Trends in NoSQL
Technologies

Database Systems, CS386D
Instructor: Don Batory

Ankit, Prateek and Dheeraj

Agenda

Fundamental Concepts
Why NoSQL?

What is NoSQL?
NoSQL Taxonomy

Case Studies

Project Summary

References

Why NoSQL?

New Trends

Trillions of Gigabytes (Zettabytes)

1.8
1.6
14

1.2

0.8

Unstructured and
Semi-Structured Data

Text, Log Files,
Click Streams,
Blogs, Tweeats,
Audio, Video, ete.
Structured Data

2000 2006 2011

Source: http://www.couchbase.com

4

Growth in data

"Big Data" + "Unstructued data"

Connectedness

"Social networks"

Source: http://http://tjm.org/

5

ww'w wellsfargo. cor

. Architecture
& & & &S | " e "Concurrency"

Application Scales Out
Just add more commodity web servers

Application Response Time

System Cost

Relationa

Databese Database Scales Up
Get a bigger, more complex server

Application Response Time

System Cost

Source: http://www.couchbase.com

6

A - [-
s I . o |

wvive wellstargo.com

— (i nll Architecture
@ 7 - "Concurrency"

" Application Scales Out
Just add more commodity web servers

Application Response Time

System Cost

NoSQL Database Servers

! Database Scales Out

@

| | | | ‘ Just add more commodity data servers E
@

= = :
a

wi

7—) &

o //,// c

) S

5 S

@ =

> Q

Ul e . - o<

Users

Source: http://www.slideshare.net/thobe/nosgl-for-dummies

v

What is the biggest data management problem

driving your use of NoSQL in the coming year?

Lack of flexibility/rigid schemas

Inability to scale out data

High latency/low performance

Costs

All of these

Other

e

35%

16%

12%

11%

1l

Source: Couchbase NoSQL Survay, Decamber 2011, n=1351

29%

49%

Couchbase
NoSQL Survey

1. Flexibility (49%)
2. Scalability (35%)
3. Performance (29%)

Extending the scope of RDBMs

Data Partitioning ("sharding")
+ Enables scalability
- Difficult process
- No-cross shard joins
- Schema management on every shard

Denormalizing
+ Increases speed
+ Provides flexibility to sharding
- Eliminates relational query benefits

Distributed Caching
+ Accelerated reads
+ Scale out : ability to serve larger number of requests
- Another tier to manage

RDMBS

Not a "One Shoe fits all"
solution

Oracle has tried it

Need something different

Fundamental Concepts

Atomicity * Consistency * Isolation * Durability

Set of properties that guarantee that database transactions are processed
reliably

Example:

Transfer of funds from one bank account to another (lower the FROM account
and raise the TO account)

12

It is impossible in a for a distributed computer system to simultaneously provide
all three of the following guarantees

Cluster : A distributed network of nodes which acts as a gateway to the user

* Consistency
e Datais consistent across all the nodes of the cluster.

 Availability
* Ability to access cluster even if nodes in cluster go down.

* Partition Tolerance
e Cluster continues to function even if there is a “partition” between two nodes.

13

CAP

Partition
Tolerance

Availability

14

Visual Guide to NoSQL Systems

2":;'3?““71 Relational (comparison)
ach client can Kev-Val
Data Models | "6Y-Valué
:rdafﬂ{: s A Column-Oriented/Tabular
' Document-Oriented

Categorization

CA

RDBMSs Aster Data
(MySQL, Greenplum
Postgres, Vertica
etc)

AP

Dynamo Cassandra
Voldemort SimpleDB
Tokyo Cabinet CouchDB
KAl Riak

Pick Two

C P

Consistency: CcP Partition Tolerance:
All clients always - The system works
have the same view BigTable = MongoDB Berkeley DB well despite physical
of the data. Hypertable Terrastore MemcacheDB network partitions.

Hbase Scalaris dis
B

What is different?

Design Features

Data Model

No schema enforced by database - "Schemaless"

Four major categories
Key/Value stores
Document Stores
Columnar stores
Graph Databases

17

At the core all NoSQL databases are
key/value systems, the difference is whether
the database understands the value or not.

