
Open by mentioning that this is work we are actively working on 







Most relational database systems are part of a client-server architecture, we don’t 

necessarily need that here 

Since the entire database lives in main memory along with the client, we don’t need too 

much of a client-data abstraction layer. 

 

Since there’s only 1 schema, this will also allow us to generate a schema-dependent API 

that integrates well with 

The data the database holds. 



The schema in MercuryDB is simply a set of Java classes that are generated.  

The generated code exposes an API to the client, allowing the client to perform query 

operations on the database. 

 

Since everything is in main memory already, we want to keep from using more memory 

where we can, so 

Query operations do not buffer streams while processing queries. 

 

It is more of the iterator-driver “push-style” approach. 

 

There is only 1 user here (for now) as well, so we don’t need to worry about concurrency 

and transactions (yet). 



The main point here is that since the database is schema dependent, 

We shouldn’t have to generate the schema too often. Still though, it is very fast. 

 

There are 4 main steps to use MercuryDB (compile runmercury addhooks querydatabase) 

 

So you can’t write queries until the generated schema is connected to the client. 





So MercuryDB’s main goal here is to generate a schema. 

 

After given a set of class files, it will generate a schema (.java files) and add hooks into the 

input code (original set of .class files) to keep the database consistent (more on this later). 

 

So now, Target essentially becomes a modified target. The source code for target is not 

completely representative of its compiled class files at this point. 

 

Now, the Client application can use query methods defined by Mercury to query the target. 



After the schema has been created and the client is running, this is the control flow 

 

The client will exercise Target’ API – creating objects, setting fields, etc. 

This will spawn updates in the database 

 

Then the client will query the state of the database 

To which mercury will reply with the result 

 

And, of course, this loop runs forever until the program ends. 



Here is an example of what an input package might look like.  

These classes are modelled like something that you would typically see in a database,  

but MercuryDB could handle any input package that abides by its (small) set of constraints. 



Here is what MercuryDB will produce when given the previous package as input.  

Note that there is a 1-1 mapping from classes to tables. 

 

Order - OrderTable 

Odetail - OdetailTable 

Customer - CustomerTable 

Employee - EmployeeTable 

 

The public operations/methods have been omitted here,  

but you can still see the table and data structures present that contain the data 

in the database. 



This is what the input classes look like and how the generated schema integrates with 

them. 

 

The arrow between each table class and its corresponding container class represents the  

tables of container class objects themselves.  

 

Both generated schema and input code work together. 





We’ll start by explaining two key pieces of the API: 

 

Table Scan - returns a stream of the objects it contains i.e. EmpTable.scan() returns 

Stream<Emp> 

 

Filter methods - filters a stream of some object such that one of its fields is some value, in 

this case Emp.id=5 

 

 



Since filters accept a Stream and return a Stream, 

Filters can be chained together. 

 

So we can make something like the query here using only filters. 

 

Notice in the API how the field is specified.  

The schema exposes these methods that will allow the filter function to extract the field “id” 

or “name” from a given emp object. 

It is not done by reflection, so it is very fast. 

 



Based on the examples you’ve seen so far it might appear that if you want to filter objects 

matching a set of values, you might have to build these diagrams more than once, but our 

API 

supports filtering on a set of values. 

 

To use the filter method you simply have to specify the field you want to filter, 

and then you can specify any number of values for that field, and we will return objects 

that match any of those values. 

 

A hypothetical SQL query with value unions might look like this, and would translate 

to the following code in our API. 



This slide is mainly to show two things:  

(1) filters can be applied after any kind of operation 

that produces a stream that contains the type you are trying to filter. 

 

(2) Filters use Java varargs to implement a union operation on field values in the predicate. 

 

If you place a filter in the query over a type that the stream does not contain, we throw a 

helpful error, 

so that the user knows what they did did not make any sense. 



At this point, it is important to note that MercuryDB supports indexes. 

The client can specify the index by using the @Index annotation in the input source 

package. 

There is a 1-1 mapping of indexes to index structures in the database. 

 

Indices are implemented by Maps 

key=type of field 

value= type of Object the table contains 

 

So if there is an index on Emp.id, there will be an idIndex in the EmpTable class. 

