Interactions Between Query Optimization and Concurrency Control

C. Mohan

Data Base Technology Institute, IBM Almaden Research Center, San Jose, CA 95120, USA
mohan@almaden.ibm.com

Abstract In this paper, we argue the importance

of and need for taking into consideration concur-
rency control related issues in making query opti-
mization and query processing decisions. Such
considerations are very important not only for at-
taining good performance, but also for assuring the
correctness of the results returned to the users
under certain circumstances. Some of the topics
that we deal with include degrees of consistency
or isolation levels (repeatable read, cursor stability,
...), lock escalation, blocking of results and use of
multiple indexes for a single table access (i.e., in-
dex AND/ORing). We identify some of the pieces
of information relating to locking that must be avail-
able to the optimizer for it to make intelligent de-
cisions. We also identify some situations in which
locking can be avoided by taking advantage of the
isolation level of the query being executed.

1. Introduction

Since relational data base management systems
(DBMSs) have made it easy for the users to pose
complex queries, query optimization has become
an important problem to deal with [JaKo84,
KiRB85]. As the sizes of the tables being managed
by relational DBMSs keep growing [DeGr90,
PMCLSS0], it is all the more important that the
query optimizer choose the optimal query plan from
the set of possible plans for executing a given
query. Unfortunately, starting from the days of Sys-
tem R [Aetal76, SACL79], work on query optimiza-
tion has generally ignored considerations relating
to concurrency control in making query execution
(access planning) choices. Typically, concurrency
control related actions are taken by the data man-
ager (the RSS component in the case of System R)
and the query optimization related actions are taken
by the upper part of the system (RDS component
in the case of System R).

In this paper, we argue the importance of and need
for taking into consideration concurrency control
related issues in making query optimization and
query processing decisions. Such considerations
are very important not only for attaining good per-
formance, but also for assuring the correctness of
the results returned to the users under certain cir-
cumstances. Some of the topics that we deal with
include degrees of consistency or isolation levels
(repeatable read, cursor stability, ...), lock escala-
tion, blocking of results and use of muitiple indexes

0-8186-2660-7/92 $3.00 © 1992 IEEE

for a single table access (i.e., index AND/ORing).
We identify some of the pieces of information re-
lating to locking that must be available to the op-
timizer for it to make intelligent decisions. We also
identify some situations in which locking can be
avoided by taking advantage of the isolation level
of the query being executed.

The rest of the paper is organized as follows. In
the remainder of this- section, we introduce some
basic concepts relating to locking, latching, and
degrees of consistency or isolation levels. In section
2, we discuss the modelling of locking costs for the
purpose of correctly selecting the optimal query
execution plan during query optimization. The ef-
fects of different isolation levels and locking gran-
ularities are pointed out. In addition to using a
traditional optimization criterion like total cost or
response time, we make an argument in favor of
also considering, depending on the query’s isolation
level requirement, the level of concurrency that can
be supported by different access paths while making
the access path choices. We also discuss the ef-
fects of compile time versus run time decisions. In
section 3, we discuss why the query optimizer
needs to consider concurrency control related is-
sues even if it were not interested in accurately
modelling locking costs. We show how, without
such considerations being taken into account, some
query plans may cause erroneous results to be
returned to the user. Care must be taken when
indexed access to data and/or blocking of results
is performed. We conclude with section 4.

1.1. Latches and Locks

Normaily latches and locks are used to control ac-
cess to shared information. Locking has been dis-
cussed to a great extent in the literature. Latches,
on the other hand, have not been discussed that
much. Latches are like semaphores. Usually,
latches are used to guarantee physical consistency
of data, while locks are used to assure logical
consistency of data. Latches are usually held for a
much shorter period of time than are locks. Also,
the deadlock detector is not informed about latch
waits. Latches are requested in such a manner so
as to avoid deadlocks involving latches alone, or
involving latches and locks.

Acquiring a latch is cheaper than acquiring a lock
(in the no-conflict case, 10s of instructions versus
100s of instructions), because the latch control in-



formation is always in virtual memory in a fixed
place, and direct addressability to the latch infor-
mation is possible given the latch name. On the
other hand, storage for individual /ocks may have
to be acquired, formatted, and released dynami-
cally, and more instructions need to be executed
to acquire and release locks. This is because, in
most systems, the number of lockable objects is
many orders of magnitude greater than the number
of latchable objects.

Locks may be obtained in different modes such as
S (Shared), X (eXclusive), IX (Intention eXclusive),
IS (Intention Shared), and SIX (Shared Intention
eXclusive), and at different granularities such as
record (tuple), table (relation), file (tablespace, seg-
ment, dbspace) [GLPT76]. The S and X locks are
the most common ones. S provides the read priv-
ilege and X provides the read and write privileges.
Locks on a given object can be held simultaneously
by different transactions only if those locks’ modes
are compatible. The compatibility relationships
amongst the different modes of locking are shown
in Figure 1. A check mark ('/') indicates that the
corresponding modes are compatible.

S X IS IX SIX
s J J
X
s |y J J J
X J J
SIX J

Figure 1: Lock Mode Compatibility Matrix

With hierarchical locking, the intention locks (IX,
IS, and SiX) are generally obtained on the higher
levels of the hierarchy (e.g., table), and the S and
X locks are obtained on the lower levels (e.g.,
record). The nonintention mode locks (S or X),
when obtained on an object at a certain level of
the hierarchy, implicitly grant locks of the corre-
sponding mode on the lower level objects of that
higher level object. The intention mode locks, on
the other hand, only give the privilege of requesting
the corresponding intention or nonintention mode
locks on the lower level objects (e.g., SIX on a table
implicitly grants S on all the records of that table,
and it allows X to be requested explicitly on the
records). For more details, the reader is referred
to [GLPT76].