Key Value Stores

Key N

101100101000100010011101
101100101000100010011101
101100101000100010011101
101100101000100010011101
101100101000100010011101
~ Opaque
101100101100100010011101
10110010 u=w’'010011101

101100101972¢10N010011101
101100101uwLu1ud010011101
101100101000100010011101
101100101000100010011101
101100101000100010011101
101100101000100010011101
101100101000100010011101

18

101100101000100010011101
101100101000100010011101
101100101000100010011101
. #Nyata Structurec”
10110v1ulubuivVY1IYLY11101
101100101(:) 7722010011101

1011001010N00100010011101
101100101024:30010011101
1011001010(-:0190010011101
1011001010v01v0010011101
101100101(~+7=1,7010011101
101100101000100010011101
101100101002200010011101
101100101000100010011101
101100101000100010011101

Key Value Stores - examples

* Persistent In-memory

* In memory / on disk K ,
.) * Key/Value pair storage
ORACLE Key/Value pair storage * Provides special data structures

BERKELEY DB * Transactional support d ° * pub/sub capabilities
* Purpose: Lightweight DB re |S * Purpose: Caching and beyond

* Disk-based with built in memcache

* Inmemory /on disk \\'4 b e Cache refill on restart
* Key/Value pair storage l‘*mem ase * Highly Available (replication)
MEMEACHED ° PUFDOSGI CaChing ° Add/Remove live cluster

* Purpose: Caching

19

DB understands values

Data store in JSON/XML/BSON objects
Secondary Indexes possible

Schemaless

Query on attributes inside values possible

“string” : “string”, “string” : “string”,
“string” : value, “string” : value,
“string” : “string” :
~ JSON { “stmhg™ : string”,
 ADIEAT UbJECT

COR) .

“string” : [array | (*POCLIME)

Document
Stores

!
w . mongoDB
CoucHBase
* memcached + couchDB * Data stored as BSON
e Data stored as JSON objects * \Very easy to get started
* Autosharding (replication)* Disk based with in-memory caching
* Highly Available e Auto-sharding*
* Create indexes, views. * Supports Ad-hoc queries
* Query against indexes. * Native support for map-reduce.

* Native support for map-reduce

* Auto-sharding - As system load changes, assignment of data to shards is rebalanced automatically
21

DB understands values

You don't need to model all the columns required by your

application upfront.

Technically It's a partitioned row store, where rows are organized
into tables with a required primary key.

Normal column family:

row
col col col ...
val wal wal ...

Super column family:

row
supercol
(sub)col (sub)col
val val

supercol

22

(sub)col (sub)col
val val

source: http://stackoverflow.com

Column
Oriented Stores

Columnl —

Column 2 —

Column 3
[ttt present]

101100101 0001010011101
10 10101 ARG Ta0n "1 0]
— ol
10 oo I
10 10T 0] DO O TGO] 1]
_ Fimmaapg

1011063301 000100010031101
1011031010001 03013011101
101 160101 003100010031 101
101160101 000100010011101

Column Family :: table blog keyspace

name state

name state

Cion. | aicn | tashion |

name __ body usSer category

egilmaore Lalbd83

dhutch

egilmore

jbellis dhutch egilmore jbellis dhutch egilmore
category
dhutch jbellis dhutch egilmore dhutch
ports

fashion egilmaore jbellis dhutch egilmore jpellis

technalagy

1289847840615

joellis
92dbebs

12

dhutch .
ddl8aba
3 7844275
egilmore
Galb4g3

columns ...

dhuteh egilmone gatastax

egilmore

row key

dhutch

datastax MEZCASS e

Salirces Dynamic Columns

73 http://www.datastax.com/docs/0.8/ddl/index

Column oriented store - examples

* Open source clone to Google's
BigTable

e Runs only on top of HDFS

* CP based system

24

cassandra

* Modeled after Google's BigTable
e Clustered like Dynamo

* Good cross datacenter support
e Supports efficient queries on

columns

* Eventually consistent
* AP based system

e Apply Graph Theory to the storage of
information about the relationship

Graph
between entries
. Usted for rectommendation engines. Data baSES

source: http://stackoverflow.com
25

Graph DB - example Wait for
more in the

s . Graph DB
L NEO4] presentation!

O

* Disk-based system

e External caching required

* Nodes, relationships and paths
* Properties on nodes

e Complex query on relations

26

NoSQL catalog

Key-Value Data Structure Document Column Graph

'm =

memcached redis

Cache
(memory only)

o (= > B

vy
@ 35 membase couchbase cassandra Neo4j
£3
® o
35

E ORACLE

BERKELEY DB
mongoDB

27

In-house solutions

Google amazoncom Linked [T}

No schema required before inserting data

No schema change required to change data format
Auto-sharding without application participation
Distributed queries

Integrated main memory caching

Data Synchronization (multi-datacenter)

28

Case Studies

Amazon's Dynamo and Google's Bigtable

29

Google s BigTable

30

BigTable

Designed to scale.
And the scale we are talking is of Petabytes!

A distributed store for managing structured data.
Three dimensional Table structure.
Uninterpretated bytes storage.

CP - Choses Consistency over Availability in the case of network partitioning (CAP
theorem)

Basically, it is just a sparse, distributed, persistent sorted map store.