 

These table indices are not intended to be used directly. They are used in the Tables’ query 

methods describe next. 



Using the Tables’ query methods provide an API that exposes an easy way 

to retrieve Object instances from the database where one or more of its fields are equal to 

some value. 

 

There are two cases: 

   Field is not indexed -> do same as before: scan and filter 

   Field is indexed -> do an index retrieval, we already have the set that matches the 

constraints of the predicate. 



This is the same as before, but we introduce the idea of querying multiple fields of a class 

in one method. 

 

When using a multi-field query method, 

   the index with the smallest set of objects that matches the constraints of the predicate is 

used to seed the final plumbing diagram. 

   then filters are applied to retrieve the final result 

 

 



M is the number of query methods 

n is the number of fields 

 

We don’t produce a method for querying on 0 fields (the idea of returning everything is 

already taken care of with scan()), so we subtract the empty set from the power set, and 

end up with 2^n - 1 total methods. 



This slide is mainly to show how the # of query methods can grow if we continue to add an 

exponential number of methods for each successive # of fields. 

 

Since query methods will likely be parameterized soon, this slide only shows that we 

thought about the problem. 

 

Still, this is how it is done currently with k=4. 



Again, for k=4, this is OK, but if the query methods were parameterized everything would 

be ok. 



Since query methods ultimately reduce to an index retrieval and a series of filters, 

The user is free to apply filters in the same fashion after performing a query. 

 

Ideally, the query method will do the optimum series of calls to retrieve data from the 

database. 



Why didn’t we do this already? 

 

Once you start generating code, it’s hard to know when to stop. 

Early versions of the type system in the generated code made this very difficult to realize. 

Now the type system is much more consistent, and better for this kind of refactoring. 

 

Coming soon :) 



Here we introduce the notion of joins with our API.  

Assume there is no index on id 

We have a simple query with a filter operation on Id=5 and a join on Emp.id=Order.id 

The API allows you to either put this filter after the join, or before the join in the form of a 

filter or query method. 

 

You’ll get the same result, you just have the control to get that result in different ways. 



See how the filter is done before the join here 



See how the filter is done after the join here. 



We want to use the query method on id so that we can take advantage of the Index. 

 

EmpTable.queryId(5) effectively reduces to an index lookup, we’d much rather do this than  

Apply a filter after the join operation. 



Ideally, we’d like to use indices where we can as input to joins to take advantage of the 

more optimal join algorithms. 

 

In order to use these indices we need to use the table’s predefined joinOnFieldX methods 

to  

Easily create IndexRetrieval objects.  

 

Join operations experience a significant speedup when they can take advantage of 

indexes, 

So if you have an index on a field you will want to try to use it in the join operation by using 

the joinOnField methods. 



Note that if only one predicate is used, the argument does not have to be wrapped in a 

Predicate object. 

Everything is a stream, but you do have to remember to set the join field 



This specifies what is returned from a join operation. The result is still a Stream, 

but instead of containing instances of one type, it contains instances of multiple types in the 

form of a Map. 

 

That is, each record in the stream is a JoinRecord, which is an alias for a Map<Class<?>, 

Object> 

 

If we joined on multiple predicates consisting of the tables ATable, BTable, CTable, 

We would get a Stream of Maps with the keys A.class, B.class, and C.class where the 

value is an instance of the key class 

 

Note that this current implementation prevents us from doing self joins, since we can only 

have  

one instance for each type in a record. 



Simple join operation. Showing how int ono is in both classes and 

we want to find all Orders and Odetails where ono=ono; 



In Java, the foreign key will often be a reference to the Object itself. 

 

the itself() idea means that we can test if  

the value of a field one input of the join is equal to the value of the other input in the join 

 

A.x=B instead of A.x=B.x 

 

This is somewhat equivalent to the idea of Following Links 

That is, one object has a reference to another object, and we want to find the set of the 

other objects that some object maps to. 

 

But there is an important distinction. 

We are dealing with two separate streams. The other stream may have be subset of those 

instances present in the other’s field. 





This is for queryABC(...) methods in a table. 

