
Apache HBase: the
Hadoop Database

Yuanru Qian, Andrew Sharp, Jiuling Wang

Today we will discuss Apache HBase, the Hadoop Database. HBase is designed
specifically for use by Hadoop, and we will define Hadoop soon, but first...

1

Agenda
● Motivation
● Data Model
● The HBase Distributed System
● Data Operations
● Access APIs
● Architecture

Our agenda...

2

Motivation
● Hadoop is a framework that supports operations on a

large amount of data.
● Hadoop includes the Hadoop Distributed File System

(HDFS)
● HDFS does a good job of storing large amounts of data,

but lacks quick random read/write capability.
● That’s where Apache HBase comes in.

Tells the story why we need HBase.

3

Introduction
● HBase is an open source, sparse, consistent

distributed, sorted map modeled after Google’s
BigTable.

● Began as a project by Powerset to process massive
amounts of data for natural language processing.

● Developed as part of Apache’s Hadoop project and runs
on top of Hadoop Distributed File System.

What is HBase?

Reference NoSql group’s presentation on BigTable

4

Big Picture

HDFS

HBase

Java Client

MapReduce
Hive/Pig

Thrift/REST
Gateway

Your Java
Application

ZooKeeper

Here’s where Apache HBase fits into the Hadoop architecture. Here we can see
Hadoop broken into a number of modules, but it’s best to simply think of Hadoop as a
large set of jobs to be completed over a large cluster. Each of these jobs needs data
input to operate on and a data sink to place its output; HBase serves both of these
needs. HBase uses HDFS, the Hadoop FileSystem, for writing to files that are
distributed among a large cluster of computers. For the purposes of this lecture, it is
unnecessary to go into great detail on HDFS.

Zookeeper is another largely unnecessary detail. It is sufficient to understand that it
gives a client the address of the data it needs.

5

An Example Operation
The Job:
A MapReduce job
needs to operate on a
series of webpages
matching *.cnn.com

row key column 1 column 2

“com.cnn.world” 13 4.5

“com.cnn.tech” 46 7.8

“com.cnn.money” 44 1.2

The Table:

An example use case.

6

The HBase Data Model

7

Data Model, Groups of Tables
RDBMS Apache HBase

database

table

namespace

table

Now we’ll discuss the unique way that HBase stores its data. At a high level, it works
very similar to a typical relation database machine. HBase organizes its tables into
groups called namespaces. It is safe to see namespaces as no different than the
databases that we used for Berkeley DB.

8

Data Model, Single Table
RDBMS

table col1 col2 col3 col4

row1

row2

row3

This is what we’re used to seeing for a table.

9

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1

row2

row3

columns are
grouped into
Column
Families

To start, HBase introduces Column Families, which you can see highlighted in blue. A
Column Family is a group of columns. There are 2 primary advantages to grouping
columns into families. Firstly, when defining a schema in HBase, you only need to
define the Column Families of a table. You are free to add columns on the fly. This
means that different rows can have different columns, and allows for high
performance on sparse tables.

Columns – A Column Family is made of one or more columns. A Column is identified by a
Column Qualifier that consists of the Column Family name concatenated with the Column
name using a colon – example: columnfamily:columnname. There can be multiple Columns
within a Column Family and Rows within a table can have varied number of Columns.

Column Families – Data in a row are grouped together as Column Families. Each Column
Family has one more Columns and these Columns in a family are stored together in a low
level storage file known as HFile. Column Families form the basic unit of physical storage to
which certain HBase features like compression are applied. Hence it’s important that proper
care be taken when designing Column Families in table. The table above shows Customer
and Sales Column Families. The Customer Column Family is made up 2 columns – Name and
City, whereas the Sales Column Families is made up to 2 columns – Product and Amount.

10

Sparse example
Row Key fam1:contents fam1:anchor

“com.cnn.www” contents:html =
“<html>...”

contents:html =
“<html>...”

“com.bbc.www” anchor:cnnsi.com =
"BBC"

anchor:cnnsi.com =
"BBC"

Here we show a sparse table as an example. You can see that not every row has a
value for every column. Since HBase allows us to define columns per-row, we can
avoid wasting space in this situation.