31

Sparse Features

Most of the columns are empty

: sparse
Persistent distributed
Data gets stored permanently in the disk scalable
Sorted persistent
Data kept in heirarchical fashion soried

consistent
map store

Spatial Locality

Consistent

32

row keys column family column family column family
A A A A
[A A A]
“language:” “contents:” anchorcnnsi.com anchor:mylook.ca
g PUBLIC...
COM.CNNWWW EN <IDOCTYPE "CNN" “CNN.com”
E HTML PUBLIC. ..
com.cnn.wwwiTECH EN <IDOCTYPE
A HTML>...
com.weather EN <IDOCTYPE
¥ HTML=>...

BigTable's basic data storage structure

column_family: referring sites

com.aaa | “b.us”

cum.cnn.www HCNN!I IIBBCII HWIKIH IIGO_DGLE!!

Sparsity demonstrated in the table

33

Tablet :
BigTable's basic
unit of storage

Tablet
dimensions

1. Rows
2. Column Families

3. Timestamps

Other METADATA

Root tablet
{1* METADATA tablet)

BigTable indexing hierarchy

34

Storage
Hierarchy

Tablet

Metadata tablet

Root tablet

Chubby file

05 T Optimizations

. Bloom Filters

Caching

nnnnnnnnnnnnnnnnnn

Bloom Filter : Drastically reduces the number of disk

seeks requirggl for read!

Tablet Server

Higher Level Cache

e For scenarios where Optimizations

same data is read

repeatedly . Bloom Filters

 Caching

Lower Level Cache

e For spatial locality

Google File System

Axmazon DynamoDB

Amazon DynamoDB

Amazon DynamoDB

Motivation:

“ Customers should be able to view and add items to their shopping cart even if
network routes are broken or data centers are being destroyed by tornadoes.”

AP: It chooses availability over consistency in the case of network
partitioning

38

Highly Available key-value

High performance (low latency)
Highly scalable (hundreds of nodes)
"Always on" available (esp. for writes)
Partition/Fault-tolerant

Eventually consistent

39

Features

Consistent Hashing
For data partitioning, replicating and load balancing

Key Techniques

Sloppy Quorums
Boosts availability in present of failures

40

A Simple Example

Imagine that our consistent hash CO n S I Ste nt
is mappedto a continuum of values H a S h I n g

All values are mapped to the
continuum using some hash
algorithm like MD5.

This results in unpredictable
assignments which can
cause very imbalanced
distribution of

“key space”.

Sharding

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

41

Adding a Node

Consistent
Hashing

Dynamically add nodes

limportant!

Adding a node does not cause
the entire key-space to
rebalance. This is very important
to the implementation: adding
nodes should not changes all
the answers, it should only
“claim” key space from a single
node.

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

42

Removing a Node

Consistent
Hashing

Dynamically remove nodes

limportant!

Removing a Node should cause
the hash to rebalance such that
only the now vacant key space
is reclaimed. As with adding,
remowing a node should not
remap the entire key space.

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

43

Improving Distribution

Consistent
Hashing

load balancing

Virtual Keys
By calculating virtual keys we can decrease the
standard deviation in key space foreach node.
The important factor here is making sure that
the approach generating the virtual keys

is not random and is reproducable.

‘ Key 1's Virtual Keys
@ Key 2’s Virtual Keys
© Key 3's Virtual Keys

source: http://sharplearningcurve.com/blog/2010/09/27/consistent-hashing/

44

N=3

Hash = Node | Replicas Rep“catiOﬂ
A[0.10) ; ;

F[5059/ \\8[1020} 2 . B | CD
19 ¢ B i CD

...

“05‘”\ /c T RN
T—

D:[30,40) -----------

45

- R number of nodes that need to participate in read
- W number of nodes that need to participate in write

- R+ W > N (a quorum system)

Sloppy Quorums

Availability in presence of failures

Dynamo:

W =1 (Always available for write)
Yields R=N(reads pay penality)
Typical: R=2, W=2, N=4

46

Dynamo Summary

An eventually consistent highly available key/value store
AP in CAP space

Focuses on low latency, SLAs
Very low latency writes, reconciliation in reads

Key techniques used in many other distributed systems

Consistent hashing, (sloppy) guorum-based replication, vector clocks, gossip-based membership,
merkel tree synchronization

47

Project Summary

To be SQL or Not to be SQL

DO YOU HAVE
ANY EXPERTISE
IN SQL?

geek & poke

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sS@QL"

Leverage the I\EL%SQL boom

Bright future of
NoSQL

Companies using NoSQL

- Google

- Facebook
- Amazon
- Twitter

- Linkedin

... many many more.

Conclusion

Even NoSQL - Not a "One Size fits all" kinda shoe.
Shoe horning your database is just bad, bad, bad!

