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What we have seen so far in class is a model where multiple concurrent transactions 
are accessing a single copy of the database.



Databases these days
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However these days databases are frequently replicated or to put it more accurately 
geo-replicated. There are several reasons for this:
1) Scalability is a major reason. Databases are so huge these days that a single copy 
cannot scale well because of the size as well as the number of people simultaneously 
accessing them.
2) Another reason is latency. If a user has to go halfway round the world every time to 
access their data then they get a poor user experience.
3) Disaster Tolerance is yet another reason. 



Problems due to replicating data

● Having multiple copies of the data can create some problems

● A major problem is consistency i.e. how to keep the various copies 
of data in sync. Some problems include: 
○ Concurrent writes (possibly conflicting)
○ Stale Data
○ Violation of Database Constraints 
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So having different copies of data solves the scalability and fault tolerance problems 
but it creates some problems too. 
What if multiple clients update the same data on different replicas at the same time. 
Which update do you choose ? How do you merge the updates. 
Also what if you write to one replica of the data without synchronization and 
somebody reads the same data at another replica before the replicas have had a 
chance to reconcile.
You could also have a case where you violate database constraints e.g. assume you 
have $100 in the bank account and you make withdrawals of $75 from clients 
accessing different replicas. If the writes are not synchronous you could overdraw 
your account.



Consistency Models
● Consistency Model = Guarantee by the datastore that certain 

invariants will hold for reads and/or writes.
 
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability
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A consistency model is a guarantee by the datastore that certain invariants will hold 
as reads and writes are performed to the datastore (and this is done taking into 
account the fact that the datastore is replicated).  

These invariants could be of different types: 
    a) state based invariants e.g. bank account balance never goes below zero.
    b) operation based invariants e.g. operations are always applied at all replicas in 
causal order (causal consistency) or all operations have a total global order (i.e. 
serializability)



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● No guarantees on order of writes applied to different replicas
● No guarantees on what intermediate states a reader may observe.
● Just guarantees that “eventually” replicas will converge.
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Eventual consistency is the weakest model possible. Simply stated it is a liveness 
guarantee which says that eventually all replicas will converge to the same copy. It 
does not guarantee that invariants will hold either regarding the order in which writes 
are applied or regarding the states that can exist for the distributed data store. E.g. it 
is entirely possible to read a new value of an object and then an old value of the same 
object in a later read. The only guarantee is that eventually, possibly when writes 
have ceased to the system then the replicas will converge.



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Session means a context that persists across operations (e.g. 
between “log in” and “log out”)

● Example of a session guarantee = Read-My-Writes
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    b) Session guarantees provide real-time or client centric ordering within a session, 
where a session describes a context that persists across operations (or possibly 
transactions) e.g. on a social networking site all of a users operations submitted 
between “log in” and “log out”. A popular session guarantee is Read-your-writes, 
which means that within a session you can read any data that you have written. e.g. if 
you write a comment on Facebook and then you should be able to read your 
comment within your same login session. 



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Operations to the datastore applied in causal order.
○ e.g. Alice comments on Bob’s post and then Bob replies to her 

comment.
○ On all replicas, Alice’s comment written before Bob’s comment.

● No guarantees for concurrent writes.

8

Causal consistency guarantees that operations will be applied to the datastore in 
causal order. E.g. if Alice comments on Bob’s post and then Bob replies to her 
comment then on all replicas Alice’s comment is written before Bob’s comment. This 
also means that it should be impossible to read Bob’s comment before reading Alice’s 
comment. 
There is no guarantee however for concurrent writes e.g. if two people comment on 
two unrelated facebook posts then it is okay to apply the two writes in different orders 
on different replicas. Notice however that concurrent writes can be conflicting in which 
case some policy needs to be specified about how to converge the two writes. e.g. if 
two people concurrently modify the same Facebook post. One policy that is used is 
last writer wins. 
 



Consistency Models
● Some standard consistency models (weakest to strongest):

○ Eventual Consistency 
○ Session Consistency Guarantees
○ Causal Consistency
○ Serializability

● Global total order operations to the datastore.
● Read of an object returns the latest write.

○ Even if the write was on a different replica.
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Serializability means that operations appear as if there was a global total order or 
equivalently that there was a single copy of the data. This has the implication that a 
read of an object returns the latest write to that object, even if the write was on a 
different replica. Ensuring this property often means that writes have to be a 
synchronous operation involving multiple replicas. This also means that fundamentally 
concurrent writes on multiple replicas are not allowed, because serializability can 
potentially be violated. We will see examples of this later.
 



Introducing the CAP Theorem

Any networked shared-data system can have at most two of three of 
the above properties

Consistency - equivalent to having a single up-to-date copy of the data 
(i.e. serializability)

Availability - any reachable replica is available for reads and writes 

Partition Tolerance - tolerance to arbitrary network partitions
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The CAP Theorem relates the Consistency model provided by a replicated data store 
with its availability and tolerance to network partitions. It was conjectured in 2000 by 
UCB Prof. Eric Brewer and was proved in 2002 by Nancy Lynch and Seth Gilbert from 
MIT.