Lock requests may be made with the conditional
or the unconditional option. A conditional request
means that the requestor is not willing to wait if

the lock is not grantable immediately at the time
the request is processed. An unconditional request
means that the requestor is willing to wait until the
lock becomes grantable. Locks may be held for
different durations. An unconditional request for an
Instant duration lock means that the lock is not to
be actually granted, but the lock manager has to
delay returning the lock call with the success status
until the lock becomes grantable. Manual duration
locks are released some time after they are ac-
quired and, typically, long before transaction termi-
nation. Commit duration locks are released only
at the time of termination of the transaction, i.e.,
after commit or abort is completed. The above
discussions concerning conditional requests, S and
X modes, and durations, except for commit duration,
apply to latches also.

1.2. Isolation Levels or Degrees of
Consistency

Transactions may request different isolation levels
or degrees of consistency with respect to each
other. In the context of System R, degrees 0, 1, 2,
and 3 of consistency were introduced [GLPT76].
The currently commercially available relational
DBMSs typically support many isolation levels as
user options. For example, SQL/DS, the 08/2' Ex-
tended Edition Database Manager [1BMS0], DB2!
[CLSW84, TeGu84] and NonStop SQL' [Tand87]
support the isolation levels cursor stability (degree
2 consistency of System R) and repeatable read
(degree 3 consistency of System R). They are re-
ferred to as CS and RR, respectively. Both return
only committed data to the transactions, unless the
accessed data is uncommitted data belonging to
the accessing transaction. When the chosen level
is CS, as long as an updateable SQL cursor is po-
sitioned on a record, a lock will continue to be held
on the record and the record will be guaranteed to
exist in the data base, unless the current transaction
itself deletes the record after the cursor is posi-
tioned on it. As soon as the cursor is moved to a
different record, the lock may be released on the
previous record as long as the record was not up-
dated. If the record was updated, for both CS and
RR, the corresponding lock is released only after
the transaction terminates.

With RR, locks are held on all the accessed data
until the end of the transaction. Actually, locks are
somehow held even on nonexistent data, which
could have satisfied the query. In [MohaS0a,
MoLe89], we discuss how this is done when the
accesses are made via indexes. With RR, if a cer-
tain query were to be posed at a certain point in a

1 AS/400, DB2, IBM and OS/2 are trademarks of the International Business Machines Corp. NonStop SQL and Tandem are trademarks

of Tandem Computers, Inc.




transaction, and a little later the same query were
to be posed within the same transaction, then the
response to the query would be the same, even if
it were a negative response like not found, unless
the same transaction had changed the data base to
cause a difference to be introduced in the re-
sponses. If all the transactions are run with RR,
then their concurrent execution would be
serializable in the sense of [EGLT76]. That is, the
concurrent execution would be equivalent to some
serial execution of those transactions. Contrary to
what one might be led to believe after reading the
concurrency control research literature which em-
phasize almost exclusively the serializability con-
cept, in the real world, the CS isolation level is
very widely used! With CS, only the locks on data
modified by the transaction are held for commit
duration and so repeating a query may give a dif-
ferent response due to other concurrent transac-
tions’ intervening activities. CS supports higher
concurrency than RR since the S locks are held for
a shorter time with CS. Typically, users posing ad
hoc queries for decision support run their transac-
tions with CS to reduce the harmful interactions
with the transactions which are supporting produc-
tion applications [PMCLS80]. The intention there
is to read only committed data, but not to prevent
future updates of the read data by other transactions
before the reading transaction terminates.

In addition to the above isolation levels, NonStop
SQL, SQL/400' and the 0S/2 Extended Edition Da-
tabase Manager aiso allow no-lock reads (NR) (aiso
called dirty or uncommitted reads - degree 1
consistency of System R). This means that even
uncommitted updates of other transactions may be
exposed to the transactions requesting this isolation
level.

2. Modeling of Locking Costs for Query
Optimization

In the traditional way of modeling CPU costs in-
volved in processing a relational query, only the
number of calls that were expected to be made to
the data manager were taken into account
[SACL79]. That approach, which was proposed in
the context of the System R prototype, was subse-
quently widely adopted in, at least the IBM, SQL
products and in the R* distributed DBMS [DSHL82,
LMHD85, MoLO86]. Clearly, that way of modelling
the expected CPU costs was a gross approximation
of the actual CPU costs involved in executing a
query plan. It was a few years before some people
working on query optimization for relational DBMS

products were forced to refine the CPU cost model
to better reflect the various aspects of the actual
CPU costs involved (e.g., for buffer management,
individual record access, predicate evaluation, ex-
traction of columns, logging, initiating 1/0s, etc.).
In particular, in the case of DB2, some factors were
added into the cost equations to take into account
locking related overheads. For examples of the
more sophisticated cost equations, the reader is
referred to [CHHIMS1].

Given that acquiring and releasing a lock, even in
the absence of any contention for the lock, normally
costs hundreds of instructions, modeling locking
costs could make a big difference. It could even
change the choice of access paths by causing a
different plan to become optimal. One of the rea-
sons that goes in favor of taking locking costs into
consideration is the reduction brought about in the
case of CPU costs associated with initiating 1/Os
and buffer management (for tabie and index scans,
and sorting) via techniques like prefetching and
reading multiple pages in one |/O operation
[TeGu84].2 As a result of such improvements, and
the reduced cost of column extractions and predi-
cate evaluations through better coding, the percent-
age contribution of locking overhead to the overall
pathlength keeps increasing. The proper modelling
of locking costs is a tricky and intricate undertaking.
There are a number of reasons for this. We discuss
them in turn in the following subsections. Our mo-
tivation is to make the people working on query
optimization become better aware of the subtle in-
teractions between query processing and concur-
rency control.