 

If there is no index, 

  we only apply filters 

if there is one index 

  we use that index 

if there are multiple indices (say A,B, and C are indexed) 

we would use the index where the  



There are basically 3 possible join algorithms that will be used for 3 cases: 

Both streams are IndexRetrievals, 

One stream is an IndexRetrieval, 

And both streams are non-indexed arbitrary streams. 

 

It is important to note that if there is an index as input it is always used. 



See slide 29, the diagram is the same. 

 

Joins use sideways information passing by taking information about indices where indices 

are present on streams as input. 

 

This is not done if the input to a Join is a Join or another filter. 



This slide only serves to show what the API looks like for multi-predicate equijoins. 



By default, the multi-predicate join algorithm finds the most appropriate equijoin predicate to 

process.  

 

This can result in bushy joins, it is not enforced to be left-deep or right-deep. 

 

The user can easily specify new join query plans. 

 

In the future it would make sense for some of the joins to be done in parallel. 





The first point means that the database could use reflection to retrieve private fields from 

other classes by playing around with the SecurityManager. 

 

 



In order to really do due justice on this point, and eliminate a lot of the constraints on the 

source package, 

we would need a framework which could detect updates to any of the fields of a class, and 

then inject 

a statement to update the indexes related to MercuryDB 



A WeakReference is Java magic: It’s treated specially by the JVM so we don’t have any 

direct control over its behavior, 

but it gives us some nice properties for the sake of this project. 

 

Note that for indexes the values (sets themselves) are weakly referenced as well. So that if 

an indexed instance is garbage collected, it goes away in the index as well as the table. 



By Database Consistency, we mean keeping the Mercury DB consistent with the client 

application as objects are created and updated. 

 

For non-indexed objects, this is trivial because they are added to the Tables on creation, 

and those Tables reference these objects directly, 

so we will always query on the most recent versions of these objects. 

 

For indexed objects, must use setters as defined by the generated MercuryDB schema 





We wanted a way to map something we know well to the new system for testing, so we 

modified the MDB project to take MDB SQL queries and convert them into Target and 

Client modules that can be used to exercise the functionality of the API. 



MDB script to Java code. These scripts will define both the target module and the client 

model of the resulting test code. 

 

We reimplemented the MDB database interface (IDatabase) to turn the test scripts into 

Java code which we could use to test MercuryDB. 



- create and index result in the “target module” class definitions, which represent tables (I’ll 

show an example on the next slide) 

- insert, update, delete, and select are all translated to operations in the client program. 

- commit is processed to write the templates 

- abort  resets the data collected since the last write 

- close has no meaning in this implementation because there is no active database to 

close. 

 





This is the template for generating the Target module class definitions [one for each 

relation] (these classes will be converted into tables in the generated MercuryDB fixed-

schema API for this target package). 



Here is an example of the a Target module class that is generated as a result of MDB SQL 

commands create and index 

 

As you can see, the create statement is 1-to-1 with the generated class, and it has the 

same name 

(the name was transformed to Java-standard camel-case capitalization [“emp” -> “Emp”]) 

 

The index statement is processed and an @Index annotation is added to the appropriate 

field in the output class. 



The reason we keep the ArrayList of Objects is to keep active references so that they will 

remain in the database. 

If the only references to the objects are in the database, they will be garbage collected. 



The select statement uses the API to retrieve the tuples qualifying for all the predicates in 

the WHERE clause, 

and then displays them (which seems the logical thing to do for a select in SQL semantics). 

 

Keep in mind that the code generated here is just an example that corresponds as closely 

as possible to the behavior of MDB, 

However, the strategy we use to observe the results is only one of many possible ways to 

interact with the results. 



Here is an example of the a Target module class that is generated as a result of MDB SQL 

commands create and index 

 

We store the created objects in an ArrayList so that we can easily keep references to the 

objects we create (thus keeping them alive) 

Of course, any data structure could be used, and Mercury will keep track of objects created 

and stored in any way 

(including scalar variables e.g. Emp e = new Emp(1,25)). 

 

The strategy for iterating over the returned results for the sake of select, update, and delete, 

is just one strategy which shows how to use the iterator to access all the returned records in 

order. 