Lets define each of the three terms in the CAP acronym. 
Consistency means serializability i.e. equivalent to having a single up-to-date copy of 
the data.
Availability means that if a client can reach a replica then the replica is available for 
reads and writes.
Partition Tolerance means that the system can tolerate network partitions.

The theorem basically states that any networked shared-data system can provide at 
most two of the three properties above.



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.
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To understand the theorem imagine two replicas which are partitioned from each 
other because of a network disconnection. 



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing writes on either replica = Loss of Consistency 
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So obviously we cannot have synchronous writes in this case because of the partition. 
If we still allow writes on one replica without synchronizing with the other we lose one-
copy serializability since the states of the replicas diverge.



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Allowing one replica to be unavailable = Loss of availability 
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On the other hand assume that replicas wait to synchronize, then we have lost 
availability because as long as the network partition persists we cannot write to any of 
the replicas. 



Understanding the CAP Theorem
● Imagine two replicas which are network partitioned.

 

Assuming that partitions never occur = Loss of partition tolerance
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Finally if we assume that partitions never occur then we have lost the property of 
partition tolerance. 



Revisiting CAP Theorem*

● Last 14 years, the CAP theorem has been used (and abused) to 
explore variety of novel distributed systems.

● General belief = For wide-area systems, cannot forfeit P

● NoSQL Movement: “Choose A over C”.
○ Ex. Cassandra - Eventually Consistent Datastore

● Distributed ACID Databases: “Choose C over A”
○ Ex. Google Spanner - provides linearizable

* from the paper “CAP 12 years later: How the rules have changed by Eric Brewer”
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Over the last 14 years, the CAP theorem has been used to explore new distributed 
systems. The general belief is that for wide-area systems you can’t forfeit P or 
partitions. For wide-area systems you can’t choose to not have partitions.

Therefore it comes down to balancing consistency and availability. The NoSQL 
movement usually centers on choosing availability over consistency. For example 
cassandra is an eventually consistent datastore that is always available. On the other 
hand there is the distributed ACID database which chooses consistency over 
availability. For example Google Spanner provides linearizable transactions.



Revisiting CAP Theorem
● CAP only prohibits a tiny part of the design space 

○ i.e. perfect availability and consistency with partition tolerance.
● “2 of 3” is misleading because:

○ Partitions are rare. Little reason to forfeit C or A when no partitions.
○ Choice between C and A can occur many times within the same 

system at various granularities.
○ All three properties are more continuous than binary.

Eric Brewer: Modern CAP goal should be to "maximize 
combinations of consistency and availability" that "make sense 
for the specific application"
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All in all, CAP only prevents a tiny part of the design space. The only thing it prohibits 
is perfect availability and consistency with partition tolerance.
The 2 of 3 in CAP is misleading for several reasons. For one, partitions are rare. You 
have to be able to continue when they are there, but you can assume this won’t be 
often. There is little reason to forfeit availability or consistency when there are no 
partitions. Can just forfeit C and A when partitions do exist.
Secondly the choice between C and A can occur many times within the same system 
at various granularities. All three properties are more continuous than a binary ‘on or 
off’.
A quote from Eric Brewer, the person who initially conjectured the CAp theorm says 
that the modern CAP goal should be to ‘maximize combinations of consistency and 
availability’ that ‘make sense for the specific application’.



Revisiting the CAP Theorem
● Recent research adopts the main idea

○ i.e. don’t make binary choices between consistency and 
availability

● Lets look at two examples 
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Recent research adopts this main idea in that they don’t make binary choices 
between consistency and availability.

Intro to next slide: So we are going to now show you two examples of papers that 
show how to push the boundaries of system design to achieve combinations of 
consistency and available given the CAP theorem. 



ETH Zurich, VLDB 2009
Tim Kraska
Martin Hentschel
Gustavo Alonso
Donald Kossmann

Consistency Rationing in the Cloud: 
Pay Only When It Matters
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Consistency Rationing in the Cloud: Pay Only when It Matters is a paper that was in 
VLDB 2009 by ETH Zurich. The goal of this paper is to lower the overall cost of 
consistency by paying only when you need to. It’s goal is to minimize costs.



Pay Only When It Matters: Problem

Consider the information stored by a simple online market like Amazon: 
● Inventory 

○ Serializability: don’t oversell
● Buyer Preferences

○ Weaker Consistency: who cares if the user gets slightly more 
correct advertising 5 minutes later than they could.

● Account Information
○ Serializability: don’t want to send something to the wrong place. 

