MercuryDB

Main Memory Single-Schema DB Generator

Doug llijev, Cole Stewart

Open by mentioning that this is work we are actively working on

Outline

Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

Outline

® Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

Motivation

® Most relational database systems
o have 1 or more schemas that can also change
o are bottlenecked by I/O in queries of small complexity
o provide a layer of abstraction between the client and the data

Y

Clients
Server

® Would be nice to have an API that is schema-dependent
o Interesting opportunities for optimization

Most relational database systems are part of a client-server architecture, we don’t

necessarily need that here
Since the entire database lives in main memory along with the client, we don’t need too

much of a client-data abstraction layer.

Since there’s only 1 schema, this will also allow us to generate a schema-dependent API
that integrates well with
The data the database holds.

The Answer: MercuryDB (for Java)

® Schema is generated in Java source code
® Generated code exposes an API to the client
® All queries are done using anonymous lterators
o no streams are buffered while processing queries
» (except for hash joins)
o Backend implementation is very “functional”
® 1-User, Non-Persistent Database

The schema in MercuryDB is simply a set of Java classes that are generated.
The generated code exposes an API to the client, allowing the client to perform query
operations on the database.

Since everything is in main memory already, we want to keep from using more memory
where we can, so
Query operations do not buffer streams while processing queries.

It is more of the iterator-driver “push-style” approach.

There is only 1 user here (for now) as well, so we don’t need to worry about concurrency
and transactions (yet).

The Answer: MercuryDB (for Java)

® The generated database is compiled with the source
program

® 4 steps for use:
o Compile target package
o Run MercuryDB on target to create a schema
o Add Mercury hooks to original program

o Client application uses the Mercury Schema to
query facts about the target

The main point here is that since the database is schema dependent,
We shouldn’t have to generate the schema too often. Still though, it is very fast.

There are 4 main steps to use MercuryDB (compile runmercury addhooks querydatabase)

So you can’t write queries until the generated schema is connected to the client.

Outline

® Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

Modules

mercurydb
[targetPackage]
[schemaPackage]

Target

(.class files) Mercury Schema

Add Database Hooks

(Target -> Target) Target

Client Application
+ Query Logic

So MercuryDB’s main goal here is to generate a schema.

After given a set of class files, it will generate a schema (.java files) and add hooks into the
input code (original set of .class files) to keep the database consistent (more on this later).

So now, Target essentially becomes a modified target. The source code for target is not
completely representative of its compiled class files at this point.

Now, the Client application can use query methods defined by Mercury to query the target.

Control Flow

Client Target’ MercurySchema

entry:main()

(1) exercise Target’ API v
R ——— > <_> (2) updates to Mercury DB
v SA
(3) query state of DB

P

d
<

(4) examine state of DB

After the schema has been created and the client is running, this is the control flow

The client will exercise Target’ AP| — creating objects, setting fields, etc.
This will spawn updates in the database

Then the client will query the state of the database
To which mercury will reply with the result

And, of course, this loop runs forever until the program ends.

Example Input

®order ®
odetail
jvachierodbaseReckegs javadb.src.dbasePackage
© ono:int
- . : part
® Possible input package © received: Sting PRI Ao
o shipped: String 0.1 Sod 0
o @ odetail(
tO mercu I'yd b ocsetOno(lm).vmd &odetail(order,partint)
@ order() @ 1oString():String

otorder(inl.cuslomer‘employee‘String.String)

@ toString():String
+eno
\ <<Java Class>>
+cno | 0.1 0.1

©®employee
javadb.src.dbasePackage
<<Java Class>> =
®customer OCLBE
javadb.src.dbasePackage © ename: String

o cno:int © Zzip: Zipcode
o cname: String © date: String
o street: String & employee()
o zip: zipcode o‘:emponee[inl.Slring‘zipcode,String)
o phone: String @ toString():String

& customer()

@ setPhone(String):void

& customer(int,String,String,zipcode, String)
@ toString():String

10

Here is an example of what an input package might look like.
These classes are modelled like something that you would typically see in a database,
but MercuryDB could handle any input package that abides by its (small) set of constraints.

