


Graphs are useful for representing real world data. There are many useful operations 
and analyses that can be applied. Therefore it is pertinent that large graphs can be 
represented in a database. The current leading model is the relational model. While 
graph data can be stored efficiently in relational databases, many of the more 
powerful graph operations are either hard to implement, or execute inefficiently. 
Therefore, the concept of graph database was introduced to solve this problem. 



A graph database is simply a database that is built on top of a graph data structure. 
Like in a graph, graph databases can store nodes and edges between nodes. Each 
node and edge is uniquely identified and may contain properties. For example, a 
node may contain the properties such as name, occupation, age, etc. An edge also 
has a label that defines the relationship between two nodes. A graph database will 
support graph operations such as traversals and shortest path calculations. Because a 
lot of the data we are interested in can be represented by graphs, a graph database 
that is able to balance scalability as well as querying functionality is a very powerful 
tool. Graph databases are very good at representing data that has a lot of many-to-
many relationships.



Like other NoSQL implementations, graph databases exhibit the same schema 
flexibility which is a huge advantage given that current schemas are liable to change. 
(More on flexibility next slide). Most graph databases also have their own querying 
languages that are more intuitive for querying graphs. Graph databases are also able 
to avoid the “join bomb” case that is possible using a relational model. (More on this 
later). Query times are also not affected by the total number of nodes (this is 
mitigated in a relational database with indices). Because graph databases do not have 
to do scans on tables, adding more nodes will in most cases not affect the execution 
time.

However to allow arbitrary initial nodes, graph databases must maintain bi-
directional relationships. Likewise with relational databases, certain graph databases 
are optimized for certain operations and must be tuned for your application. Finally, 
graph database querying languages are not unified, so migrating between graph 
databases will require more effort on the developer’s part.

- SQL has a hard time handling recursion. As a result, performing traversals on graph 
data is complicated. 
- Graph databases are able to query arbitrary depths and paths.
- Graph databases chase physical pointers; relational databases chase logical pointers 
(this is a result of RDB not treating edges as first class citizens)



As mentioned before, graph databases exhibit schema flexibility. In this example, we 
have a schema of a relational database that stores people, their name, age, the 
company they work at, who they know, and webpages that they like. The knows 
relation and likes relation is represented by join tables. Perhaps due to poor 
oversight, this schema only stores one company per person. What if we wanted to 
allow multiple companies? We could either allow duplicate rows or create another 
join table.



In this solution, we elected to create a join table. We would need to create the join 
table Company_Join, as well as a Company table, and migrated the data. This solution 
mirrors the structure of graphs more closely than allowing duplicate rows. It is 
important to note that for each relationship we wish to add, we must create another 
join table. However, a problem arises when the number of join tables increase to a 
large number. Because join tables represent edges, to do any meaningful work that 
requires traversals would require the relational database to execute a lot of joins. This 
is known as a join bomb and leads to reduced query performance.



This diagram is the graph database schema that represents the same people data that 
was presented before. The circles represent nodes, and the solid lines represent 
relationships. To solve the same problem in a graph database, we need only create a 
new edge from the Person node to the Company node. This is a much simpler 
solution. An important thing to note is that graph databases do not have to execute 
joins for each edge traversal, and avoid join bombs.
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There are several questions you might want to ask of data stored in a graph. List for 
me all the nodes or edges that have a certain property. Find subgraphs that match a 
given set of relationships. Further, figuring out if two nodes can reach each other 
(with a limit of hops, even) is easy to think of in a graph model.
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How do we translate these questions into actionable queries? Let’s use the popular 
Neo4j graph database as an example. You can query Neo4j using it’s SQL-like query 
language Cypher. There is no one query language for graph databases.
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First, let’s take a brief look at the Neo4j graph model. The Neo4j graph is composed 
of nodes and edges, with an unlimited number of edges between nodes. Nodes and 
edges can have properties, which are key-value pairs. They can also be given labels, 
which define the type of each node or edge. You can also add additional constraints 
to the schema like uniqueness.
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As I’ve said, we’ll be using a SQL-like language called Cypher to query a Neo4j 
database. You can do all of the usual sorts of operations using Cypher – retrievals, 
adding, updating, and deleting data. You can also manage the database itself by 
adding indexes and constraints.
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Let’s dive right in with an example of a simple Cypher query. Let’s say we have a 
simple social network graph and we’re trying to find everyone named “James” whose 
age is higher than 70 years. Cypher queries are read starting at the top. The MATCH 
keyword is just like SELECT in SQL – it indicates a retrieval. 