Won’t be updated often. 
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Consider a simple online market similar to Amazon. You want the inventory count to 
be serializable. If two people buy the same object from different servers you don’t 
want each server to say it is okay if you only have 1 left. Similarly, account information 
should be kept serializable. You don’t want to send n object to the wrong house!

However consider that at the same time, the web store calculates and updates buyer 
preferences whenever something is bought. We don’t need strong consistency for 
this. For one, chances are it won’t be updated often from different servers. Secondly, 
if it is delayed or out of order with sales, it doesn’t affect too much. 



Pay Only When It Matters: Problem

Consider an online auction site like Ebay:
● Last Minute

○ Serializability: Database should be accurate. Want to show 
highest bids so people bid higher.

● Days Before 
○ Weaker Consistency: Will be okay if data is a few minutes 

delayed. No high contention.
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Another example of this is an online auction site like Ebay. Consider days before the 
auction time runs out. Weak consistency is okay because for one there won’t be a lot 
of contention. Maybe once or twice a day a user will check the auction and bid higher. 
It will be okay if it takes some time to update the value. However if the auction is in 
the last few minutes, the auction price is really important. You don’t want one user to 
see it at 3$ and another to see it at 5$. Then the former user will try to bid 4$ and will 
have no chance of getting the object. In this case we would need something kind of 
ability to change consistency of the data based on some kind of policy or rule.



Pay Only When It Matters: Problem

Another example is a collaborative document editing application:
● Parts of the paper which are usually done by 1 person 

○ Weaker Consistency: Since less editors there will be less 
conflicts and serializability isn’t as important. 

○ Really just need to read your writes.
● Parts of the paper which are highly edited

○ Serializability: Would want parts of the document like the 
references to be updated often as it may be updated by many 
people.
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A third example is of a collaborative document editing service. For example usually 
with a paper you split parts of a paper between different members of the group. Each 
member will work on part so there won’t be a lot of conflicts. After all, it’s hard to work 
on the exact same piece together. For this you really just need a weaker consistency 
since there won’t be a lot of conflicts. As long as you can see your own rights you 
should be okay.

On the other hand there might be a few parts of the paper that are highly edited. Like 
for example, the bibliography. As people write their parts they want to add papers. 
And you don’t want people adding papers twice because they didn’t see the other 
updates in time. So you would need serializability for this to avoid conflicts.



Pay Only When It Matters : Problem

● How can we balance cost, consistency, and availability?
● Assume partitions.
● Don’t want your consistency to be stronger than you need

○ causes unnecessary costs if not needed.
● Don’t want your consistency to be weaker than you need

○ causes operation costs. For example, showing you are out of 
stock when you are not means lost sales.
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The goal of this paper is to balance costs with consistency and availability. Also, this 
paper assumes partitions. This is because for large scale systems partitions is a 
possibility and must be taken into account. It is fairly standard that you can’t just 
assume partitions won’t happen even if they don’t happen often. 
For every application there are usually several pieces. Different pieces require 
different consistencies (I’ll show some examples next). Usually systems provide a 
single consistency throughout the whole database. For example, the whole database 
is eventually consistent. However if any part of your application requires serializability 
then you have to set up the whole database as serializable. The problem with this is 
that you end up paying more than you need for the parts of your application that don’t 
require strong consistency.
However consider the opposite case. If you need serializability but you don’t have it, 
then you will have operation costs. For example showing that you are out of stock on 
an item when in fact someone had returned it 30 seconds ago.



Pay Only When It Matters: Solution

Avoid costs by using both!
● Serializability costs more
● Avoid costs by only using it when you really need it.
● Provide policies to users to change consistency.
● Provide 3 kinds of consistency: A, B, C
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This paper solves this problem by allowing more than one consistency through the 
database. It also allows consistency of a set of data to change throughout it’s use. 
This allows for things like the online auction site to take advantage of the database. 
The idea here is to avoid costs of consistency unless you really need them while also 
providing the guarentees you need to make your application work. They do this by 
providing the option of three kinds of consistency which they name A, B, C 
consistency. I’ll also refer to them as such.



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Serializable
● All transactions are isolated
● Most costly
● Uses 2PL
● Used for high importance and high conflict operations.
● Ex. address information and stock count for webstore.
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A consistency is pretty basic. It is the stronger consistency and guarantees 
serializability. All transactions are isolated. However this is very costly. They use a 
2PL protocol to implement serializability. 
For example the address information and stock count for the webstore would use 
serializability.



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Session Consistency
● Can see own updates
● Read-my-writes
● Used for low conflict operations that can tolerate a few 

inconsistencies
● For example: User preferences on web store
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The next consistency the offer is C consistency. This is the weaker consistency or 
session consistency. It is basically eventual consistency. However there is an added 
guarantee that if a user connects to a server for a session, they will see their own 
updates as long as they are connected to that session and server. This is also known 
as ‘read-my-writes’ guarantee as we talked about earlier. 