Example Output

® 1 output table per input class

<<Java Class>>

©odetailTable
outdb.dbasePackage

otable: Set<odetail>
o°onolndex: Map<order.Set<odetail>>

Here is what MercuryDB will produce when given the previous package as input.

<<Java Class>>

GorderTable
outdb.dbasePackage

otable: Set<order>

o°onolndex: Map<Integer.Set<order>>
°cnolndex: Map<customer.Set<order>>
°enoindex: Map<employee Set<order>>

<<Java Class>>

@ customerTable
outdb.dbasePackage

o°table: Set<customer>

o°cnamelndex: Map<String. Set<customer>>

oSstreetindex: Map<String.Set<customer>>

o°receivedindex: Map<String.Set<order>>

<<Java Class>>
(GemployeeTable

outdb.dbasePackage

o°table: Set<employee>

*public operations omitted for brevity

Note that there is a 1-1 mapping from classes to tables.

Order - OrderTable
Odetail - OdetailTable

Customer - CustomerTable
Employee - EmployeeTable

The public operations/methods have been omitted here,

but you can still see the table and data structures present that contain the data

in the database.

11

Resulting Code

Bring it

all

together

Generated

<<Java Class>>

©order
javadb.src.dbasePackage

- +ono
o ono:int

<<Java Class>>
® odetail

javadb.src.dbasePackage

o received: String 0.1
o shipped: String

g order()

Hable /0.* ’cno\m

+eno

o pno: part
o qty:int

& odetail()

<<Java Class>>

®customer
javadb.src.dbasePackage

0.1

<<Java Class>>

©Gemployee
javadb.src.dbasePackage

o cno:int

o cname: String
o street: String
o zip: zipcode
o phone: String

& customer()

Input M/\ 0.r

o eno:int

o ename: String
o zip: zipcode
o date: String

& employee()

+table /0.

+table | 0.

s

T

/

<<Java Class>>

GorderTable
outdb.dbasePackage

<<Java Class>>

®GcustomerTable
outdb.dbasePackage

/

s°onolndex: Mapc<Iinteger.Set<order>>
s°cnolndex: Map<customer.Set<order>>
sSenolndex: Map<employee Set<order>>
SSreceivedindex: Map<String.Set<order>>

s°cnamelndex: Map<String.Set<customer>>
oSstreetindex: Map<String.Set<customer>>

<<Java Class>>

GemployeeTable
outdb.dbasePackage

<<Java Class>>
®odetailTable

outdb.dbasePackage

sSonolndex: Map<order.Set<odetail>>

This is what the input classes look like and how the generated schema integrates with

them.

The arrow between each table class and its corresponding container class represents the
tables of container class objects themselves.

Both generated schema and input code work together.

12

Outline

The API

Query and Join Optimizations
Building the Database

Target Module Generator

13

Filter Plumbing Diagram

SELECT * FROM emp WHERE id=5

Retrieval(EmpTable.scan()) Filter(Emp.id=5)

EmpTable.scan ()
.filter (EmpTable.fieldId (), 5)

We'll start by explaining two key pieces of the API:

Table Scan - returns a stream of the objects it contains i.e. EmpTable.scan() returns
Stream<Emp>

Filter methods - filters a stream of some object such that one of its fields is some value, in
this case Emp.id=5

14

Filter Plumbing Diagram

SELECT * FROM emp WHERE id=5 AND name="Don”

Retrieval(EmpTable.scan()) HFilter(Emp.fd=5) HFilter(Emp.name=“Don’)

EmpTable.scan()
.filter (EmpTable.fieldId(), 5)
.filter (EmpTable.fieldName (), “Don”);

15

Since filters accept a Stream and return a Stream,
Filters can be chained together.

So we can make something like the query here using only filters.

Notice in the API how the field is specified.