2.1. Isolation Level, Locking Granularity
and Degree of Concurrency

The query optimizer needs to know the isolation
level of the access being made to a table in order
to accurately model the locking costs. This is be-
cause, depending on the access path and isolation
level involved, the types of locks acquired at the
different levels of the locking hierarchy (e.g., table-
record or table-page-record) may vary. Hence, the
number of locks that might have to be acquired
could vary dramatically. For example, for a table
scan and RR, the table will be locked in the S mode
to deal with the phantom problem (i.e., to lock the
nonexistent records) [EGLT76]. This means that
no lower level (page or record) locks will be ac-
quired. Since NR access also does not acquire any
lower level locks, it can be modeled like an RR
table scan even though the access may be via an
index (the same will not necessarily be true with

2 Such techniques also reduce the contribution of I/Os to the response time. A better balance between CPU and 1/O activities is
achieved. These effects further argue in favor of paying more attention to the sources of CPU costs.



e

respect to steps to be taken for assuring the cor-
rectness of the returned results - see the section
“3. Correctness of Query Processing”). On the
other hand, if CS were desired, then, for the same
table scan, only an IS lock will be obtained on the
table since the phantom problem is not a concern
for that isolation level. This means that lower level
S locks would have to be acquired and released
as the data is accessed, thereby potentially dra-
matically increasing the number of locks that are
involved. The number of lower level locks to be
acquired will depend on the locking hierarchy
adopted for the table and the size of the table.
Between page locking and record locking, there
can be a difference of two orders of magnitude. in
the overall CPU cost attributable to locking alone
since each page can contain about 100 records!

If the above RR query were to be executed using
an index scan rather than a table scan, then, typi-
cally, only an IS lock is obtained on the table which
then forces locks to be acquired explicitly at the
lower levels of the lock hierarchy. This may now
cause the CPU cost of executing the query to in-
crease dramatically depending on the number of
lower level locks to be acquired which would de-
pend, among other things, on whether or not
data-only or index-specific locking is being done.3

If the optimizer were not to model the cost of lock-
ing but it were to model correctly the cost of index
access, etc., then it is possible that, for certain
states of the table and the index, and for a certain
query, it may conclude that the overall cost for the
execution of the query using an index is cheaper
than a complete table scan. This conclusion might
turn out to be wrong if the cost of locking were
added in. For the 5-way join query analyzed in
[PMCLSS0], when record locking is used, we have
estimated that the pathlength due to locking alone
could constitute up to 90% of the total pathlength,
depending on the sizes of records, number of
records per page, predicate selectivities, etc.
Record locking might be required even for large
tables in order to reduce the contention amongst
the response-time-sensitive short update transac-
tions of the production online applications. Such a
fine-granularity of locking penalizes those queries
(typically, ad hoc) which access numerous records.
As mentioned before, it is to reduce the undesirable
concurrency interferences between such queries

and the short transactions that the queries are typ-
ically run with CS. Even with CS, to reduce the
cost of locking, techniques like Commit_LSN have
been invented (see the section “2.4. Lock
Avoidance/Reduction Techniques” and
[Moha80b]). All these go to show that locking cost
is a significant portion of the total CPU cost of
processing queries.

Whether or not the optimizer is made to model the
cost of locking, one may still want to make the
optimizer somehow become sensitive to the impact
of the different choices of access paths on the level
of concurrency that each can support. In addition
to using optimization criteria like minimizing total
cost or response time, one may also want to have
a criterion like maximizing concurrency. To give
an example, under a certain set of circumstances,
even when only a subset of the records need to be
retrieved and an index exists which could be ex-
ploited so that only a subset of data pages need to
be accessed, it may be found that a table scan is
cheaper than an index scan if only the total cost
criterion were applied. If it were to be an RR query
and if the desire were to maximize concurrency,
then the optimizer might still choose the index scan
in preference to the cheaper table scan. This is
because the table scan would not permit any con-
current updates due to the S lock that would have
to be acquired on the table, as mentioned before.
On the other hand, the index scan would permit a
higher level of concurrency since it would only ac-
quire an IS lock on the table.

2.2. Compile Time Versus Run Time

At the time of compilation, if the optimizer were to
take into account the cost of acquiring and releasing
locks at the most detailed level (e.g., page level),
then, if the locking granularity specification were to
be altered for the table (to, say, record level), then
one thing to consider doing at the time of alteration
is to invalidate the already compiled plans. Such
an invalidation would cause a recompilation of the
SQL statements which would permit the optimizer
to determine if the change of granularity causes a
new access path to be chosen. Doing this may be
especially important from a performance standpoint
if the data manager were to always choose to use
at run time the current granularity, independent of
what the granularity was at compile time.

3 Data-only locking is said to be done if the locking done while accessing the indexes is such that all the locks obtained are on the
underlying record identifiers (RIDs) or data pages (i.e., the index entry locks are not different from the locks on the corresponding
data from which the index entries were derived). Data-only locking is implemented in the OS/2 Extended Edition Data Base Manager
and SQL/400. It is described in detail in [MoLe89]. Whether the data page or the RID is locked will depend on the granularity of
locking in effect for the table. This data-only locking approach must be differentiated from the index-specific locking approach in
which the index locks are different from data locks (e.g., DB2 locks index pages, System R locks index pages or key values, and the
ARIES/KVL method of [Moha90a] locks key values). Data-only locking can dramatically reduce the number of locks acquired at

the expense of a little bit of concurrency.