For example user preferences on a web store would use session consistency. 



Pay Only When It Matters: Solution
● A Consistency
● C Consistency
● B Consistency

● Switches between A and C consistency
● Adaptive, dynamically switches at run-time
● Users can pick how it should change with provided policies
● For example, the auction example uses B Consistency.
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The final consistency they offer is B Consistency. This consistency will switch 
between A and C consistency depending on a user-picked policy that we will go over 
later. It is adaptive and can switch dynamically at run time. This is used in the auction 
example, to enable it to switch consistency towards the end of the auction.

One might also note that if you wanted to do a join on A consistency and C 
consistency data, the data would only have the weaker (or C) consistency.



Pay Only When It Matters: B Consistency
● How to switch between A and C in a way that makes sense?

○ Provide policies for switching
○ Try to minimize costs but keep needed consistency
○ 3 basic policies

■ General Policy
■ Time Policy
■ Numerical Policy
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How do they allow the user to switch between A and C consistency in a cheap way? It 
wouldn’t be good to switch constantly between the two. They provide policies for 
switching. The goal is to minimize costs but keep A consistency when you need it. 
They provide 3 basic policies, General Policy, Time Policy, and Numerical policy.



Pay Only When It Matters: B Consistency
● General Policy

○ Try to statistically figure out frequency of access
○ Use this to determine probability of conflict
○ Then determine the best consistency

● Time Policy
○ Pick a timestamp afterwhich the consistency changes.

● Numerical Policy
○ For increment and decrement
○ Knows how to deal with conflicts
○ Three kinds
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The first policy, General Policy, attempts to statistically figure out frequency of access 
of certain pieces of data. It uses this to determine probability of conflict. Then it uses 
the probability of conflict to determine the best consistency. If there are less conflicts 
you might not need such a strong consistency. Note that this does not work for things 
that might get hit hard for short periods of time because it will not be able to see that 
in the statistics.

Time policy is the simplest policy. You just pick a timestamp afterwhich the 
consistency changes.

Numerical policy is used for data that is incremented or decremented. It knows how to 
deal with conflicts (since inc/dec are cummulative). This is advantageous in dealing 
with eventual consistency or C consistency. They provide 3 basic types of numerical 
policies.



Pay Only When It Matters: Numerical Policy
Numerical Policies : For increment and decrement
● Fixed Threshold Policy

○  If data goes below some point switch consistency.
○ Ex: Only 10 items left in stock, change to serializability. 

● Demarcation Policy
○ Assign part of data to each server. 
○ For example if 10 in stock, 5 servers, a  server can sell 2.
○ Use serializability if want to use more than their share. 

● Dynamic Policy
○ Similar to fixed threshold but the threshold changes
○ Threshold depends on the probability that it will drop to zero.
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The first is fixed threshold policy. In this policy if data goes below a certain point it will 
switch consistency. For example consider the previous web market. You can set it so 
that when you only have 10 of an item left it will switch to A consistency so that the 
count will be accurate and will not oversell.

The next policy is demarcation policy. In this policy you assign a part of the data to 
each server. For example in the case of web market, you would let each server sell a 
certain number of some item. Say you had 10 items left and 5 servers. Each server 
could sell up to 2. Use serializability if you want to use more than your share and to 
talk to other servers about the amounts.

The last policy is dynamic policy. It is similar to fixed threshold but the threshold 
changes. The threshold is determined statistically based on the probability that 
something will drop to zero. It uses the statistics on updates to determine this 
probability.



Pay Only When It Matters: CAP
● How can we provide serializability while allowing partitions to follow 

the CAP theorem? We can’t. 
● If your application needs A Consistency, it won’t be available if 

there is a partition.
● But it will be available for the cases where your application needs C 

Consistency.
● Note that B Consistency can fall into either case depending on 

which consistency at the time.
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One more thing to think about is how this ties in to the CAP theorem. How can we 
provide serializability while we allow partitions? We can’t. However the goal here is to 
use A consistency as little as possible. And when you have to use A we assume the 
system will be unavailable while there is a partition. But it will be available for C 
consistency and then for certain times for B consistency (depending on whether B 
consistency is currently A consistency or C consistency).



Pay Only When It Matters: Implementation
● This specific solution uses s3 which is Amazon’s key value store 

which provides eventual consistency. In simplest terms can think of 
it as a replica per server.

● Build off of their own previous work which provides a database on 
top of S3 which 

● However don’t really talk about how they switch consistencies and 
talk more about how they allow the user to tell them to switch 
consistencies.
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The specific solution they provide uses Amazon’s key value store s3 which by itself 
provides eventual consistency. In simplest terms you can think of it as a replica per 
server. It is built off their own previous work which implements different consistencies 
on s3. However they don’t really talk about the protocols they use to switch between 
consistencies and how this guarantee is provided and more focus on how they can 
allow users to denote the kind of needed consistency.