The schema exposes these methods that will allow the filter function to extract the field “id”
or “name” from a given emp object.

It is not done by reflection, so it is very fast.

Filter - Value Unions

® Retrieve objects where a field could be a set of values
¢ filter(FieldExtractable fe, Object... values)
o accepts any number of values, validates with .equals()

select * from emp
where 1id=5 and (name="Don” or name="Scarlett”);
->
EmpTable. scan ()
.filter (Emp.fieldId(), 5)
.filter (Emp.fieldName () ,“Don’",“Scarlett”) ;

16

Based on the examples you’ve seen so far it might appear that if you want to filter objects
matching a set of values, you might have to build these diagrams more than once, but our

API
supports filtering on a set of values.

To use the filter method you simply have to specify the field you want to filter,
and then you can specify any number of values for that field, and we will return objects

that match any of those values.

A hypothetical SQL query with value unions might look like this, and would translate
to the following code in our API.

Filter - General Plumbing Diagram

select * from emp,
where O and loc="Austin” and

(name="Don” or name="Scarlett”),

Stream Filter(

containing ; _» o Emp.name="Don”
- Filter(Emp.loc="Austin”) G B R

)
Emp. C:}

-filter (Emp.fieldLoc() ,”"Austin”)

.filter (Emp.fieldName () ,“"Don" , “Scarlett”) ;
17

This slide is mainly to show two things:
(1) filters can be applied after any kind of operation
that produces a stream that contains the type you are trying to filter.

(2) Filters use Java varargs to implement a union operation on field values in the predicate.
If you place a filter in the query over a type that the stream does not contain, we throw a

helpful error,
so that the user knows what they did did not make any sense.

Indexes

® Must use @Index attribute for fields you want indexed in the db

Output Table
Input Class to mercury Class EmpTable {
Class Emp /Istandard table

public int id;

public String name; /lgenerated index, values are also in table
static Map<Integer, Set<Emp>> idIndex = ...

-

® Utilized in queries and joins

At this point, it is important to note that MercuryDB supports indexes.

The client can specify the index by using the @Index annotation in the input source
package.

There is a 1-1 mapping of indexes to index structures in the database.

Indices are implemented by Maps
key=type of field
value= type of Object the table contains

So if there is an index on Emp.id, there will be an idindex in the EmpTable class.

These table indices are not intended to be used directly. They are used in the Tables’ query
methods describe next.

18

Query Plumbing Diagram

SELECT * FROM EMP WHERE ID=5
before: -> EmpTable.scan().filter (EmpTable.fieldId(), 5)
now: -> EmpTable.queryId(5)

No Index

Retrieval(EmpTable.scan()) Filter(Emp.id=5)

With Index on Emp.id

IndexRetrieval (EmpTable.fieldld(), 5)

19

Using the Tables’ query methods provide an API that exposes an easy way
to retrieve Object instances from the database where one or more of its fields are equal to
some value.

There are two cases:

Field is not indexed -> do same as before: scan and filter

Field is indexed -> do an index retrieval, we already have the set that matches the
constraints of the predicate.

Query Plumbing Diagram

SELECT * FROM emp WHERE id=5 AND name='"Don’”’
-> EmpTable.queryIdName (5, “Don’’)

No Index

Retrieval(EmpTable.scan()) HFilter(Emp.id=5) HFiIter(Emp.name=”Don")
With Index on Emp.id

IndexRetrieval (EmpTable.fieldld(), 5) Filter(Emp.name="Don”)

20

This is the same as before, but we introduce the idea of querying multiple fields of a class
in one method.

When using a multi-field query method,

the index with the smallest set of objects that matches the constraints of the predicate is
used to seed the final plumbing diagram.

then filters are applied to retrieve the final result

Query Methods

® Queries can query one or more fields in a Class

Class EmpTable { // Has fields Emp.Id and Emp.name
queryId(int id) // All Emps where Emp.id=id
queryName (Str name) // All Emps where Emp.name=name
queryIdName (int id, Str name) // All Emps where Emp.id=id

// and Emp.name=name

® M=|| (P([fields in Emp])\ @) ||
® Aggressively uses indexes =

M is the number of query methods
n is the number of fields

We don’t produce a method for querying on 0 fields (the idea of returning everything is
already taken care of with scan()), so we subtract the empty set from the power set, and
end up with 2”n - 1 total methods.