Use when
Data schema keeps on varying often
Scalability really becomes an issue
Not to use when
The data is inherently relational
Lots of complex queries to write
You need good helping resources
eg. debugger, performance tools

50

References - 1

Dynamo: amazon's highly available key-value store. In Proceedings of twenty-first ACM

SIGOPS symposium on Operating systems principles (SOSP '07). ACM, New York, NY, USA,
205-220

Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26, 2,
Article 4 (June 2008). Fay Chang et. al

http://docs.mongodb.org/manual/core/sharding-introduction
http://mongodb.com/learn/nosgl"http://www.mongodb.com/learn/nosg|

http://www.cs.rutgers.edu/~pxk/417/notes/content/bigtable.html
http://en.wikipedia.org/wiki/ACID

51

References - 2

http://www.slideshare.net/mongodb/mongodb-autosharding-at-mongo-seattle

http://www.slideshare.net/danglbl/schemaless-
databases"http://www.slideshare.net/danglbl/schemaless-databases

http://infog.com/presentations/NoSQL-Survey-
Comparison"www.infog.com/presentations/NoSQL-Survey-Comparison

http://info.mongodb.com/rs/mongodb/images/10gen _Top 5 NoSQL Considerations.pdf

http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-
for.html

http://technosophos.com/2014/04/11/nosgl-no-more.html

52

Questions

Backup Slides

|

|

|

|

|

|

|

Any storage

model other
than tabular
relations.

Auto-sharding

Config
Servers

mongod
mongod

mongod

client
/ mongos mongos
\Wl S-('(/“tpk a Set Rephca Set
mongod mongod mongod
1 I I | 1 1
gl |o gl |o gl |
S| | & | | & S| | &
el | g gl | € gl |
c <) o o - e
gl |E 8] |E E| |E

Shards

TODO:
http://www.scalebase.com/
extreme-scalability-with-
mongodb-and-mysql-part-
1-auto-sharding/

You break structured data into pieces and spread it across different tables.

leads to object relational mapping

lots of traffic => buy bigger boxes. Lot of small boxes. SQL was designed to run on
single box.

Consistent Hashing
For data partitioning, replicating and load

balancing Key Techniques
Sloppy Quorums

Boosts availability in present of failures

Vector Clocks

For tracking casual dependencies among different
versions of the same key (data)

Gossip-based group membership protocol
For maintaining information about live nodes

Anti-entropy protocol using hash/merkle trees
Background synchronization of divergent replicas

46

Consistent Hashing

Availability

Node 1 is responsible for

Node 14 is responsible for keys keys whose hash = 15, 0, 1
whose hash = 11, 12, 13, 14 / .

Node 3 is responsible for
/ keys whose hash = 2, 3

Node 10 is responsible for
keys whose hash =9, 10

48

write
l handled by Sx
D1 ([Sx,1])

write
handled by Sx

D2 ([Sx,2])
write wrile
handled by Sy / \?andt'ed by Sz
D3 ([Sx.2].[Sy.1]) D4 ([Sx,2],[Sz,1])

reconcifed
and written by
Sx

DS ([Sx,3].[Sy.1]1[Sz,1])

Figure 3: Version evolution of an object over time.

49

Vector Clocks

Merkel Trees

Each node keeps a merkel tree for each of
its key ranges

Compare the root of the tree with replicas
if equal => replicas in synch
Traverse the tree and synch those keys that differ

Membership:
Node contacts a random node every 1s.

Gossip used for exchanging and
partitioning/placement metadata

51

Gossip and Anti-
entropy

Merkel Trees

Atomicity requires that each
transaction is "all or nothing"

Success Failure

A:a+ X A:a+ X

<

B:a- x B:a- X

26

Atomicity

The consistency proBe_rty ensures that
any transaction will bring the database

from one valid state to another valid
state.

Consistency

Success Failure

A:a + X A+B= atb

<

B:-b- x A+B-= a+b-10

27

The isolation property ensures that the _
concurrent execution of transactions results in
a system state that would be obtained if
transactions were executed serially, i.e. one
after the other.

Isolation
Success Failure
T1:a-x T1ra-x
T1: b + X 12 :b-x
T2:b-x T2:a+ X ;
Y *_______....fallure
atx T1: b + X

28

Durability means that once a |
transaction has been committed, it
will remain so, even in the event of

power loss, crashes, or errors

Success Failure

T1:a-x the changes

i are lost
Power

12:b-x Outage

T2:a+ X

29

Durability

Features

Persistent
Data gets stored permanently in sparse
the disk distributed
Sorted scalable

persistent

Data kept in heirarchical fashion
Spatial Locality

Map Store

Just a collection of (key, value)
pairs

sorted
map store

40

An alternative to ACID

e Basically Available
e Support partial failures without total system failure.
e Soft state
» optimistic and accepts that consistency will be in state of flux.
e Eventual Consistency
* Given a sufficiently long period of time over which no changes are sent, all updates can be
expected to propagate eventually.

33