Pay Only When It Matters: Summary
● Pay only what you need too.
● Allow application to switch between consistencies at runtime.
● Allow application to have different consistencies in the same 

database. 

32

So in summary the goal is to pay only what you need to. To do this they give a way 
for an application to switch between consistencies at runtime. And they allow a way 
for the application to have different consistencies in the same database. 



UC Berkeley, VLDB 2014
Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, 
Joseph M. Hellerstein, Ion Stoica

Highly Available Transactions: 
Virtues and Limitations
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● ACID = Atomicity Consistency Isolation Durability
● Set of guarantees that database transactions are processed 

reliably.

● The acronym is more mnemonic than precise.
● The guarantees are not independent of each other.

○ Choice of Isolation level affects the Consistency guarantees.
○ Providing Atomicity implicitly provides some Isolation 

guarantees.

Recap: ACID
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The paper discusses the relationship between ACID and CAP. So lets quickly recap 
what ACID means.
ACID is an acronym that refers to a set of guarantees that database transactions are 
processed reliably. ACID stands for Atomicity Consistency Isolation and Durability.
Atomicity defines “all or nothing” behavior of a transaction i.e. to the outside world, a 
committed transaction appears (by its effects on the database) to be indivisible 
("atomic"), and an aborted transaction does not happen.
Consistency ensures that any transaction will bring the database from one valid state 
to another. e.g. preserving a property such as unique keys.
Isolation mainly deals with concurrency control and visibility of effects of concurrently 
executing transactions to each other.
Durability means that once a transaction has committed it will remain that way in the 
event of failures, crashes etc

So one of the interesting things about this acronym is that it is more mnemonic than 
precise. The guarantees are not independent of each other. E.g the choice of 
consistency level is affected by the isolation level you choose or providing atomicity 
implicitly provides some isolation guarantees.



Recap: Isolation Levels
● Isolation levels defined in terms of possibility or impossibility 

of following anomalies
○ Dirty Read:  Transaction T1 modifies a data item which 

T2 reads before T1 commits or aborts. If T1 aborts then 
anomaly. 

○ Non-Repeatable Read: T1 reads a data item. T2 
modifies that data item and then commits. If T1 re-reads 
data item then anomaly. 

○ Phantoms: T1 reads a set of data items satisfying some 
predicate. T2 creates data item(s) that satisfy T1’s 
predicate and commits. If T1 re-reads then anomaly.
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Lets also quickly review some standard Isolation levels since they will come up later 
during our presentation. So ANSI SQL standard defines isolation levels are defined in 
terms of the possibility or impossibility of three anomalies.



Recap: Isolation Levels
Isolation Level Dirty Read Non-Repeatable 

Read
Phantoms

Read 
Uncommitted+

Possible* Possible Possible

Read 
Committed

Not Possible Possible Possible

Repeatable 
Read

Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

+ Implicit that Dirty Writes are not allowed
*  Standard does not say anything about recovery
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So the ANSI SQL specification defines 4 Isolation levels at which you can operate a 
concurrent database, based on the possibility or impossibility of these anomalies. 
Read Uncommitted means that all three anomalies are possible. What is implicitly 
assumed however is that “Dirty Writes” are impossible. We will discuss this later. 
Read Committed says that Dirty Read is not possible but the other two anomalies are 
possible
Repeatable Read only allows that Phantoms are possible
While Serializability says that none of the anomalies are possible.

Also notice that the fact that for read uncommitted, dirty reads are allowed which 
means that transactions are not recoverable. While the standard does not say 
anything about recovery, I guess the implicit assumption is that if you are running your 
database at this Isolation level then you do that taking into account the fact that your 
transactions may have read values that were written by an aborted transaction.



● C in CAP = single-copy consistency (i.e. replication consistency)
● C in ACID = preserving database rules e.g. unique keys
● C in CAP is a strict subset of C in ACID.

● Common Misunderstanding: “CAP Theorem →  inability to provide 
ACID database properties with high availability”.

● CAP only prohibits serializable transactions with availability in the 
presence of partitions.
○ No need to abandon Atomicity or Durability.
○ Can provide weaker Isolation guarantees.

CAP and ACID
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So getting back to the paper, the main objective of the paper is to explore the 
relationship between CAP and ACID. So as a starting note, the C in CAP is different 
from the C in ACID. The C in CAP refers to replication consistency (or having a single 
copy of the database) which is a strict subset of ACID consistency. e.g. it is possible 
to have a single copy of the database at all replicas but which violates some database 
constraint e.g. unique keys or referential integrity of foreign keys

A common misunderstanding is that the CAP Theorem means the inability to provide 
ACID database properties with high availability. 
However CAP only prohibits serializable transactions along with high availability in the 
presence of partitions.

There is no need to ab…...