-



As an example of what real systems do, let us
consider DB2. In" that system, the table level lock’s
mode is determined by RDS at compile time. But
the page level locking requirement, if any, is deait
with by the data manager at run time. As a result,
if the granularity were to change from table to page,
then the plan will continue to acquire the S or X
lock only at the table level since no invalidation is
performed when the granularity of locking is altered.
So, the concurrency benefits and any changes in
the choice of access paths that might be caused
by the different granularity of locking would not be
realized until the SQL statements are reoptimized.
On the other hand, if the granularity were to change
from page to table, then the change would take
effect at run time, even though the RDS might re-
quest only an IS or IX lock based on the compile-time
information. This of course would result in only the
overhead of the lower level locking being avoided.
If any changes in the choice of access paths are
likely to be caused by the new granularity of locking,
then those would not be realized until the
reoptimizations are performed.

Clearly, the extent to which the optimizer is able
to make use of the information about the isolation
level at compile time will depend on whether in
fact such information is available at that time. In
DB2, the isolation level is the same for the whole
application (i.e., for all the SQL statements in all
the programs that cail one another) and has to be
specified at the time of query compilation (bind time
in DB2 terminology [CLSW84]). On the other hand,
in SQL/DS, at the user’'s option, the isolation level
information can be provided as late as at run time.
In fact, the level can be different for different SQL
statements within the same program. The value of
a program variable is used to determine the level
at the time of opening a cursor. This variable’s
value can be changed anytime by the program.
Since, for static SQL statements, access path se-
lection is done at compile time, this run time de-
termination of isolation level complicates the locking
cost estimation problem.

One possibility is to perform the costing based on
different assumptions for the isolation level and if
this results in more than one optimal plan, then
retain the different plans and use the appropriate
one at run time based on the desired isolation
level. An alternative is to keep only one plan pro-
duced by assuming a certain isolation level and if
at run time the desired level is found to be different
from the assumed one then dynamically
reoptimizing the statement. Of course, for dynamic
SQL statements and for static SQL statements for
which the plan has been invalidated, the availability
of isolation level information only at run time is not
a problem since for such statements optimization
will be done only at run time and hence the infor-

30

mation can be made use of then. This will also be
true for all SQL statements in the case of those
systems, like INGRES, which do not support the
concept of precompilation and which perform opti-
mizations for all queries at run time.

2.3. Lock Escalation

Another aspect of locking that the optimizer needs
to consider relates to lock escalation. Lock esca-
lation refers to the conversion first of a higher level
intention lock into a nonintention lock and the sub-
sequent releasing of the lower level locks (e.g., first
converting the existing IS table lock into an S lock
and then releasing the existing S record locks). In
System R, lock escalation was resorted to only if
the storage allocated for lock request blocks (LRBs)
was about to be exhausted. As a result, it was very
difficult to predict when that might happen since it
depended on the level of multiprogramming, the
lengths and the isolation levels of the concurrently
running transactions, etc. Of course, if, for a given
transaction, the number of commit duration locks
that it was going to acquire for a single table at
the lower granularity was going to be much more
than the number of LRBs for which storage was
allocated, then the optimizer could have anticipated
that escalation would most likely occur. In that
event, the optimizer could have appropriately ad-
justed the cost formula to reflect the fact that be-
yond a certain point no lower level locks would be
acquired. Better still, based on its estimate of the
number of lower level objects that were going to
be accessed, the optimizer could even have decided
to request the table level S or X lock up front rather
than paying the CPU cost of acquiring the lower
level locks until escalation happens. In fact, this
sort of decision making is employed in the optimizer
of the 0S/2 Extended Edition Database Manager.
In that system, if the estimated number of record
locks that will be acquired were to exceed a certain
threshold, then the RDS asks the data manager to
obtain the S or X lock on the table during its first
access to the table.

In systems like DB2, escalation is not based on
running out of LRB storage, but on the number of
locks held on the pages of a single table by a
transaction [CrHH87]. If the number were to exceed
a certain installation-specified threshold, then lock
escalation occurs. As a result, the optimizers of
systems like DB2 are in a better position to estimate
for what queries escalation is likely to occur and
request the appropriate higher level lock at the
beginning itself. But, since CS accesses release S
locks as the cursor moves, for CS accesses, esca-
lation needs to be considered only for updated
records. So, the optimizer needs to take into ac-
count the isolation level associated with a query.
For CS accesses, it would have to estimate the



number of records that are likely to be updated or
deleted.

2.4. Lock Avoidance|Reduction Techniques

In [Moha80b], we introduced a technique called
Commit_LSN for determining if a piece of data is
in the committed state in a transaction processing
system. This method is a much cheaper alternative
to the locking approach which is widely used for
this purpose. The method takes advantage of the
concept of a log sequence number (LSN) which is
a monotonically increasing number which is asso-
ciated with every log record and which is typically
the logical address of the log record. In most trans-
action systems that use write-ahead logging (WAL)
for their recovery, updates to pages get logged and
every page’s header has a field called page_LSN
which contains the LSN of the log record describing
the most recent update to the page. The
Commit_LSN method uses information about the
LSN of the first log record (call it Commit_LSN) of
the oldest update transaction still executing in the
system to infer that all the updates in pages with
page_LSN less than Commit_LSN have been com-
mitted. This allows locking and latching to be
avoided for certain types of data accesses. For
example, during a page access for a CS read-only
query, the following protocol will be followed:

1. Find out Commit_LSN from the recovery man-
ager or access it in shared storage.

Note that it is not necessary for the transaction
to obtain the latest value of Commit_LSN before
every page access, as long as it is done at
least once before the first page access. While
an out of date Commit_LSN does not cause
any inconsistencies, it may increase the num-
ber of times locks have to be obtained.