21

Query Methods

® Reasonable for small n
® Consider class with 30 fields
o M =230 =1 GB (assuming 1 byte per method - laughable)
® Are such unwieldy signatures practical?
o No! Too complicated for users
o Generate only “reasonable cardinality” methods (k fields)
® Let k be configurable =
o By default k=4 M = Z (})

This slide is mainly to show how the # of query methods can grow if we continue to add an
exponential number of methods for each successive # of fields.

Since query methods will likely be parameterized soon, this slide only shows that we
thought about the problem.

Still, this is how it is done currently with k=4.

22

Query Methods

® Consider n=30 and k=4

k +
M = Z Z 30 = 31930

i=1

¢ Still huge, but given enough memory might at least be possible

23

Again, for k=4, this is OK, but if the query methods were parameterized everything would
be ok.

Query Methods

® What about all the methods not generated?
o ‘| want to restrict results on more fields!”
® You still can, by chaining the queries with filters

XTable.queryABCD(a, b, c, d)
.filter (XTable.fieldE() , eVal)
.filter (XTable.fieldF(), £fVal) ... ;// pseudocode

® The query call is optimized over those fields (using best index)
® Filters continue to filter on additional fields

o Up to the client to know which fields are less likely candidates
for optimal index retrieval

Since query methods ultimately reduce to an index retrieval and a series of filters,
The user is free to apply filters in the same fashion after performing a query.

Ideally, the query method will do the optimum series of calls to retrieve data from the
database.

24

Query Methods - Future Work

® Problems with the current scheme

o Too many methods

o Complicated signatures

o Limited number of fields
Be more general

o We want to create a single query(...) method

o Deduce which fields from the params, like filter(...)
o Less generated code

o Less cognitive load for the programmer

25

Why didn’t we do this already?

Once you start generating code, it’s hard to know when to stop.
Early versions of the type system in the generated code made this very difficult to realize.
Now the type system is much more consistent, and better for this kind of refactoring.

Coming soon :)

Joins

® Filters can be applied before or after the join operation

select * from Emp, Order where Emp.id=5 and Emp.id=Order.id

/Join (
EmpTable

.queryId(5)

.joinOn (EmpTable.fieldId()),
OrderTable. joinOnFieldEid ()

\

J J
("join (B
EmpTable. joinOnFieldId(),
OrderTable. joinOnFieldEid ()
\) .filter (EmpTable.fieldId(), 5))

Here we introduce the notion of joins with our API.
Assume there is no index on id

Produce the
same result with
different
plumbing
diagrams.

We have a simple query with a filter operation on 1d=5 and a join on Emp.id=Order.id
The API allows you to either put this filter after the join, or before the join in the form of a

filter or query method.

You'll get the same result, you just have the control to get that result in different ways.

26

Join Plumbing Diagram

select * from Emp,Order where Emp.id=5 and Emp.id=Order.id
)

joinOn(EmpTable.fieldld())

J
~ Join(Emp.id, Order.id)]—b

Retrieval(OrderTable.scan()) joinOn(OrderTable fieldld())

Retrieval(EmpTable.scan()) Filter(Emp.id=5)

Jjoin ()
EmpTable
.queryId(5) // id not indexed
.joinOn (EmpTable.fieldId() ,
OrderTable. joinOnFieldEid ()

27

See how the filter is done before the join here

Join Plumbing Diagram

select * from Emp,Order where Emp.id=5 and Emp.id=Order.id
joinOn(EmpTable.fieldld())

Join(
Emp.fieldld(),
Order fieldld()

Retrieval(EmpTable.scan()) Filter(Emp.id=5)

)

joinOn(OrderTable.fieldld())
Retrieval(OrderTable.scan())
Join (
EmpTable
.joinOn (EmpTable.fieldId() ,
OrderTable. joinOnFieldEid ()
) .filter (EmpTable.fieldId (), 5)

See how the filter is done after the join here.

