
109

8________________________

SRP: The Single Responsibility
Principle

None but Buddha himself must take the responsibility of giving out occult secrets...
— E. Cobham Brewer 1810–1897.

Dictionary of Phrase and Fable. 1898.

This principle was described in the work of Tom DeMarco1 and Meilir Page-Jones2. They
called it cohesion. They defined cohesion as the functional relatedness of the elements of a

1. [DeMarco79], p310
2. [PageJones88], Chapter 6, p82.

110

module. In this chapter we’ll shift that meaning a bit, and relate cohesion to the forces that
cause a module, or a class, to change.

SRP: The Single Responsibility Principle

A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.

Consider the bowling game from Chapter 6. For most of its development the Game class
was handling two separate responsibilities. It was keeping track of the current frame, and
it was calculating the score. In the end, RCM and RSK separated these two responsibilities
into two classes. The Game kept the responsibility to keep track of frames, and the Scorer
got the responsibility to calculate the score. (see page 83.)

Why was it important to separate these two responsibilities into separate classes?
Because each responsibility is an axis of change. When the requirements change, that
change will be manifest through a change in responsibility amongst the classes. If a class
assumes more than one responsibility, then there will be more than one reason for it to
change.

If a class has more than one responsibility, then the responsibilities become coupled.
Changes to one responsibility may impair or inhibit the class’ ability to meet the others.
This kind of coupling leads to fragile designs that break in unexpected ways when
changed.

For example, consider the design in Figure 8-1. The Rectangle class has two meth-
ods shown. One draws the rectangle on the screen, the other computes the area of the rect-
angle.

Two different applications use the Rectangle class. One application does computa-
tional geometry. It uses Rectangle to help it with the mathematics of geometric shapes.
It never draws the rectangle on the screen. The other application is graphical in nature. It

Figure 8-1
More than one responsibility

+ draw()
+ area() : double

RectangleComputational
Geometry
Application

Graphical
Application

GUI

111 Chapter 8: SRP: The Single Responsibility Principle

may also do some computational geometry, but it definitely draws the rectangle on the
screen.

This design violates the SRP. The Rectangle class has two responsibilities. The first
responsibility is to provide a mathematical model of the geometry of a rectangle. The sec-
ond responsibility is to render the rectangle on a graphical user interface.

The violation of SRP causes several nasty problems. Firstly, we must include the GUI
in the computational geometry application. In .NET the GUI assembly would have to be
built and deployed with the computational geometry application.

Secondly, if a change to the GraphicalApplication causes the Rectangle to
change for some reason, that change may force us to rebuild, retest, and redeploy the
ComputationalGeometryApplication. If we forget to do this, that application may
break in unpredictable ways.

A better design is to separate the two responsibilities into two completely different
classes as shown in Figure 8-2. This design moves the computational portions of
Rectangle into the GeometricRectangle class. Now changes made to the way rectan-
gles are rendered cannot affect the ComputationalGeometryApplication.

What is a Responsibility?

In the context of the Single Responsibility Principle (SRP) we define a responsibility to be
“a reason for change.” If you can think of more than one motive for changing a class, then
that class has more than one responsibility. This is sometimes hard to see. We are accus-
tomed to thinking of responsibility in groups. For example, consider the Modem interface
in Listing 8-1. Most of us will agree that this interface looks perfectly reasonable. The four
functions it declares are certainly functions belonging to a modem.

Figure 8-2
Separated Responsibilities

Listing 8-1
Modem.cs -- SRP Violation
public interface Modem
{

+ draw()

Rectangle

Computational
Geometry
Application

Graphical
Application

GUI
+ area() : double

Geometric
Rectangle

112

However, there are two responsibilities being shown here. The first responsibility is
connection management. The second is data communication. The dial and hangup func-
tions manage the connection of the modem, while the send and recv functions communi-
cate data.

Should these two responsibilities be separated? That depends upon how the applica-
tion is changing. If the application changes in ways that affect the signature of the connec-
tion functions, then the design will smell of Rigidity because the classes that call send
and read will have to be recompiled and redeployed more often than we like. In that case
the two responsibilities should be separated as shown in Figure 8-3. This keeps the client
applications from coupling the two responsibilities.

If, on the other hand, the application is not changing in ways that cause the the two
responsibilities to change at differen times, then there is no need to separate them. Indeed,
separating them would smell of Needless Complexity .

There is a corrolary here. An axis of change is only an axis of change if the changes
actually occurr. It is not wise to apply the SRP, or any other principle for that matter, if
there is no symptom.

public void Dial(string pno);
public void Hangup();
public void Send(char c);
public char Recv();

}

Figure 8-3
Separated Modem Interface

Listing 8-1 (Continued)
Modem.cs -- SRP Violation

+ send(:char)
+ recv() : char

Data
Channel

+ dial(pno : String)
+ hangup()

Connection
«interface» «interface»

Modem
Implementation

113 Chapter 8: SRP: The Single Responsibility Principle

Separating coupled responsibilities.

Notice that in Figure 8-3 I kept both responsibilities coulped in the ModemImplem-
entation class. This is not desirable, but it may be necessary. There are often reasons,
having to do with the details of the hardware or OS, that force us to couple things that
we’d rather not couple. However, by separating their interfaces we have decoupled the
concepts as far as the rest of the application is concerned.

We may view the ModemImplementation class as a kludge, or a wart; however,
notice that all dependencies flow away from it. Nobody need depend upon this class.
Nobody except main needs to know that it exists. Thus, we’ve put the ugly bit behind a
fence. It’s ugliness need not leak out and pollute the rest of the application.

Persistence.

Figure 8-4 shows a common violation of the SRP. The Employee class contains busi-
ness rules and persistence control. These two responsibilities should almost never be
mixed. Business rules tend to change frequently, and though persistence may not change
as frequently, it changes for completely different reasons. Binding business rules to the
persistence subsystem is asking for trouble.

Fortunately, as we saw in Chapter 4, the practice of test driven development will usu-
ally force these two responsibilities to be separated long before the design begins to smell.
However, in cases where the tests did not force the separation, and the smells of Rigidity
and Fragility become strong, the design should be refactored using the FACADE, DAO, or
PROXY patterns to separate the two responsibilities.

Conclusion
The SRP is one of the simplest of the principles, and one of the hardest to get right. Con-
joining responsibilities is something that we do naturally. Finding and separating those
responsibilities from one another is much of what software design is really about. Indeed,
the rest of the principles we will discuss come back to this issue in one way or another.

Figure 8-4
Coupled Persistence

Persistence
Subsystem + CalculatePay

+ Store

Employee

114

Bibliography
[DeMarco79]: Structured Analysis and System Specification, Tom DeMarco, Yourdon
Press Computing Series, 1979

[PageJones88]: The Practical Guide to Structured Systems Design, 2d. ed., Meilir Page-
Jones, Yourdon Press Computing Series, 1988