2. Latch the page in share (S) mode.

3. If page_LSN < Commit_LSN, then conclude
that all data on the page is in the committed
state; otherwise, do locking as usual and de-
termine whether data of interest is committed
or not.

In addition, the method may also increase the level
of concurrency that couid be supported. For details
about many such applications of the Commit_LSN
technique the reader is referred to [Moha80b]. The
Commit_LSN method makes it possible to use fine-
granularity locking without unduly penalizing trans-
actions which read numerous records and which
desire only CS. This technique is expected to be
of great benefit for such queries since most of the
time most of the data base will be in the committed
state. It also benefits update transactions by reduc-

L AR

T .

31

ing the cost of fine-granularity locking when con-
tention is not present for data on a page. The cost
of employing the technique is practically nothing.

In a system in which the Commit_LSN method is
implemented, for those queries for which that tech-
nique is applicable, the query optimizer needs to
estimate during how many page accesses the tech-
nique would come into play, thereby avoiding the
locking costs normally associated with such page
accesses. The technique is applicable not only for
table scans but also for index scans. So, the cost
equations for both types of accesses would have
to take the effect of this optimization into account.
This is really important since most of the CPU costs
associated with locking may be eliminated for cer-
tain queries.

3. Correctness of Query Processing

Traditionally, there has been very little discussion
in the query optimization and query execution lit-
erature of the impact of different isolation levels on
execution strategies and predicate evaluations.
Generally, new query compilation/optimization
techniques are proposed without enough attention
having been given to the subtle interactions be-
tween the newly proposed techniques and the con-
current activities of other transactions. Sometimes,
problems arise even due to the other data base
operations performed by the same transaction using
other SQL statements! In the rest of this section,
we illustrate the above points by discussing a cou-
ple of techniques and the implications of concurrent
activities on them.

3.1. Indexed Access

In this subsection, we discuss some of the subtle
problems that arise when, during the access to a
table, (1) multiple indexes are going to be used or
(2) only one index is going to be used but the list
of RIDs from all the qualifying keys from that index
is going to be materialized first (i.e., before the
data pages are accessed).

In System R, at most one index was used in selec-
tively accessing the records of a table. This decision
to use at most one index was based on the study
reported in [BIEs77]. Since then we have come to
realize the benefits of using more than one index,
retrieving the RIDs from those indexes, ANDing
and/or ORing the RID lists, sorting the RIDs and
finally accessing the data pages [MHWCS0]. This
approach has become especially beneficial with the
ever-widening gap between CPU and I/O processing
capacities and with the availability of bulk I/O ca-
pabilities (i.e., reading more than one page in a
single Start I/0 operation [TeGu84]). Even if only
one index is to be used, the optimizer can convert




a scan through a nonclustered index into a clustered
data scan by postponing the data page accesses
until the retrieved RIDs are sorted.

But postponing a data page access to a later time
compared to when the corresponding RID is ex-
tracted from the index(es) introduces some addi-
tional complications which the optimizer needs to
take care of. The complications arise primarily
from the fact that between the time the RID list is
generated and the time the data pages are ac-
cessed, the data may be changed in such a way
that one or more of the previously qualifying records
no longer qualify. Depending on the isolation level,
these changes may be caused by the same trans-
action and/or other transactions. These have been
taken into account in the implementation of index
ANDing/ORing in DB2. Because latching of pages
in not currently done in DB2 and locking is the only
way to assure even physical consistency of the
data in a page, most of the optimizations discussed
here have not been implemented in DB2.

3.1.1. Repeatable Read

When RR is desired, if nothing special is done,
then, for every index that is accessed, locking would
be performed for all the retrieved keys. This may
lead to an enormous locking overhead. In this sub-
section and the next one, we present some tech-
niques for reducing this locking overhead by taking
advantage of information about the desired isolation
level, the nature of the selection predicates in the
query, and so on. Some more ideas along these
lines are presented in [Mohad0b].

When processing an RR query with only conjunctive
predicates, it is sufficient if locking is done only
while accessing the first index. This is because (1)
the subsequent indexes can only subset the RID
list obtained as a result of accessing the first index
and (2) locks would have been obtained on those
RIDs (or the data pages) during the access to the
first index, assuming that data-only locking
[MoLe89] is being used. The optimizer needs to
take this optimization into account while formulating
the query plan and tell the data manager at run
time during which index accesses locking should
be done and during which accesses locking should
be avoided. To take an example, if the predicates
are F1 = C1 AND F2 = C2 AND ... AND Fk=Ck, where
the Cis are constants and the fis are fields, then
assuming that there are separate indexes on each
of the referenced fields and that the predicate on
f1 is the most restrictive, locking will be done while
accessing FI’s index. This will permit other trans-
actions to insert records which do not satisfy the
query’s predicates. Even those records which sat-
isfy the predicates 1 # CI AND (F2 = C2 OR ... OR
Fk = Ck) will be insertable by the other transactions.
Without our optimization of avoiding locking on all

32

the indexes except the index on F1, the latter
records would not have been insertable by other
transactions.