28

Join Plumbing Diagram

select * from Emp,Order where Emp.id=5 and Emp.id=Order.id

IndexLookup(Emp.fieldid(), 5)

Join(
Emp.fieldld(),
Order fieldld()

)

join(
EmpTable
.queryId(5) // id is indexed
.joinOn (EmpTable.fieldId (),
OrderTable. joinOnFieldEid ()

Retrieval(OrderTable.scan())

29

We want to use the query method on id so that we can take advantage of the Index.

EmpTable.queryld(5) effectively reduces to an index lookup, we’d much rather do this than
Apply a filter after the join operation.

Join Plumbing Diagram

select * from Emp,Order where and Emp.id=Order.id

*Can use id’s index

IndexRetrieval(Emp.fieldld()) in join algorithm
Join(
1 Emp.fieldld(),
Retrieval(OrderTable.scan()) J 'b Order fieldld()

join(// assume Emp.id is indexed
// new IndexRetrieval (EmpTable.idIndex) .joinOn (EmpTable.fieldId())
EmpTable. joinOnFieldId() ,
OrderTable. joinOnFieldid ()
) 30

Ideally, we’d like to use indices where we can as input to joins to take advantage of the
more optimal join algorithms.

In order to use these indices we need to use the table’s predefined joinOnFieldX methods
to
Easily create IndexRetrieval objects.

Join operations experience a significant speedup when they can take advantage of

indexes,
So if you have an index on a field you will want to try to use it in the join operation by using
the joinOnField methods.

Joins

® Canjoin on any field of a class instance, including the instance
itself

® Join operations take one or more equality predicates
o Each predicate holds two streams

gselect * from A,B where A.xX=B.y ->
JoinDriver. join (ATable. joinOnFieldX () ,BTable. joinOnFieldY ())

® Only equality join relations are currently supported
® Could also use output of a filter or retrieval as input
o everything is a stream!

Note that if only one predicate is used, the argument does not have to be wrapped in a
Predicate object.
Everything is a stream, but you do have to remember to set the join field

31

Join Results

® Streams typically return table elements
o Stream<A>, Stream, etc.

® Still a stream, but a stream of what?
o JoinRecord

® A JoinRecord is essentially an alias for Map<Class<?>, Object>
o Values are always instances of the type defined in the key

® Provides an easy mechanism for retrieving elements from a tuple

for (JoinResult jr : JoinDriver.join (
ATable. joinOnFieldX() ,
BTable.joinOnFieldY¥ ()) .elements()) {
A a = (A)jr.get(A.class);
B b = (B)]jr.get(B.class);

32

This specifies what is returned from a join operation. The result is still a Stream,
but instead of containing instances of one type, it contains instances of multiple types in the
form of a Map.

That is, each record in the stream is a JoinRecord, which is an alias for a Map<Class<?>,
Object>

If we joined on multiple predicates consisting of the tables ATable, BTable, CTable,
We would get a Stream of Maps with the keys A.class, B.class, and C.class where the
value is an instance of the key class

Note that this current implementation prevents us from doing self joins, since we can only
have
one instance for each type in a record.