11

table fam1

fam1:col1 fam1:col2

row1

row2

fam2

fam2:col1 fam2:col2

row1

row2

Data is physically
stored by
Column Family

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1

row2

actuality

concept

The second, and most important, advantage to having Column Families is the way
they impact how data is stored via HBase. We are familiar with the strategy shown on
the left, where data is stored first by row and then by column. If a database has few
columns, this works fine for locality. However, HBase is designed to handle
thousands of columns. If usage patterns indicate that most user operations only need
a few columns from each row, it is inefficient to scan all of a row’s columns for data.
This is where Column Families come in. HBase stores data first by column family,
then by row, then by column, as seen on the right. If a user designs their schema
intelligently, they will put columns that are used in conjunction into the same column
family. That way only the necessary column data is read. This represents an
improvement to locality.

12

table fam1

fam1:col1 fam1:col2

row1

row2

fam2

fam2:col1 fam2:col2

row1

row2

Column Families
and Sharding

table fam1

fam1:col1 fam1:col2

row3

row4

fam2

fam2:col1 fam2:col2

row3

row4

Shard A Shard B

This advantage to having Column Families persists after our data is sharded by row
key. Since a table is sharded into regions which are then distributed across
regionservers, if a full table scan is necessary for a subset of its columns, this design
allows for high parallelism and high performance.

13

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1 v1

v2

row2 v1

v2

(row, column)
pairs are
Versioned,
sometimes
referred to as
Time Stamps

The last bit of extra that HBase adds to its tables is Versions. It can hold up to 3 versions of
data for each cell ((row, column) pair).

Version – The data stored in a cell is versioned and versions of data are identified by the
timestamp. The number of versions of data retained in a column family is configurable and this
value by default is 3. Version is a long integer.

14

Data Model, Single Table
Apache HBase

table fam1 fam2

fam1:col1 fam1:col2 fam2:col1 fam2:col2

row1 v1

v2

row2 v1

v2

A (row,
column,
version) tuple
defines a Cell.

Self-explanatory.

15

Data Model
● The most basic unit is a column.
● Rows are composed of columns, and those, in turn, are

grouped into column families.
● Columns are often referenced as family:qualifier.
● A number of rows, in turn, form a table, and there can

be many of them.
● Each column may have multiple versions, with each

distinct version contained in a separate cell.

Review of all terms.

16

HBase’s Distributed
System

17

Scalability thru
Sharding

a complete table

billions of rows...

rows 1 through 1000

rows 1001 through 2000

Regions

etc.

split in
to

We’ve discussed sharding in this class, we should all be somewhat familiar with it.
HBase implements sharding and relies heavily upon it for high performance. HBase
implements sharding by splitting complete tables by row range into smaller pieces. In
HBase parlance, we call these pieces “Regions”.

Recall that a shard of a database includes all column families for that row range.

18

Scalability thru Sharding

rows 1 through 1000

rows 1001 through 2000

rows 2001 through 3000

Regions RegionServers

Server A

Server B

Each “Region” is assigned to some machine. We call such a machine a
“RegionServer”. Any number of regions can be assigned to any RegionServer.
However, it should be noted that the more spread-out a table is sharded across
RegionServers, the higher performance will be gained for a full-table scan.

19

Scalability thru Division of Labor
An HBase Distributed System

Region

. Master

RegionServersZooKeeper

We’ve already shown that a RegionServer is a machine that is responsible for some
number of regions. If you want to access or update some piece of data, you simply
contact the appropriate RegionServer and perform the operation. However, the first
time that you need data from a certain Region, you need to know which RegionServer
to contact. This is the purpose of the ZooKeeper machine.

20

Scalability thru Division of Labor
HBase

Region

. Master

RegionServers

HDFS

ZooKeeper

A quick note about the relation between HBase and HDFS: HBase RegionServers do
not actually hold data, they are just responsible for getting to it. The data is held by
HDFS, which is responsible for such tasks as replication.

21

ZooKeeper

Division of Labor, Master

Region

. Master

RegionServers

● Schema changes
● Moving Regions across

RegionServers (load balancing)

The Master is contacted during any schema change, and is responsible for load-
balancing, in which Regions are moved across RegionServers.

22

ZooKeeper

Division of Labor, ZooKeeper

Region

. Master

RegionServers

● Locating Regions

The ZooKeeper is contacted the first time a client accesses data, in order to get its
address. After that, the address is cached.

23

Division of Labor, RegionServer

Region

. Master

RegionServers

● Data operations (put, get,
delete, next, etc.)

● Some region splits

ZooKeeper

We’ve already discussed RegionServers a good deal, but we’d like to specify their
role one more time. Each RegionServer is responsible for some number of regions. If
you want to interact with data, you must talk to the appropriate RegionServer. Also, if
a Region grows too large (through a series of insert commands to that Region), a
RegionServer can split the Region on its own and maintain the two Regions that
resulted from the split. However, if it begins to have too many Regions, it must contact
the master to move a Region to another, less-busy RegionServer.