The above idea concerning locking can easily be
extended to the case where a mixture of conjunctive
and disjunctive predicates are involved. If
index-specific locking is used, then (1) locking
would have to be done during accesses to all the
indexes or (2) locking needs to be done only while
accessing one of the indexes, but when the data
pages are accessed and the records are locked,
the predicates already checked using the other in-
dexes must be checked again. The latter rechecking
of predicates is necessary since the keys in the
other indexes might have been in the uncommitted
state when they were accessed originally. The fact
that locking was done during the accesses of the
first index does not guarantee that the correspond-
ing records are in the committed state since the
index locks are different from data locks with index-
specific locking.

With RR and data-only locking, when the final RID
list is obtained and the data pages are accessed
to retrieve the corresponding records, there is no
need to do any further locking, since all the quali-
fying data would have already been locked during
the index accesses. Furthermore, no predicates
that were already checked need to be reevaluated.
These optimizations could result in substantial
pathlength savings, especially in the case of
disjunctive predicates for which the number of qual-
ifying RIDs may be large. Again the optimizer, if it
takes advantage of these optimizations, needs to
model them in its cost formulae and inform the
data manager about which actions to perform or
not perform.

If, between the time the RID list is generated and
the time a certain record (whose RID is in the list)
is accessed for retrieval, the same transaction
could perform some updates to the same table,
then it is possible for those updates to affect the
record under consideration in such a way as to
disqualify the record. In such an event, it would be
erroneous to return that record. This is possible in
SQL since we would expect (1) the RID list to be
materialized at the time of-the OPEN of the cursor
defining the query under consideration and (2) the
records to be retrieved from the data pages using
the RID list one at a time, as the FETCH calls are
issued. Between the time of the OPEN and the
FETCH call involving the record under consideration,
many other SQL statements couid have been exe-
cuted by the transaction. In such a case, the pred-
icates already checked would also have to be re-
checked when the record is accessed using the
RID in the list. In fact, it is even possible for the
record not to exist anymore due to its earlier de-
letion by the same transaction. It is possible that



new records have been inserted which satisfy the
predicates. Such records will not be retrieved.
Note that only the current transaction could have
inserted those records and the nonretrieval of those
records is not a violation of RR.

Assuming that the write-ahead logging (WAL) ap-
proach to recovery, as described in detail in
[MHLPS89], is being used, one way to minimize
the number of times the reevaluations of the pred-
icates are necessary is to remember, with the RID
list, the end-of-the-log log sequence number (LSN)
at the time the RID list generation is completed
(i.e., when the OPEN call is completing). Call this
LSN the generation LSN. In addition, a valid flag
is associated with the list and is initialized to ‘1"
The valid flag will be set to ‘0’ if the transaction
subsequently performed an update or delete involv-
ing that table. Once we associate the generation
LSN and the valid flag with the list, then, every time
we access a record using a RID in the list, we
would have to reevaluate the already checked pred-
icates if (1) the valid flag =‘0’ and (2) the page
LSN is greater than or equal to the generation LSN.
Fancier optimizations of this nature using the
Commit_LSN technique are discussed in
[Mohad0b]. If optimizations like this are used in
the system, then the optimizer needs to account
for them in its cost formulae and the query plan.
Somehow, the optimizer needs to figure out how
often the reevaluations of predicates would be
avoided by using such technigues. Note that if the
access path chosen were a table scan, then there
would not be a need for any such reevaluations of
predicates.

3.1.2. Cursor Stability and No-Lock Read

If CS is desired, then, as long as latches are used
while accessing the index pages, no locking needs
to be done during the index accesses. When the
final RID list is obtained and the data pages are
accessed to retrieve the corresponding records,
locking is done and all the predicates are reevalu-
ated if the record still belongs to the table of inter-
est. The records that do not qualify anymore (or
those that have been deleted) are ignored. Again,
the optimizer needs to account for the above in its
cost formulae and the query plan. It should be
noted that even if locking had been performed dur-
ing the index accesses, since those locks would
have been released as the index scans advanced,
even other transactions could have updated the
records whose RIDs were seiected from the indexes.
To assure that the records returned to the user
satisfy at least the local predicates (i.e., predicates
involving the columns of the returned records), the
optimizer needs to inciude the predicate reevalua-
tion logic in the pian.

33

For read-only CS retrievals, during the accesses to
the data pages using the RID list, by S latching the
data page before requesting a lock on a qualifying
RID on that page (or lock on the page itself, if page
locking is in effect), the lock duration can be made
to be instant instead of manual. This is because,
for such scans, we are only trying to make sure
that the record does not contain uncommitted
changes of another transaction. We are not trying
to prevent future updates. Only for updateable CS
cursors is the record under the cursor guaranteed
to be nonupdateable by other transactions until the
cursor is moved. Changing the duration from man-
ual to instant reduces the number of interactions
with the lock manager, for a particular lock, from
two to one. In addition, if no wait is involved, then
the overhead associated with allocating and freeing
an LRB (lock request block) can be completely
avoided. Even the instant lock can be avoided if
the Commit_LSN technique were to help. In order
to avoid deadlocks involving the page latches, the
instant duration lock on the RID must be requested
conditionally. If the conditional lock request is not
granted, then the latch must be released and the
lock rerequested unconditionally for manual dura-
tion.