Joins (Use Case)

select * from Order, Odetail
where Order.ono=0detail.ono;

JoinDriver.join(
OrderTable.joinOn(OrderTable.fieldOno()),
OdetailTable.jeinOn(OdetailTable.fieldOno());

select * from Order, Odetail
where Order.ono=0detail.ono and Order.ono=5

JoinDriver.join(
OrderTable.queryOno(5)
.joinOn(OrderTable.fieldOno()),
OdetailTable.joinOn(OdetailTable.fieldOno());

public class Order {
@Index
public int ono;
public Customer cno;

}

public class Odetail {
@Index
public int ono;
public int qty;

Simple join operation. Showing how int ono is in both classes and
we want to find all Orders and Odetails where ono=0ono;

33

Joins (Use Case)

select * from Order, Odetail
where Order=0detail.ono;

JoinDriver.join(
OrderTableSQinOn(OrderTable.itself(),
OdetailTable.jeinOn(OdetailTable.fieldOno());

select * from Order, Odetail
where Order=0Odetail.ono and Order.ono=5

JoinDriver.join(
OrderTable querrOne(s
JjoinOn{QrderTable.itself

OdetailTable.joinOn(OdetailTable.fieldOno());

public class Order {
@Index
public int ono;
public Customer cno;

public class Odetail {
@Index
public@rder ono;
public int qty;

-- more likely

In Java, the foreign key will often be a reference to the Obiject itself.

the itself() idea means that we can test if

the value of a field one input of the join is equal to the value of the other input in the join

A.x=B instead of A.x=B.x

This is somewhat equivalent to the idea of Following Links
That is, one object has a reference to another object, and we want to find the set of the

other objects that some object maps to.

But there is an important distinction.

We are dealing with two separate streams. The other stream may have be subset of those

instances present in the other’s field.

34

Outline

Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

35

Query Optimizations

® Determine the best code to execute depending on indexes etc.

o No fields have an index?
= Apply afilter
o Does only one of the fields have an index?
= Use the index
o Do multiple fields have an indexes?
= Use the one for table with smallest cardinality
Main memory database
o Don’t worry about disk I/0O latency or locality

o Random memory access for reading tuples means indexes should
ALWAYS be used

This is for queryABC(...) methods in a table.

If there is no index,
we only apply filters
if there is one index
we use that index
if there are multiple indices (say A,B, and C are indexed)
we would use the index where the

36

Single Predicate Join Algorithm

® Given two streams, there are 3 primary cases
o Both Inputs are IndexRetrievals
* Do index intersection
o Only one stream is an IndexRetrieval

« Scan over non-indexed stream, getting join columns using
other stream’s index

o Neither stream is an IndexRetrieval
* Use hash join
* Hash the stream with smaller cardinality

There are basically 3 possible join algorithms that will be used for 3 cases:
Both streams are IndexRetrievals,

One stream is an IndexRetrieval,

And both streams are non-indexed arbitrary streams.

It is important to note that if there is an index as input it is always used.

37

Sideways Information Passing

® Def. — sending information from one query operator to another in
a fashion not specified by the query evaluation tree

® Index information is passed through to join operations

*Can use id’s index
in join algorithm

IndexRetrieval(Emp.fieldld()) Join(
oin

Emp.fieldld(),
Order fieldld()

—~—

Retrieval(OrderTable.scan())

38

See slide 29, the diagram is the same.

Joins use sideways information passing by taking information about indices where indices
are present on streams as input.

This is not done if the input to a Join is a Join or another filter.

Multi-Predicate Join Optimization

// select * from order, odetail, emp
// where order=odetail.ono and order.eno=emp.eno;
// JoinDriver will join the predicates like System R
JoinDriver. join (
new JoinPredicate(
OrderTable. joinOnItself()),
OdetailTable. joinOnFieldOno()) ,
new JoinPredicate(
OrderTable. joinOnFieldEno () ,
EmpTable. joinOnItself())));

This slide only serves to show what the API looks like for multi-predicate equijoins.

39

Multi-Predicate Join Algorithm

® Users can also specify their own join execution plans
o Could have bushy joins
o Orright-deep or left-deep joins

® By default, the algorithm joins performs the most optimal join at any
step.

Ve

Retrieval —»(Join(A.x, B.y)

Join(B.x, C.y)]

Retrieval

40

By default, the multi-predicate join algorithm finds the most appropriate equijoin predicate to
process.

