Groups

• A group \((G, \star)\) consists of a group \(G\) together with an operation \(\star\) with the following properties:

 – **Closure:** If \(g, h \in G\), then \(g \star h \in G\).

 – **Associativity:** For all \(g, h, k \in G\), \(g \star (h \star k) = (g \star h) \star k\).

 – **Identity:** There exists an (unique) element \(e \in G\) such that for all \(g \in G\), \(e \star g = g = g \star e\).

 – **Inverse:** For every element \(g \in G\), there exists an (unique) element \(h \in G\) where \(g \star h = e = h \star g\).

• A group \((G, \star)\) is **commutative** (or **abelian**) if for all \(g, h \in G\), \(g \star h = h \star g\).

• **Notation:** Unless otherwise noted, we will denote the group operation by \(\cdot\) (i.e., multiplicative notation). If \(g, h \in G\), we write \(g \cdot h\) to denote \(g \cdot h\). For a group element \(g \in G\), we write \(g^{-1}\) to denote the inverse of \(g\). We write \(g^0\) and \(1\) to denote the identity element. For a positive integer \(k\), we write \(g^k\) to denote \(g \cdot g \cdot \ldots \cdot g\) (\(k\) copies).

• A group \(G\) is **cyclic** if there exists a generator \(g\) such that \(G = \{g^0, \ldots, g^{\lvert G \rvert - 1}\}\).

• For an element \(g \in G\), we write \(\langle g \rangle := \{g^0, g^1, \ldots, g^{\lvert G \rvert - 1}\}\) to denote the **subgroup generated by** \(g\). The **order** \(\text{ord}(g)\) of \(g\) in \(G\) is the size of the subgroup generated by \(g\): \(\text{ord}(g) := \lvert \langle g \rangle \rvert\). The order of the group \(G\) is the size of the group: \(\text{ord}(G) = \lvert G \rvert\).

• **Lagrange's theorem:** For a group \(G\) and any element \(g \in G\), the order of \(g\) divides the order of the group: \(\text{ord}(g) \mid \lvert G \rvert\).

• If \(G\) is a group of prime order, then \(G = \langle g \rangle\) for every \(g \neq 1\) (i.e., every non-identity element of a prime-order group is a generator).

The Groups \(\mathbb{Z}_n\) and \(\mathbb{Z}_n^*\)

• We write \(\mathbb{Z}_n\) to denote the group of integers \(\mathbb{Z}_n := \{0, 1, \ldots, n-1\}\) under addition modulo \(n\).

• We write \(\mathbb{Z}_n^*\) to denote the group of integers \(\mathbb{Z}_n^* := \{ x \in \mathbb{Z}_n : (\exists y \in \mathbb{Z}_n : x y = 1 \mod n) \}\) under multiplication modulo \(n\).

• **Bezout's identity:** For all integers \(x, y \in \mathbb{Z}\), there exists integers \(s, t \in \mathbb{Z}\) such that \(x s + y t = \gcd(x, y)\).

 – Given \(x, y\), computing \(s, t\) can be computed in time \(O(\log |x| \cdot \log |y|)\) using the **extended Euclidean algorithm**.
An element \(x \in \mathbb{Z}_n \) is invertible if and only if \(\gcd(x, n) = 1 \). This gives an equivalent characterization of \(\mathbb{Z}_n^* : \mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : \gcd(x, n) = 1 \} \). Computing an inverse of \(x \in \mathbb{Z}_n^* \) can be done efficiently via the extended Euclidean algorithm.

For prime \(p \), the group \(\mathbb{Z}_p^* = \{1, 2, \ldots, p-1\} \). The order of \(\mathbb{Z}_p^* \) is \(|\mathbb{Z}_p^*| = p - 1 \). In particular \(\mathbb{Z}_p^* \) is not a group of prime order (whenever \(p > 3 \)). Computing the order of an element \(g \in \mathbb{Z}_p^* \) is efficient if the factorization of the group order (i.e., \(p - 1 \)) is known.

- For a positive integer \(n \), Euler's phi function (also called Euler's totient function) is defined to be the number of integers \(1 \leq x \leq n \) where \(\gcd(x, n) = 1 \). In particular, \(\varphi(n) \) is the order of \(\mathbb{Z}_n^* \). If \(p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell} \) is the prime factorization of \(n \), then

\[
\varphi(n) = n \cdot \prod_{i \in [\ell]} \left(1 - \frac{1}{p_i}\right) = \prod_{i \in [\ell]} p_i^{k_i - 1} (p_i - 1).
\]

- Special cases of Lagrange's theorem:
 - **Fermat's theorem**: For prime \(p \) and \(x \in \mathbb{Z}_p^* \), \(x^{p-1} = 1 \pmod p \).
 - **Euler's theorem**: For a positive integer \(n \) and \(x \in \mathbb{Z}_n^* \), \(x^{\varphi(n)} = 1 \pmod n \).

Operations over Groups

- Let \(n \) be a positive integer. Take any \(x, y \in \mathbb{Z}_n \). The following operations can be performed efficiently (i.e., in time \(\text{poly}(\log n) \)):
 - Sampling a random element \(r \overset{\$}{\leftarrow} \mathbb{Z}_n \).
 - Basic arithmetic operations: \(x + y \pmod n \), \(x - y \pmod n \), \(xy \pmod n \), \(x^{-1} \pmod n \). These operations suffice to solve linear systems.
 - Exponentiation: Computing \(x^k \pmod n \) can be done in \(\text{poly}(\log n, \log k) \) time using repeated squaring.

- Suppose \(N = pq \) where \(p, q \) are two large primes. Let \(x \in \mathbb{Z}_n \). Then, the following problems are believed to be hard:
 - Finding the prime factors of \(N \). This is equivalent to the problem of computing \(\varphi(N) \).
 - Computing an \(e \)th root of \(x \) where \(\gcd(N, e) = 1 \) (i.e., a value \(y \) such that \(x^e = y \pmod N \)).

- Let \(G \) be a group of prime order \(p \) with generator \(g \). We often consider the following computational problems over \(G \):
 - **Discrete logarithm**: Given \((g, h) \) where \(h = g^x \) and \(x \overset{\$}{\leftarrow} \mathbb{Z}_p \), compute \(x \).
 - **Computational Diffie-Hellman (CDH)**: Given \((g, g^x, g^y) \) where \(x, y \overset{\$}{\leftarrow} \mathbb{Z}_p \), compute \(g^{xy} \).
 - **Decisional Diffie-Hellman (DDH)**: Distinguish between \((g, g^x, g^y, g^{xy}) \) and \((g, g^x, g^y, g^r) \) where \(x, y, r \overset{\$}{\leftarrow} \mathbb{Z}_p \).