When page is the granularity of locking, if all the
qualifying RIDs on the page are not returned in one
access (i.e., in one latch-unlatch interval) to the
page, then it is better to request the page lock for
manual duration rather than for instant duration.
This is because the latch cannot be held while
returning to the RDS and hence during every access
to the page the lock would have to be rerequested.
Requesting the same lock once for each record on
the page is too expensive in terms of pathlength.
If performance, rather than ultra-high concurrency,
is the greater concern, then it is better to get the
page lock once for manual duration rather than
getting it for instant duration as many times as
there are qualifying records on the page (i.e., during
every latch-unlatch interval).

Not doing the locking during the index accesses
could result in substantial pathlength savings. it
will also increase the level of concurrency and re-
duce the impact of ad hoc queries on online trans-
actions. The concurrency advantages would be es-
pecially significant if page locking is used, instead
of record locking. Such savings will occur even
when the desired isolation level is RR.

The handling of NR is very similar to that of CS
except that no locking is done anytime. Hence,
even if the data page access were to immediately
follow the retrieval of a RID from an index (i.e.,
there is no postponement of accesses to the data
pages, as discussed earlier), the predicate(s)
checked via the index would have to be rechecked
when the record is accessed since another trans-




action could have changed the value in the record
before, during or after the NR index access!

3.2. Blocked Cursors

Another optimization suggestion that is made fre-
quently involves blocking, during transmission be-
tween processes on the same system or across
systems, the set of records constituting the answer
to a query. Such an approach was taken in SQL/DS
in order to amortize the cost of sending messages
between the SQL/DS virtual machine and the user
virtual machine by transferring more than one
record in each message. This sort of optimization
was also performed in R* and in the versions of
DB2 and the OS/2 Extended Edition Database Man-
ager supporting access to remote data, while trans-
ferring records between systems. This optimization,
called block fetch in DB2 [IBM89], needs to be
handled with care since updates by the same trans-
action and the isolation level in use could create
problems when the cursor is an updateable one.

In SQL, using the statements update where current
of cursor or delete where current of cursor, the
user can update or delete, respectively, the record
on which an updateable cursor is currently posi-
tioned. When blocking is in effect, the user cursor
may be far behind the cursor used by the system to
access the records of interest. Under such a con-
dition, the issuing of one of the above statements
somehow needs to be communicated to the system
storing the original data so that the record which
needs to be updated or deleted is uniquely identi-
fied. It is possible that, by the time the above up-
date or delete statement is issued, the record might
have already been deleted by another transaction
(possible only with the CS isolation level since the
lock might have already been released on that
record) or by the same transaction using a different
SQL statement. Even if the record still exists, it
may no longer satisfy the predicates specified in
the cursor declaration.

To deal with this problem, in SQL/DS, DB2 and the
08/2 Extended Edition Database Manager, a con-
servative approach was taken by turning off blocking
for updateable cursors. In R*, a less conservative
approach was taken by sending the RID of each
record during the transmission from the source
node to the recipient node. This RID was used, by
the system in which the application runs, to uniquely
identify, to the system storing the data, the target
record of an update or delete where current of
cursor statement. This solution was incomplete in
the sense that R* supported only RR and problems
caused by self updates via other SQL statements
were not dealt with.

34

Problems like the above arise also in the context
of scrollable cursors which have been proposed for
inclusion in future versions of the SQL standard.

4. Conclusions

We argued the importance of making the query
optimizer model the CPU costs associated with
concurrency control overheads. We illustrated it by
discussing many situations where the cost differ-
ences could be significant. We also made an ar-
gument in favor of considering, depending on the
query’s isolation level requirement, the level of
concurrency that can be supported by different ac-
cess paths as an optimization criterion, in addition
to the traditional measures like total cost and re-
sponse time, while making the access path choices.
We also described how ignoring the implications of
concurrent activities could result in erroneous re-
sults being produced if immediate accesses to data
pages after index accesses are avoided in the in-
terest of (1) reducing the number of data pages to
be accessed and/or (2) converting unclustered ac-
cesses to the data to clustered accesses. We also
discussed what could go wrong if the results of a
query are blocked so that more than one record is
returned in a single interaction with some portion
of the DBMS. We hope that our work results in
more people working on query optimization and
processing paying more attention to the interactions
between these topics and concurrency control.

Acknowledgement We would like to convey our
thanks to Stefano Ceri for his comments on this
paper.

5. References

Aetal76 Astrahan, M., et al. System R: Relational
Approach to Data Base Management, ACM
Transactions on Database Systems, Vol. 1,
No. 2, June 1976.

Bernstein, P., Hadzilacos, V., Goodman, N.
Concurrency Control and Recovery in Data-
base Systems, Addison-Wesley, 1987.
Blasgen, M., Eswaran, K. Storage and Access
in Relational Databases, IBM Systems Jour-
nal, Vol. 16, No. 4, 1977.

Cheng, J., Haderle, D., Hedges, R, lyer, B.,
Messinger, T., Mohan, C, Wang, Y. 4n
Efficient Hybrid Join Algorithm: a DB2
Prototype, Proc. 7th International Confer-
ence on Data Engineering, Kobe, April 1991.
Also available as IBM Research Report
RJ7884, IBM Almaden Research Center, De-
cember 1990.

Cheng, J., Loosely, C., Shibamiya, A,
Worthington, P. IBM Database 2 Performance:
Design, Implementation, and Tuning, |BM
Systems Journal, Vol. 23, No. 2, 1984.

BeHG87

BIEs77

CHHIM91

CcLsws4



CrHH87

DeGrso

DSHL82

EGLT76

GLPT76

JaKo84

KiRB85

LMHD8S

MHLPS89

MHWC90

T 1l

Crus, R., Haderle, D., Herron, H. Method for
Managing Lock Escalation in a
Multiprocessing, Multiprogramming
Environment, U.S. Patent 4,716,528, |IBM, De-
cember 1987.

