
1

YUML and YPL Database Manual
Don Batory

batory@cs.utexas.edu
May 2017

F

1 YUML
Yuml is a free web service for drawing UML class dia-
grams given a Yuml input specification. As this is a for-
profit company, the ”free” service comes with some strings
attached. Namely, it will produce a pretty class diagram for
you provided that your specification is not too complicated.

Familiarize yourself with Yuml:

• go to the Yuml Class Diagram Web site
• type in this spec:

[student|name]has-loves[course|name]

• and Yuml returns this gorgeous picture:

Fig. 1: Student-Course Diagram.

Draw some diagrams of your own. When you feel com-
fortable, proceed to the next section.

2 YUML SPECIFICATIONS

A Yuml specification is elegant. Here is a BNF of a subset
of Yuml that MDELite uses. Literals (aka, tokens) are in
single ‘quotes’.

// YumlSpec is 1 or more lines
YumlSpec : Line+ ;

// and each line defines a box or connection
Line : Box | Connection ;

Box : ’[’ Class ’]’ ;

// read left-2-right, ignore numbers
Connection : BoxName [End1] [Role1] DashType

[Role2] [End2] BoxName ;

// BoxName = class or interface name
BoxName : ’[’ String ’]’

| ’[’ ’interface;’ String ’]’
;

DashType : ’-’ // solid line
| ’-.-’ // dashed line
;

End : ’<>’ // aggregation

| ’++’ // composition
| ’ˆ’ // inheritance
| ’<’ // left arrow
| ’>’ // right arrow
;

// String that has no ’]’ and quote chars
Role : String ;

// name only, name+meths only, name+flds+meths
Class : Name

| Name ’|’ String
| Name ’|’ String ’|’ String
;

// String that has no ’]’ and quote chars
Name : String ;

Note that a String token is mentioned above. This not a
Java String, but one that is devoid of the characters:

• comma ’,’
• left brace ’[’
• right brace ’]’
• less than ’<’
• greater than ’>’
• minus ’-’

Further, a semicolon ";" means new line. Some hints:

• As Yuml doesn’t like "[]" as in "String[]", I use
"#" – so "String[]" becomes "String#".

• As Yuml doesn’t like commas (as in "foo(int x,
int y)"), I simply use blanks between types – like
"foo(int int)".

• As Yuml has no indicator to distinguish static from
non-static, I simply preface the names of static mem-
bers with an underscore – like "_bar()".

Consider the following Yuml specification:

[Interface;Closable|close()]
[Interface;NetworkChannel|

bind();getLocalAddress();getOption();
setOption();supportedOptions()]

[MyClass|_MyClass();close()]
[Interface;Closable]ˆ-.-[MyClass]
[YourClass]<>-3>[MyClass]
[interface;Closable]ˆ-[Interface;NetworkChannel]

mailto:batory@cs.utexas.edu
http://yuml.me/diagram/scruffy/class/draw
http://yuml.me/diagram/scruffy/class/draw

2

Yuml produces this beauty:

Fig. 2: Another Yuml Diagram.

Warning! Do not read the above specification too dee-
ply! ’Interface;Closable’ is a String. The word
’Interface’ means nothing to Yuml. It could just as
well have been ’George’, which also means nothing to
Yuml. What Yuml does understand is ’;’ (semicolon),
which means add a new line. So ’Interface;Closable’
produces a 2-line name in the above figure. And the string
’bind();getLocalAdddress()’ means print strings
’bind()’ and ’getLocalAddress()’ on separate lines.

3 THE YPL SCHEMA

Here is the YPL schema (ypl.schema.pl), which can
encode YUML diagrams as a database of tuples:1

dbase(yuml,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
table(yumlInterface,[id,"name","methods"]).
table(yumlAssociation,["name1","role1","end1",

"name2","role2","end2"]).

Here is a MDL.ClassYumlParser translation of (ie, the
database of tuples that encodes) the specification of Figure 1:

dbase(ypl,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
yumlClass(c0,’student’,’name’,’’).
yumlClass(c1,’course’,’name’,’’).

table(yumlInterface,[id,"name","methods"]).

table(yumlAssociation,[id,"name1","role1","end1","name2","role2","end2"]).
yumlAssociation(id0,’student|name’,’has’,’’,’course|name’,’loves’,’’).

And here is a MDL.ClassYumlParser translation of the
specification of Figure 2:

dbase(ypl,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
yumlClass(c2,’MyClass’,’_MyClass();close()’,’’).
yumlClass(c3,’YourClass’,’’,’’).

table(yumlInterface,[id,"name","methods"]).
yumlInterface(c1,’;NetworkChannel’,’’).
yumlInterface(c4,’;Closable’,’’).
yumlInterface(c0,’;Closable’,’’).

1. I have broken lines in code listings for presentation reasons.
MDELite parsers expect one complete declaration per line.

table(yumlAssociation,[id,"name1","role1","end1",
"name2","role2","end2"]).

yumlAssociation(id0,’;Closable’,’’,’ˆ’,’MyClass’,’’,’’).
yumlAssociation(id1,’YourClass’,’’,’<>’,’MyClass’,’3’,’>’).
yumlAssociation(id2,’;Closable’,’’,’ˆ’,’;NetworkChannel’,

’’,’’).

Of course, you can take these databases and convert
them into Yuml specs using MDL.ClassYumlUnParser.
See MDELite documentation for more details.

4 YPL CONSTRAINTS

There indeed are YPL constraints. I have not posted them,
as they are good examples for homework assignments.

5 CLOSING

MDELite is a work in progress. It is possible that this
documentation may get out-of-date with code releases. If
so, please report them to me — dsb

mailto:batory@cs.utexas.edu

	YUML
	Yuml Specifications
	The YPL Schema
	YPL Constraints
	Closing

