:

Pr $X∈D[ &X is not α-good] ≤ 2−c1δn,(9)

where α = c1δ/ log δ−1 for some absolute positive constant c1.
For any fixed α-good string &x, we can apply Lemma A.1 to the set of good indices

and obtain PrY [&x has ≤ αl/2 good indices in SY ] ≤ 8(αl)−βk/2. Using (9), it follows
that

Pr $X,Y [ &X has ≤ αl/2 good indices in SY ] ≤ 8(αl)−βk/2 + 2−c1δn.

Set δ′ = α/2 and ε =
√

8(αl)−βk/2 + 2−c1δn. We will now use Markov’s inequal-

ity in the following way: Let Ay = Pr $X∈D[ &X is not δ′-good in Sy]. Thus AY is a
random variable determined by Y . From the above analysis, EY [AY ] ≤ ε2. There-
fore, by Markov’s inequality, PrY [AY ≥ ε] ≤ ε. In other words, PrY [SY is δ′-
informative to within ε] ≥ 1 − ε.

Note that in the sources considered in section 4, we know that each block has
“many” good bits; thus, since we know the block boundaries, working with the good
bits was much easier there. Since we have no idea of the location of good bits in
general δ-sources, we have to work much harder here.
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