You indicate that you want a node with parentheses. Inside, you can declare an 
identifier which will bind to a matched node. A term after the colon indicates that we 
want the node to have a Person label – in effect, we are looking only for person 
nodes. If we didn’t specify this, we’d be searching through all kinds of nodes. 

Next, in the curly brackets, we have the list of necessary property key-value pairs. 
Here, we want nodes with the name property to be set to “James”. 

Then, we have a WHERE clause, which serves to prune the result set. We check to see 
if the age property of the node is greater than 70. Finally, we choose to return the 
matching nodes in their entirety. We can choose to return specific property values, 
too.
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Let’s try another. This time, we want to get all of James’s friends. We have the same 
node matching rule as before, but we add an edge and a connecting node. We restrict 
the edge between the two nodes to directed edges that are of the Knows type. We 
search for another node, a node of type Person, which is assigned the identifier 
friend. We finally return the customer and his friend, with all the nodes’ properties.
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We can make a simple modification to get friends that are two hops away (friends of 
friends.) We can see from the return statement that we’ll be returning matched 
Person nodes.
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We can add another requirement – that the friend likes Soccer. The database tries to 
match two edges now, connected by a matched friend node.
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We can also find shortest paths and work with them as first-class objects. We used 
the shortestPath function to find a path between two nodes. Here, we constrain 
paths to be within 3 hops of Avery and James. The resulting path (the list of nodes 
and edges in the path) and it’s length are returned.
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You can imagine how creating new nodes would work. We just use the same node 
and edge syntax to modify the database.
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To add an edge between two existing nodes, we have to MATCH to find the nodes 
first, and then use the nodes’ identifiers to create a new edge between them. Returns 
are optional.

20



Now that we have a grasp of how Cypher queries work, we can take a look at how 
they’re implemented. To run a query, Neo4j parses the query and determines which 
nodes to start traversing the graph with. This step can be sped up using indices on 
node properties and labels. Then, you do a search from each of the starting nodes to 
see if you can match the edges and nodes. Think of this as something like depth-first 
search. If you find a match, return it.
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Cypher is a pattern matching language - it matches as much stuff as it can. Neo4j
doesn’t have an very powerful optimizer yet. The way you write your queries matters 
a lot since they’re more-or-less directly translated into action plans.



To give you an idea of the sort of things you can do to improve query runtime, we’ll 
take an example. We’re trying to find the friends of a particular node (Ryan Gosling). 
We specify the start nodes to be every node, which is obviously slow. With 30k nodes 
and 120k edges, this takes 150ms.



Now, let’s add a Person label to Ryan, so we can find him faster.



So, now Neo4j will scan for only the nodes with the Person label. We brought the 
time down to about 80ms. Just because we add a label doesn't mean it's 
automatically indexed, though.



We need to explicitly add indexes on the properties that you're likely to query against. 
Here, we do it for the name properties of label nodes.



With the addition of the index, we bring the time down to 6ms. The index makes 
searching logarithmic instead of linear.