This can result in bushy joins, it is not enforced to be left-deep or right-deep.
The user can easily specify new join query plans.

In the future it would make sense for some of the joins to be done in parallel.

Outline

Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

41

Constraints on Source Package

® Only public fields are included in database

o Could use reflection to retrieve private fields, but this
is slow and cumbersome

To index a field, must use @Index annotation

Must not use class names that conflict with those
created by the database creator

Must maintain consistency in the database by using
update calls defined by the tables

o Bytecode maodification makes this simple!

The first point means that the database could use reflection to retrieve private fields from
other classes by playing around with the SecurityManager.

42

Javassist Bytecode Generation

® Javassist is a class library for modifying bytecodes in Java
® Allows us to insert hooks in the client code that update the db
o Injects table insert operation at the end of each constructor
» ex. EmpTable.insert(this) in class Emp
o injects a table update method at the end of every setter method

for fields that are indexed

Class Emp { Class Emp {
@Index @Index
int id; intid;
String name; String name;
/[Note: type sig could be anything
public void setld(int id) { public void setld(int id) {
this.id=id; }} this.id=id; EmpTable.setld(this, id);}}

In order to really do due justice on this point, and eliminate a lot of the constraints on the

source package,
we would need a framework which could detect updates to any of the fields of a class, and

then inject
a statement to update the indexes related to MercuryDB

43

Table Field Declarations

® Every generated table class has a set whose elements are weakly
referenced to store all instances of its mapped class

o public static Set<WeakReference<Foo>> table;
® Since only id and name are indexed, two maps are generated

o private static Map<Integer, Set<WeakReference<Foo>>
idIndex;

o private static Map<String, Set<WeakReference<Foo>>>
namelndex;

44

A WeakReference is Java magic: It's treated specially by the JVM so we don’t have any
direct control over its behavior,

but it gives us some nice properties for the sake of this project.

Note that for indexes the values (sets themselves) are weakly referenced as well. So that if
an indexed instance is garbage collected, it goes away in the index as well as the table.

Database Consistency

® How are objects added to the database?
o Vvia bytecode modification
® How are indices kept consistent?
o must use setters in database
® What happens when instances in the table go out of scope?
o Garbage Collected (deleted)
o Tables hold WeakReferences
o Garbage Collector ignores the references in tables

By Database Consistency, we mean keeping the Mercury DB consistent with the client
application as objects are created and updated.

For non-indexed obijects, this is trivial because they are added to the Tables on creation,

and those Tables reference these objects directly,
so we will always query on the most recent versions of these objects.

For indexed objects, must use setters as defined by the generated MercuryDB schema

45

Outline

Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

46

Mercury Retrograde

Single-Schema Database
Target Module Generator
(for MercuryDB)

We wanted a way to map something we know well to the new system for testing, so we
modified the MDB project to take MDB SQL queries and convert them into Target and
Client modules that can be used to exercise the functionality of the API.

47

RetrogradeDB implements IDatabase

® Converts MDB SQL scripts to Java classes

Modified MDB Project

Same Parser

New |Database implementation for Mercury Retrograde
Mustache to format output

48

MDB script to Java code. These scripts will define both the target module and the client
model of the resulting test code.

We reimplemented the MDB database interface (IDatabase) to turn the test scripts into
Java code which we could use to test MercuryDB.

RetrogradeDB implements IDatabase

public interface IDatabase {

// target module class defs // format templates
public void create(...); public void commit () ;

public void index(...);
// reset data

// client module actions public void abort () :;
public void insert(...);

public void update(...); // do nothing
public void delete(...); public void close();
public void selectAll(...);

public void select(...); }

- create and index result in the “target module” class definitions, which represent tables (Ill

show an example on the next slide)

- insert, update, delete, and select are all translated to operations in the client program.
- commit is processed to write the templates

- abort resets the data collected since the last write

- close has no meaning in this implementation because there is no active database to

close.