● Most research on Wide-Area Distributed Databases chooses 
serializability. 
○ i.e. Choose C over A (in terms of CAP)

● Question: What guarantees are provided by commercial, single-site 
databases?
○ Survey of 18 popular databases promising “ACID”
○ Only 3 out of 18 provided serializability as default option.
○ 8 out of 18 did not provide serializability as an option at all
○ Often the default option was Read Committed.

● Conclusion: If weak isolation is acceptable for single-site DBs then 
it should be ok for highly available environments.

ACID in the Wild
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However despite the fact that CAP does not prevent any ACID guarantees, most 
research on Wide-Area Distributed Databases chooses to abandon availability 
entirely and focus on providing strong isolation i.e. serializability. So the authors of the 
paper decided to look at the the guarantees offered by conventional single-site 
databases. They found out that out of 18 popular databases promising  ACID, only 3 
provided serializability as a default option. 8 out of 18 databases did not provide 
serializability as an option at all. Often the default option was Read Committed. This 
was the case with Oracle 11g which provided Read Committed as the default option 
and Snapshot Isolation as the maximum option. As an aside Snapshot Isolation is an 
intermediate isolation guarantee provided by multiversion databases and is weaker 
than serializability.

So they conclude that if application writers and database vendors have already 
decided that the efficiency benefits of weak isolation outweigh potential application 
inconsistencies that can arise from running your single-site database at that isolation 
level, then, we can choose this for Wide-Area Distributed Databases as well.



● Answers the question: “Which transactional semantics can be 
provided with high availability ? ”

● Proposes HATs (Highly Available Transactions)
○ Transactional Guarantees that do not suffer unavailability 

during system partitions or incur high network latency. 

Goal of the paper
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So the aim of the paper is to answer the question. If we choose Availability over 
Strong Consistency, what are the transactional isolation guarantees that we can 
provide? i.e. we know that we cannot provide serializability, but are there any other 
useful guarantees that we can provide. 
So they propose HATs i.e. transactional guarantees that do not suffer unavailability 
during system partitions or incur high latency.



Definitions of Availability
● High Availability: If client can contact any correct replica, then it 

receives a response to a read or write operation, even if replicas 
are arbitrarily network partitioned.

● Authors provide a couple of more definitions:
○ Sticky Availability: If a client’s transactions are executed 

against a replica that reflects all of its prior operations then …

○ Transactional Availability: If a transaction can contact at least 
one replica for every item it accesses, the transaction 
eventually commits or internally aborts
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So in order to do this they provide a couple of more nuanced definitions of availability. 
The traditional availability definition is that ……...

------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------
1) Distributed algorithms often assume a model in which clients always contact the 
same logical replica(s) across subsequent operations, whereby each of the client’s 
prior operations (but not necessarily other clients’ operations) are reflected in the 
database state that they observe. Any guarantee achievable in a highly available 
system is achievable in a sticky available system but NOT vice-versa.
2) Transactional Availability may result in “lower availability” than a non-transactional 
availability requirement (e.g., single-item availability).



Overview of HAT guarantees
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So here is a high level overview of what they found. Now I understand these are a lot 
of acronyms to take in, so I will give the bigger picture rather than go in details of 
each. However notice that a number of them are familiar from class e.g. CS stands for 
Cursor Stability, RR stands for Repeatable Reads, 1SR stands for 1-copy 
serializability. Some I have described earlier e.g. RC is Read Committed, RYW is 
read-your-writes. 

The arrows define a partial order on the guarantees e.g. CS is stronger than RC.
The guarantees in red color and circles are not achievable with high availability
The guarantees in blue color and squares are achievable only with sticky availability. 
All others are possible with high availability. 

------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
------
1) Semantics Not provided by HATs are Circled and Red (Cursor Stability (CS), 
Snapshot Isolation (SI), Repeatable Read (RR), One-Copy Serializability(1SR), 
Recency, Safe, Regular, Linearizability, Strong 1SR)

2) Semantics provided with Sticky Availability are in Squares and Blue (Sticky Read 
Your Writes (RYW), PRAM, Causal ) 

3) HATs (( Read Uncommitted (RU), Read Committed (RC), Monotonic Atomic View 
(MAV), Item Cut Isolation (I-CI), Predicate Cut Isolation (PCI), Writes Follow Reads 
(WFR), Monotonic Reads (MR), 



Monotonic Writes (MW) )



Example (HAT possible): Read Uncommitted
● Read Uncommitted = “No Dirty Writes”. 
● Writes to different objects should be ordered consistently.
● For example consider the following transactions:

T1: w1[x=1] w1[y=1]
   T2: w2[x=2] w2[y=2]

○ We should not have w1[x=1] w2[x=2] w2[y=2] w1[y=1] 
interleaving on any replica.