24

The HBase Distributed System
Region
● a subset of table’s rows, like a

range partition
● Automatically sharded

RegionServer
● Servers data for reads and

writes for a group of regions.

Master
● Responsible for coordinating the

RegionServers
● Assign regions, detects failures

of RegionServers
● Control some admin functions

ZooKeeper
● Locate data among

RegionServers

A final review of the terminology just discussed.

25

Availability thru Automatic Failover
● DataNode failures handled by HDFS(replication)

● RegionServer failures handled by Master re-assigning

Regions to available RegionServers.

● HMaster failover is handled automatic by having

multiple HMasters.

HBase also achieves a good availability for different components.

26

Region

. Master

RegionServersZooKeeper

illustration of the failover for data nodes, region servers and master.

27

How to Access to HBase?

Java is the native language to implement HBase and thus is the native API for calling
operations.

28

Java Client Interfaces
● Configuration holds details where to find the cluster and tunable settings.

Roughly equivalent to JDBC connection string.

● HConnection represents connections to the cluster.

● HBaseAdmin handles DDL operations(create,list,drop,alter,etc)

● HTable is a handle on a single HBase table. Send “commands” to the

table.(Put,Get,Scan,Delete).

Similar to the use of Berkely DB when you set up the environment.

29

Scan
//Return the result of columns called cf:qualifier from row 1 to row 1000.
HTable table = ... // instantiate HTable
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"));
scan.setStartRow(Bytes.toBytes("row1")); // start key is inclusive
scan.setStopRow(Bytes.toBytes("row1000")); // stop key is exclusive
ResultScanner scanner = table.getScanner(scan)
try {
 for(Result result : scanner) {
 // process Result instance
 }
} finally {
 scanner.close();
}

scan columns called cf:qualifier from row 1 to row 1000.

30

Scan
//Return the result of column family called cf from row 1 to row 1000
HTable table = ... // instantiate HTable
Scan scan = new Scan();
scan.addFamily(Bytes.toBytes("cf"));
scan.setStartRow(Bytes.toBytes("row1")); // start key is inclusive
scan.setStopRow(Bytes.toBytes("row1000")); // stop key is exclusive
ResultScanner scanner = table.getScanner(scan)
try {
 for(Result result : scanner) {
 // process Result instance
 }
} finally {
 scanner.close();
}

scan column family called cf from row 1 to row 1000.

31

Get
Return an entire row
HTable htable = ... // instantiate HTable

Get get = new Get(Bytes.toBytes("row1"));

Result r = htable.get(get);

Return column family called cf
HTable htable = ... // instantiate HTable

Get get = new Get(Bytes.toBytes("row1"));

get.addFamily(Bytes.toBytes("cf"));

Result r = htable.get(get);

Return the column called cf:qualifier
HTable htable = ... // instantiate HTable
Get get = new Get(Bytes.toBytes("row1"));
get.addColumn(Bytes.toBytes("cf"),Bytes.
toBytes("qualifier"));
Result r = htable.get(get);

Return column family in version2.
HTable htable = ... // instantiate HTable
Get get = new Get(Bytes.toBytes("row1"));
get.addFamily(Bytes.toBytes("cf"));
get.setTimestamp(v2);
Result r = htable.get(get);

By executing different methods in get class, you can get an entire row, or a column
family called “cf” of row1, or a column called cf:qualifier of row1, and in particular, the
version2 of column family of row1.

32

Delete
Delete an entire row
HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes("row1"));

htable.delete(delete);

Delete the latest version of a specified
column
HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes("row1"));

delete.deleteColumn(Bytes.toBytes("cf"),Bytes.

toBytes("qualifier"));

htable.delete(delete);

Delete a specified version of a
specified column

HTable htable = ... // instantiate HTable

Delete delete = new Delete(Bytes.toBytes

("row1"));

delete.deleteColumn(Bytes.toBytes("cf"),

Bytes.toBytes("qualifier"),version);

htable.delete(delete);

1. delete an entire row
2. delete the latest version of row1’s column cf:qualifier
3. delete a particular version of row1’s column cf:qualifier

33

Put
Put a new version of a cell using
current timestamp by default

HTable htable = ... // instantiate HTable

Put put = new Put(Bytes.toBytes("row1"));

put.add(Bytes.toBytes("cf"),Bytes.toBytes

("qualifier"),Bytes.toBytes("data"));

htable.put(put);

Overwriting an existing value

HTable htable = ... // instantiate HTable

Put put = new Put(Bytes.toBytes("row1"));

put.add(Bytes.toBytes("cf"),Bytes.toBytes

("qualifier"),timestamp,Bytes.toBytes

("data"));

htable.put(put);

1. if not specified, put add a new version
2. overwriting an existing value if version also stores.

