Skip to main content

Subsection 3.7.3 Appendices

Boolean Identities

Double Negation : p ≡ ¬(¬ p )

Equivalence: ( pq ) ≡ ( pq ) ∧ ( qp )

Idempotence: ( pp ) ≡ p

( pp ) ≡ p

DeMorgan 1 : (¬( pq )) ≡ (¬ p ∨ ¬ q )

DeMorgan 2 : ¬( pq ) ≡ (¬ p ∧ ¬ q )

Commutativity of or : ( pq ) ≡ ( qp )

Commutativity of and : ( pq ) ≡ ( qp )

Associativity of or : ( p ∨ ( qr )) ≡ (( pq ) ∨ r )

Associativity of and : ( p ∧ ( qr )) ≡ (( pq ) ∧ r )

Distributivity of and over or : ( p ∧ ( qr )) ≡ (( pq ) ∨ ( pr ))

Distributivity of or over and : ( p ∨ ( qr )) ≡ (( pq ) ∧ ( pr ))

Conditional Disjunction : ( pq ) ≡ (¬ pq )

Contrapositive : ( pq ) ≡ (¬ q → ¬ p )

Boolean Inference Rules

Modus Ponens : From p and pq , infer q

Modus Tollens : From pq and ¬ q , infer ¬ p . . .

Disjunctive Syllogism : From pq and ¬ q , infer p . . .

Simplification : From pq , infer p . . .

Addition : From p , infer pq . . .

Conjunction : From p and q , infer pq

Hypothetical Syllogism : From pq and qr , infer pr

Contradictory Premises : From p and ¬ p , infer q

Resolution : From pq and ¬ pr , infer qr . . .

Conditionalization: Assume premises A.

Then, if ( Ap ) entails q, infer pq

Computation

p ∨ ¬ pT ¬ ppT

p ∧ ¬ pF ¬ ppF

pTT TpT

pFp Fpp

pTp Tpp

pFF FpF

p ∨ ¬ pT ¬ ppT

p ∧ ¬ pF ¬ ppF

pTT TpT

pFp Fpp

pTp Tpp

pFF FpF

A Useful Axiom

Law of the Excluded Middle: p ∨ ¬ p