The main take-away is that the way your write your query has a big impact on it’s 
performance. Make sure to use labels, indices, and be careful about things like 
predicate order.
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The motivation for this part of the presentation is to compare Graph DBs with 
relational DBs from a social networking application point of view. Why? This is mainly 
to justify the huge spurt in the adoption of graph DBs that has been seen in such 
applications though they are also being adopted in sectors like HR, Finance, etc The 
benchmarks proposed are from an academic point of view, focusing on query times 
(seconds) rather than cost ($) but nevertheless are important microbenchmarks 
showing exactly where graph DBs perform better than relational DBs rather than 
simply saying that graph DBs are better for all graph related queries. Also, albeit this 
is less important, it gives a general idea about how one should go about comparing 
two frameworks / systems.
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There have been initiatives likes LDBC and LinkBench (based off of Facebook), 
however, they measure ops like: load time or complete graph traversal, without 
focussing on a specific application like social networks and the wide range of queries 
that manifest in such a scenario. Also they are more industry-oriented benchmarks 
whereas this serves to be more academic. More details on next slide..



Authors took Neo4j and PostgreSQL as a representative of graph DBs and relational 
DBs respectively. The data model was chosen to mimic both social networks and 
recommendation systems. So we have an attributed bi-partite graph with two types 
of nodes and edges (directed and undirected). R-MAT is when one recursively adds 
edges to an adjacency matrix starting from the empty matrix, based on a chosen 
initial probability which then changes with the height of the recursion tree. The social 
data was based off Facebook’s Annual Report 2012.



These are the list of primitive queries that span 5 major query types: select, 
adjacency, reachability, pattern matching and summarization. Most of the queries, if 
not all, over social networks / recommendation systems are composed of a few of 
these primitive queries, hence these were considered an essential component of the 
benchmark.



The test data was an XML file which contained data to be used in the creation of 
query instances. The performance metrics are standard and since this is an academic 
benchmark they did not include metrics like price per transaction, etc
Next slide goes into more detail about how many instances, the setup, etc



Representative queries were chosen from each of the 5 categories. The machine is a 
standard high-end desktop system (2012)



36





The important takeaway here is that it is mainly the reachability queries that justify 
using graph DBs. If an organization is already on a system running relational DBs and 
most of their queries fall into the other 4 categories, then the costs of migrating to 
graph DBs (which involve both financial and personnel costs) are not justified, even 
though graph DBs do perform better in other queries. This has been highlighted in a 
talk given by the CEO of Neo technology himself, where he says that graph DBs need 
to perform 100x better to justify a migration based on current customers’ mindset.







While there are some distributed frameworks available, most of existing distributed 
frameworks, such as Hadoop, are ill-suited for performing certain algorithms on 
graphs. For example, how can we use MapReduce to find a shortest path between 
two nodes in a graph? To find a shortest path, we need to compute shortest paths to 
all nodes in between, which are largely depended on previously-computed shortest 
paths to visited nodes. As we can see, there is no clear way to partition this problem 
into subproblems for workers to individually solve and aggregate results. In graph 
operations, results of later steps are often depended on results of previous steps 
making it very hard to divide the problem into subproblems to be distributed to 
different workers.



To address the issue, Google developed what is called Pregel to allow the execution 
of arbitrary graph algorithms on graphs in distributed ways. Pregel is easily scalable 
by adding more Pregel instances, or workers, and it ensures fault tolerance via the 
use of Master and Worker pings and saved states. It takes a graph as an input, and 
outputs either a set of vertices, an aggregated value, or an isomorphic graph based 
on the query.



Initially the system partitions the graph into n sub-partitions and then distribute them 
across n Pregel instances. This happens only when a graph is inserted to the system.

Now, here is an high-level overview of how the actual algorithm works. When the 
system receives a query to answer, it analyze the query’s search path to pick workers 
whose partitions need to be accessed. Now, each of those Pregel instance marks all 
its vertices as active. The algorithm continuously applying superstep, which until 
there is no more active vertex.



Now, here is how supersteps, which are applied to all workers in parallel, work. At the 
beginning of each superstep, a worker must save states of all its vertices. This allows 
the work of a failed worker to be quickly reallocated and resumed by another healthy 
worker. Now, an user-defined graph operation is applied to all active vertices in 
parallel. Vertices whose states have been modified by the graph operation in this 
superstep send out messages to their neighbors with their updated states. Vertices 
who did not send out messages become halt. However, a halt vertex may become 
active again once it receives a message from its neighbor(s). This is repeated until all 
vertices of affected Pregel instances become halt.