34

The region server keeps data in-memory until enough is collected to warrant a flush to
disk, avoiding the creation of too many very small files.

35

1. The client initiates an action that modifies data.
2. Modification is wrapped into a KeyValue object instance and

sent over to the HRegionServer that serves the matching
regions.

3. Once the KeyValue instance arrives, they are routed to the
HRegion instances that are responsible for the given rows.

4. The data is written to the Write-Ahead Log, and then put into
MemStore of the actual Store that holds the record.

5. When the memstores get to a certain size, the data is
persisted in the background to the filesystem.

Implementation Details of Put

How the method is implemented in a low level of the system?
If the server crashes, the WAL can effectively replay the log to get everything up to
where the server should have been just before the crash. It also means if writing the
record to the WAL fails, the whole operation is considered as a failure.
It shows the high availability of Hbase.

The KeyValue object contains the data as well as the coordinates of one specific cell.
The coordinates are the row key, name of the column family,column qualifier, and
timestamp.

36

Join?
● HBase does not support join.

○ NoSql is mostly designed for fast appends and key-based retrievals.
○ Joins are expensive and infrequent.

● What if you still need it?
○ Write a MapReduce join to make it.
○ At Map function, read two tables. The output key should be the value on the

joined attribute for table1 and table2.
○ At Reduce function, “join” the tuple that contains the same key.
○ Other implementations using Hive/Pig/...

In practice, SQL is based on joins and related low-level issues like foreign keys. SQL entices
people to normalize their data. Normalization fragments databases into smaller tables which is
great for data integrity and beneficial for some transactional systems. However, joins are
expensive. Moreover, joins require strong consistency and fixed schemas.

In turn, avoiding join operations makes it possible to maintain flexible or informal schemas,
and to scale horizontally. Thus, the NoSQL solutions should really be called NoJoin because
they are mostly defined by avoidance of the join operation.

37

http://en.wikipedia.org/wiki/Join_(SQL)

Other Clients
Use some sort of proxy that translate your request into an
API call.
● These proxies wrap the native Java API into other

protocol APIs.
● Representational State Transfer(REST)
● Protocol Buffers, Thrift, Avro

38

REST
● is a protocol between the gateways and the clients.
● uses HTTP verbs to perform an action, giving

developers a wide choice of languages and programs to
use.

● suffers from the verbosity level of the protocol. Human-
readable text, be in plain or XML-based, is used to
communicate between the client and server.

REST defines the semantics so that the protocol can be used in a generic way to
address remote resource. By not changing the protocol, REST is compatible with
existing technologies, such as web servers, and proxies. Resources are uniquely
specified as part of the request URI.

A network gateway is an internetworking system capable of
joining together two networks that use different base protocols.

39

Gateway
Server

Region
Server

Rest Client
Server

Request following the
semantics defined by
REST.

Sent through HTTP.

Translate the
request into Java
API call.

REST

Rest Client

Illustration example.

40

Improvements
Companies with large server farms,
extensive bandwidth usage, and many
disjoint services felt the need to reduce
the overhead and implemented their
own Remote Procedure Call(RPC)
layers.
● Google Protocol Buffers
● Facebook Thrift
● Apache Avro

For this image, you will see two approaches of clients interacting with HBase Cluster.

External Gateway Clients: on top of the region server processes, sharing the same
physical machine. There is no true recommendation for how to place the gateway
servers. You may way to collocate them, or have them on dedicated machines.

External API Clients: run ThriftServer or REST servers directly on the client nodes.
For example, when you have web servers constructing the resultant HTML pages
using PHP, it is better to run the gateway process on the same server. That way, the
communication between the client and the gateway is local, while the RPC between
the gateway and HBase is using the native protocol.

REST client -> client server -> gateway server -> invoke RPC to HBase Cluster->
return data

41

Architecture
storage structures:

● B+ Trees (typical RDBMS storage)
● Log-Structured Merge-Trees(HBase)

42

B+ Trees

same as what we’ve learned, won’t talk too much

43

Log-Structured Merge-Tree
● Log-structured merge-trees, also known as LSM-trees, follow a different

approach. Incoming data is stored in a logfile first, completely
sequentially. Once the log has the modification saved, it then updates an
in-memory store that holds the most recent updates for fast lookup.