● HAT Implementation: 
○ Mark each write of a transaction with the same globally unique 

timestamp (e.g. ClientID + Sequence Number).
○ Apply last writer wins at every replica based on this timestamp.
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So lets look at some of these in detail. 
Read Uncommitted, if you remember from the earlier slides, was the weakest isolation 
guarantee in the ANSI levels which allowed all three anomalies. However implicitly 
the one anomaly that it does not allow is “Dirty Writes”. This effectively implies that 
writes to different objects should be ordered consistently. So in the example  if two 
transactions write to the same objects then we should not have an interleaving where 
we apply writes to x in one order and writes to y in another order. 

Now assume that these two transactions are being applied to two replicas on opposite 
sides of a network partition. How do we make sure that when the replicas reconcile 
these transactions after recovery, they do not violate dirty writes. 
They way to do it is to mark each write of a transaction with the same globally unique 
timestamp e.g. a unique ClientID plus a sequence number per client and then apply 
writes in order of this timestamp. This basically means that if you get a write with a 
lower timestamp than the last applied write to a data item then don’t apply it.



Example (HAT possible): Read Committed
● Read Committed =  “No Dirty Writes” and “No Dirty Reads”. 
● Example: T3 should never see a = 1, and, if T2 aborts, T3 should 

not read a = 3:

● HAT Implementation: 
○ Clients can buffer their writes until commit OR
○ Send them to servers, who will not deliver their value to other 

readers until notified that writes have committed.
● In contrast to lock-based implementations, this does not provide 

recency guarantees.

T1:  w1[x=1] w1[x=2]
T2:  w2[x=3]
T3:  r3[x=a]
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Lets now look at Read Committed which if you remember from earlier is an isolation 
guarantee which is widely provided by default by conventional databases. The 
requirement for Read Committed is “No Dirty Writes” and “No Dirty Reads”. So in the 
example shown, T3 should never see a = 1 and if T2 aborts, T3 should not see a = 3.
Read Committed is enforced simply by making clients buffer their writes until commit 
OR even if they send them to the servers, they do not deliver their value to other 
readers until notified that writes have committed.
Notice however that if we use a lock-based implementation then Read Committed 
then the locking ensures that the values you read are the most recent. On the other 
hand, by buffering the writes we no longer have these guarantees. However it still 
satisfies Read-Committed in the implementation agnostic sense of the definition.



Example (HAT possible): Atomicity
● Once some effects of a transaction Ti are observed by another 

transaction Tx , afterwards, all effects of Ti are observed by Tx

● Useful for contexts such as:
○ Maintaining foreign key constraints
○ Maintenance of derived data

● Example: T2 must observe b=c=1. However it can observe a=1 or a 
= _|_ ( where _|_ is the initial value).

T1: w1[x=1] w1[y=1] w1[z=1]
   T2: r2[x=a] r2[y=1] r2[x=b] r2[z=c]
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So as mentioned earlier transactional atomicity is something that we can still enforce 
in a high availability environment. What that means is that once some effects of a 
transaction Ti  are observed by another transaction Tx, afterwards all effects of Ti are 
observed by Tx.
This is useful for contexts such as maintaining foreign key constraints or maintaining 
consistency between derived data and the original relations. 
So in the given example assume that all data items have the “null” original value. 
What we are saying is that once T2 observes a new value for a data item written by 
T1 then it cannot observe any old values. So in this case it should observe b = c = 1



Example (HAT possible): Atomicity
● HAT system (Strawman implementation) : 

○ Replicas store all versions ever written to every data item and 
gossip information about versions they have observed. 

○ Construct a lower bound on versions found on every replica.
○ At start of a transaction, clients can choose read timestamp 

lower than or equal to this global lower bound.
○ Replicas return the latest version of each item that is not 

greater than the client’s chosen timestamp.
○ If the lower bound is advanced along transactional boundaries, 

clients will observe atomicity.

● More efficient implementation in the paper.
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So here is a straw man implementation of this in a highly available environment. 
Replicas gossip information about versions of data items they have seen e.g. for 
every write the replica receives acks from other replicas once they have seen the 
write.
The lower bound is constructed when the client reads from a replica. 
Lower bound advancing along transactional boundaries means that assign a write 
timestamp to each write similar to Read Uncommitted.

Key point is we want to maintain atomicity even if a client goes to different replicas for 
different objects written within a single transaction (in other words we have 
transactional availability). Either the client observes the versions of all items before 
the transaction or it observes the versions of all items after the transaction. 



Example (HAT sticky possible): Read-my-writes
● Read-my-writes is a session guarantee.

● Not provided by a highly available system. 
○ Consider a client that executes the following transactions, 

as part of a session against different replicas partitioned 
from each other.