RetrogradeDB - Target Module

® create ...;
o 1-to-1 target package class definition
® index...;

o add @Index annotation to specified field in the
generated class definition

50

RetrogradeDB - Target Mustache

public class {{relationName}} { public {{relationName}} (

{{#fields}} {{#fields}}
{ {#isIndexed}} {{#isInteger}}
@Index int {{name}},
{{/isIndexed}} {{/isInteger}}
{{#isInteger}} {{#isString}}
public int {{name}}; String {{name}},
{{/isInteger}} {{/isString}}
{{#isString}} {{/fields}}
public String {{name}};)
{{/isString}} {
{{/fields}} {{#fields}}

this.{{name}} = {{name}};

{{/fields}}
}
}

This is the template for generating the Target module class definitions [one for each
relation] (these classes will be converted into tables in the generated MercuryDB fixed-
schema API for this target package).

RetrogradeDB - Target Code

create table emp (
empno int,
age int

)

index emp.age;

commit;

public class Emp {
public int empno;
@ Index

public int age;

public Emp (
int empno,

int age

this.empno = empno;

this.age = age;

Here is an example of the a Target module class that is generated as a result of MDB SQL

commands create and index

As you can see, the create statement is 1-to-1 with the generated class, and it has the

same name

(the name was transformed to Java-standard camel-case capitalization [‘emp” -> “Emp”])

The index statement is processed and an @Index annotation is added to the appropriate

field in the output class.

52

RetrogradeDB - Client Module

® insert...;
o Insert a record into the table (e.g. ATable)

o create new instance of class (of e.g. ATable) corresponding to
table

o Insertinto an ArrayList to keep reference live
® update ...;

o use setters to update objects
¢ delete...;

o delete matching objects from ArrayList

53

The reason we keep the ArrayList of Objects is to keep active references so that they will
remain in the database.
If the only references to the objects are in the database, they will be garbage collected.

RetrogradeDB - Client Module

® select...;
o Return references to entire tuples
= select [fields] = select *
= simplifies code generation somewhat
o Uses API generated by JavaDB

54

The select statement uses the API to retrieve the tuples qualifying for all the predicates in
the WHERE clause,

and then displays them (which seems the logical thing to do for a select in SQL semantics).

Keep in mind that the code generated here is just an example that corresponds as closely
as possible to the behavior of MDB,

However, the strategy we use to observe the results is only one of many possible ways to
interact with the results.

RetrogradeDB - Client Code

insert into emp values (!,) ArrayList<Emp> emps = new ...;
insert into emp values (7,) ;
emps.insert (new Emp (!,));
emps.insert (new Emp(”,)) i
update emp set age= ... i = EmpTable.queryEmpno (1) ;
where empno=1; for (Emp e : i.elements()) // update
e.setAge(26); // set new value

i = EmpTable. E ;
select emp where empno=l|; * P € C.]uery meno (1)
for (Emp e : i.elements()) // select

System.out.println(e); // display

delete emp where empno=.; i = EmpTable.queryEmpno(”) ;
for (Emp e : i.elements()) // delete

emps.remove (e); // remove from app

Here is an example of the a Target module class that is generated as a result of MDB SQL
commands create and index

We store the created objects in an ArrayList so that we can easily keep references to the
objects we create (thus keeping them alive)

Of course, any data structure could be used, and Mercury will keep track of objects created
and stored in any way

(including scalar variables e.g. Emp e = new Emp(1,25)).

The strategy for iterating over the returned results for the sake of select, update, and delete,
is just one strategy which shows how to use the iterator to access all the returned records in
order.

Outline

Why MercuryDB?

Modules

The API

Query and Join Optimizations
Building the Database

Target Module Generator

56

References

[1] Zachary G. Ives and Nicholas E. Taylor,
“Sideways Information Passing for Push-Style Query Processing,” in CIS, 2008.
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1045&context=db _research

[2] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access Path Selection in a Relational Database System,” in ACM, 1979
http://dl.acm.org/citation.cfm?doid=582095.582099

57

Questions?

58