● When the system has accrued enough updates and starts to fill up the in-
memory store, it flushes the sorted list of key → record pairs to disk,
creating a new store file. Then the updates to the log can be thrown away,
as all modifications have been persisted.

44

Log-Structured Merge-Tree
How a multipage block is merged from the in-memory tree into the next on-disk tree:

The store files are arranged similar to B-trees, but are optimized for
sequential disk access where all nodes are completely filled and
stored as either single-page or multipage blocks. Updating the
store files is done in a rolling merge fashion, that is, the system
packs existing on-disk multipage blocks together with the flushed
in-memory data until the block reaches its full capacity, at which
point a new one is started.

45

Compare: Seek VS Transfer
● B+ trees work well until there are too many modifications, because they force you to perform

costly optimizations to retain that advantage for a limited amount of time. The more and faster
you add data at random locations, the faster the pages become fragmented again. Eventually,
you may take in data at a higher rate than the optimization process takes to rewrite the existing
files. The updates and deletes are done at disk seek rates, rather than disk transfer rates.

● LSM-trees work at disk transfer rates and scale much better to handle large amounts of data.
They also guarantee a very consistent insert rate, as they transform random writes into
sequential writes using the logfile plus in-memory store.

46

Compare: Seek VS Transfer
As discussed, there are two different database paradigms: one is seek and the
other is transfer.

Seek is typically found in RDBMS and is caused by the B-tree or B+ tree
structures used to store the data. It operates at the disk seek rate, resulting in
log(N) seeks per access.

Transfer, on the other hand, as used by LSM-trees, sorts and merges files
while operating at transfer rates, and takes log(updates) operations.

47

Compare: Seek VS Transfer
At scale seek, seek is inefficient compared to transfer:

Seek Versus Sort and Merge in Numbers
batched updates:
When a large number of new keys are to be inserted (or deleted)
into a B-tree at about the same time, it is often profitable to sort the
keys in the main memory before performing updates to the B-tree
on disk. Thus, updates falling into the same leaf of the B-tree can
be performed simultaneously and disk accesses are saved.

48

Cluster Architecture

HDFS

RegionServer RegionServerRegionServer

Client
HMaster

HMaster

Zoo Keeper

client finds
Region Server’s

location provided
by ZooKeeper

Master assign
regions and

achieves load
balacing

Clients reads
and writes rows

by directly
accessing

Region Servers

This is a more complex diagram of the distributed architecture of HBase. We won’t go
into detail about ZooKeeper.

49

-ROOT- and .META.
Zookeeper records the location of -ROOT- table
-ROOT- records Region information of .META. tables
.META. records Region information of user tables

The mapping of Regions to Region Server is kept in a system table called .
META. When trying to read or write data from HBase, the clients read the
required Region information from the .META table and directly communicate
with the appropriate Region Server. Each Region is identified by the start key
(inclusive) and the end key (exclusive)

50

Communication Flow

a new client contacts the ZooKeeper ensemble(a separate cluster of
ZooKeeper nodes).It does so by retrieving the server name (i.e., hostname)
that hosts the -ROOT- region from ZooKeeper.

query that region server to get the server name that hosts the .META. table
region containing the row key.

query the reported .META. server and retrieve the server name that has the
region containing the row key the client is looking for.

51

Communication Flow

52

example

53

Summary
● Motivation -> Random read/write access

● Data Model -> Column family and qualifier, Versions

● Distributed Nature -> Master, Region, RegionServer

● Data Operations -> Get,Scan,Put,Delete

● Access APIs -> Java, REST, Thrift

● Architecture -> LSM Tree, Communication Workflow

Feature
Random, real-time read/write access to data
Linear scalability to store hundreds of TB of data
Automatic and configurable sharing of tables
Strictly consistent reads and writes
High availability through automatic failover

54

Questions?

55

ZooKeeper
● ZooKeeper is a high-performance coordination service for distributed applications(like HBase). It

exposes common services like naming, configuration management, synchronization, and group
services, in a simple interface so you don't have to write them from scratch. You can use it off-
the-shelf to implement consensus, group management, leader election, and presence protocols.
And you can build on it for your own, specific needs.

● HBase relies completely on Zookeeper. HBase provides you the option to use its built-in
Zookeeper which will get started whenever you start HBase.

● HBase depends on a running ZooKeeper cluster. All participating nodes and clients need to be
able to access the running ZooKeeper ensemble. Apache HBase by default manages a
ZooKeeper "cluster" for you. It will start and stop the ZooKeeper ensemble as part of the HBase
start/stop process.

56