DeWitt, D., Gray, J. Parallel Database
Systems: The Future of Database Processing
or g Passing Fad?, ACM SIGMOD Record,
Volume 19, Number 4, Decemeber 1990.
Daniels, D., Selinger, P., Haas, L., Lindsay,
B., Mohan, C., Walker, A., Wiims, P. An
Introduction to  Distributed Query
Comptilation in R*, In Distributed Data Bases,
H.J. Schneider (Ed.), Proc. 2nd International
Symposium on Distributed Data Bases, Ber-
lin, September 1982, North Holland Publish-
ing Company. Also available as IBM Re-
search Report RJ3497, IBM Almaden Re-
search Center, June 1982,

Eswaran, K.P., Gray, J., Lorie, R, Traiger, |.
The Notion of Consistency and Predicate
Locks in a Database System, Communications
of the ACM, Vol. 19; No. 11, November 1976,
Gray, J., Lorie, R., Putzolu, F., Traiger, |.
Granularity of Locks and Degrees of
Consistency in a Shared Data Base, Proc.
IFIP Working Conference on Modelling of
Database Management Systems,
Freudenstadt, January 1976.

IBM Database 2 Version 2 Release 2
Administration Guide, Document Number
S§C26-4374-1, 1BM, September 1989.
Operating System/2 Extended Edition
Version 1.3 Database Manager Programming
Guide and Reference; Volume 1: Guide,
Volume 2: Reference, Document Numbaer
S01F-0292, IBM, September 1990.

Jarke, M., Koch, J. Query Optimization in
Database Systems, ACM Computing Surveys,
Vol. 16, No. 2, June 1984,

Kim, W., Reiner, D., Batory, D. (Eds.) Query
Processing in Database Systems, Springer-
Verlag, 1985.

Lohman, G., Mohan, C., Haas, L, Daniels,
D., Lindsay, B., Selinger, P., Wilms, P. Query
Processing in R*, In Query Processing In
Database Systems, W. Kim, D. Reiner, and
D. Batory (Eds.), Springer-Verlag, 1985. Also
available as IBM Research Report RJ4272,
IBM Almaden Research Center, April 1984,
Mohan, C., Haderle, D., Lindsay, B., Pirahesh,
H., Schwarz, P. ARIES: A Transaction
Recovery Method Supporting
Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging, To
appear in ACM Transactlons on Database
Systems. Also available as IBM Research
Report RJ6649, IBM Aimaden Research Cen-
ter, January 1989; Revised November 1990.
Mohan, C., Haderle, D., Wang, Y., Cheng, J.
Stngle Table Access Using Multiple Indexes:
Optimization, Execution and Concurrency

e

35

MohaS0a

Moha30b

MoLe89

Mol 086

PMCLSS0

SACL79

Tand87

TeGu84

Control Techniques, Proc. International Con-
ference on Extending Data Base Technology,
Venice, March 1990. An Expanded Version
of This Paper is Available as IBM Research
Report RJ7341, IBM Almaden Research Cen-
ter, March 1990.

Mohan, C. ARIES/KVL: A Key-Value Locking
Method for Concurrency Control of
Multiaction Transactions Operating on
B-Tree Indexes, Proc. 16th International Con-
ference on Very Large Data Bases, Brisbane,
August 1990. A different version of this pa-
per is available as IBM Research Report
RJ7008, IBM Aimaden Research Center, Sep-
tember 1989.

Mohan, C. Commit_LSN: A Novel and Simple
Method for Reducing Locking and Latching
in Transaction Processing Systems, Proc.
16th international Conference on Very Large
Data Bases, Brisbane, August 1990. Also
available as IBM Research Report RJ7344,
IBM Almaden Research Center, February
1990. . :

Mohan, C., Levine, F.ARIES/IM: An Efficient
and High Concurrency Index Management
Method Using Write-Ahead Logging, IBM Re-
search Report RJ6846, IBM Almaden Re-
search Center, August 1989; Revised July
1991.

Mohan, C., Lindsay, B., Obermarck, R.
Transaction  Management in the R*
Distributed Data Base Management System,
ACM Transactions on Database Systems,
Vol. 11, No. 4, December 1986. Also available
as |IBM Research Report RJ5037, IBM
Almaden Research Center, February 1986.
Pirahesh, H., Mohan, C., Cheng, J., Liu, T.S,,
Selinger, P. Parallelism in Relational Data
Base Systems: Architectural Issues and
Design Approaches, Proc. 2nd International
Symposium on Databases in Parallel and
Distributed Systems, Dublin, July 1990, |IEEE
Computer Society Press. An expanded ver-
sion of this paper is available as |IBM Re-
search Report RJ7724, IBM Aimaden Re-
search Center, October 1990.

Selinger, P., Astrahan, M., Chamberlin, D.,
Lorie, R, Price, T. Access Path Selection in
a Relational Database Management System,
Proc. ACM-SIGMOD International Confer-
ence on Management of Data, Boston, June
1979.

The Tandem Database Group NonStop SQL:
A Distributed, High-Performance,
High-Availability Implementation of SQL,
In Lecture Notes in Computer Science Vol.
359, D. Gawlick, M. Haynie, A. Reuter (Eds.),
Springer-Verlag, 1989.

Teng, J., Gumaer, R. Managing IBM Database
2 Buffers to Maximize Performance, |BM
Systems Journal, Vol. 23, No. 2, 1984,