Now, we will use max value propagation as an example to demonstrate how 
supersteps work. Max value propagation is basically a graph operation where all 
vertices become populated with max value founded in the graph. At the start of 
algorithm, all vertices are active, which are represented by white circles. Edges 
between vertices are represented by solid lines. At initial superstep, all vertices 
simply send out their current values to their neighbors.



Messages between vertices are represented by dotted lines, and we can see that all 
vertices have incoming messages at superstep 1. Now, at superstep 1, each vertex 
compares its own value with received values. A vertex updates its own value if one of 
its incoming messages had a greater value, and then again sends out messages to its 
neighbors with its updated value. However, there are two vertices whose values did 
not change, so they simply become halt, which is denoted by grey circles.



At superstep 2, we can clearly see that the third vertex becomes active again when it 
receives a message. Because the value of this vertex changed, its neighbors’ values 
may be affected thus it must send out messages with its updated value.



At superstep 3, all vertices are populated with highest value possible, 6, and they all 
voted to become halt. Thus, the algorithm terminates and returns the result (for this 
example, nothing is returned).

Also, realize that when any of these edges can be connecting two partitions in 
different workers. In which case, messages sent between two nodes become inter-
machine messages, which are definitely more expensive than regular messages.



We mentioned that during the initialization step, Pregel divides a graph into partitions 
and distribute them among workers. To do this, Pregel simply computes the hash of 
each vertex, mod the resulting hash by the number of partitions, and then assign the 
vertex to partition based on that number. This results in non-optimal partitions, 
which obviously hurts the performance of a distributed graph database system since 
more messages sent during each superstep become inter-machine messages.

Sedge is a Pregel-based graph partition management system that minimizes these 
inter-machine communications in order to decrease the average query response time 
and increase the overall query throughput. Furthermore, Sedge dynamically 
repartition graphs based on workloads and query types in order to maximize 
parallelism while processing queries.



Sedge implements a two-level partition management. This means that each Pregel 
instance maintains both primary partitions and secondary partitions separately.

Because primary partitions consist of all vertices in a graph, queries are typically 
answered using primary partitions. One given vertex can only belong to one primary 
partition, and each partition’s boundary does not cross another partition’s boundary. 
Primary partitions are repartitioned only when the system receives a large volume of 
cross-partition queries. When repartitioned, all cross-partition edges become internal 
edges allowing the system to handle previously cross-partition queries much more 
efficiently.



Partition replication is a type of on-demand partitioning that deals with internal 
hotspots. An internal hotspot is defined as a part of graph, which is located within 
one partition, that is very frequently accessed while processing a query. When a 
worker receives a very heavy workload due to internal hotspots, the system replicates 
this partition in slack worker’ secondary partitions. A slack worker is defined as a 
worker with infrequently-accessed secondary partitions. By doing so, we distribute 
the heavy workload of one worker across several workers increasing parallelism.



A cross-partition hotspot is basically an internal hotspot that spans on more than one 
partition. In addition to causing heavy workloads on few workers, a cross-partition 
hotspot forces those workers to much more frequently communicate with each 
other. In order to resolve this issue, Sedge generates a new partition covering the 
cross-partition hotspot and allocates it to secondary partitions of several slack 
workers. Now, the cross-partition hotspot is handled by a single machine effectively 
reducing the communication overhead.
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The reason to present these slides were to given an idea of how to use Neo4j to 
represent a highly complicated social networking application where the graph 
structure itself gets modified over time. However, since we are already presenting 
simple examples of how to represent queries using Cypher, I don’t think this part of 
the presentation is justified. We can remove this and include a brief presentation of 
how relational DBs can be better used to represent a graph by using a graph 
abstraction keeping the underlying storage the same, just to provide a different 
perspective.







This needs to be explained on the board











Here we go into more detail as to why the authors chose Neo4j as a representative of 
graph DBs. Relational DBs have been around for quite a bit so most of the systems 
chosen would be mature so no justification for choosing PostgreSQL was made.  