                             T1:  w1[x=1]
                             T2:  r2[x=a]

● However if a client remains sticky with one replica then this 
guarantee can be provided.
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So here is an example of a guarantee that can be provided with sticky availability but 
not with high availability. 
As explained earlier, Read-my-writes is a session guarantee that allows you to read 
any writes written in your session. E.g. this could be a comment that you just made on 
a Facebook post. You need to be able to read your comment when you render you 
page again within a session. 
Consider the example where the two transactions which are part of a session, 
execute on opposite sides of a partition. Clearly the write done by T1 cannot be read 
in T2.

However if we stick to the same replica then this guarantee can be provided.



Examples (HAT Impossible)
● Fundamental problem with HATs is that the cannot prevent 

concurrent updates.
● Thus they cannot prevent anomalies like Lost Updates and Write 

Skew. 
● Consider the following examples where clients submit T1 and T2 

on opposite sides of a network partition.
○ Lost Update:  

T1:  r1[x=100] w1[x=100 + 20 = 120]
T2:  r2[x=100] w2[x=100 + 30 = 130]

○ Write Skew:
                   T1:  r1[y=0] w1[x=1]
                      T2:  r2[x=0] w2[y=1] 47

Finally lets look at guarantees that cannot be enforced with high availability. 
The fundamental problem is that in the the face of a network partition we cannot 
prevent concurrent updates if we want our datastore to be available as well. Thus we 
cannot prevent anomalies like Lost Updates or Write Skew.
Just to explain these assume we execute two transactions T1 and T2 on opposite 
sides of a network partition. 

In the case of the Lost Update, whether a replica decides that the value of x is 120 or 
130, this could not have resulted from a serial execution of these transactions.
Similarly for the Write skew, assume that we had a condition that either x or y can be 
one but not both. In this case our invariant would be violated. Whereas this would not 
happen, if we executed these serially. 



Examples (HAT Impossible)
● Following Isolation guarantees require no Lost Updates:

○ Cursor Stability
○ Snapshot Isolation
○ Consistent Read

● Following Isolation guarantees require no Lost Updates and no 
Write Skew:
○ Repeatable Reads
○ Serializability

● As a result all of these are unachievable with high-availability.
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So a number of guarantees which require either preventing Lost Updates or both Lost 
Updates and Write Skew cannot be provided with high availability. These include …..



Conclusions
● The paper provides a broad review of how ACID guarantees relate 

to the CAP theorem.

● Shows that a number of ACID guarantees which are provided by 
default in most conventional databases can be provided in a highly 
available environment.

● Draws a line between what ACID guarantees are achievable and 
not-achievable with HATs.
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Summary
● The CAP Theorem is not a barrier which prevents the development 

of replicated datastores with useful consistency and availability 
guarantees

● Only prevents a tiny part of the design space
● We can still provide useful guarantees (even transactional 

guarantees)
● Leverage application information to maximize both availability and 

consistency relevant for a particular application scenario
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Extra Slides



Overview of HAT guarantees

● Serializability, Snapshot Isolation and Repeatable Read Isolation 
are not HAT-compliant
○ Intuition: They require detecting conflicts between concurrent 

updates.
● Read Committed, Transactional Atomicity and many other weaker 

isolation guarantees are possible.
○ via algorithms that rely on multi-versioning and client-side 

caching.
● Causal Consistency possible with sticky availability.

1) highly available systems are fundamentally unable to prevent concurrent updates 
to shared data items and cannot provide recency guarantees for reads.

2) Snapshot Isolation is an isolation guarantee provided by multi-version (MV) 
concurrency control
    a) At any time, each data item might have multiple versions, created by active and 
committed transactions.
    b) Reads by a transaction must choose the appropriate version (and are non-
blocking).
    c) Each transaction reads data from a snapshot of the (committed) data as of the 
time the transaction started, called its Start-Timestamp
    d) The transaction's writes (updates, inserts, and deletes) will also be reflected in 
this snapshot, to be read again if the transaction accesses (i.e., reads or updates) the 
data a second time.
    e) Updates by other transactions active after the transaction Start-Timestamp are 
invisible to the transaction (so no dirty reads)
    f)  At commit time a transaction gets a Commit Timestamp. 
    g) A transaction can commit if no other transaction did conflicting writes during its 
execution i.e. [StartTimestamp, CommitTimeStamp]
    e.g the following is snapshot isolation schedule: r1[x0=50] w1[x1=10] r2[x0=50] r2
[y0=50] c2 r1[y0=50] w1[y1=90] c1



Example (HAT possible): Cut Isolation
● Transactions read from a non-changing cut or snapshot over the 

data items.
● If a transaction reads the same data more than once, it sees the 

same value each time.
● Not quite Repeatable Read since this allows Lost Updates or Write 

Skew anomalies due to concurrent writes.

● HAT Implementation:
○ Clients store any read data such that the values they read for 

each item never changes unless they overwrite themselves.
○ Alternatively can be accomplished on sticky replicas using 

multi-versioning.
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