
How do we combine confidentiality and integrity ?
↳ Systems with both guarantees are called outdatedencryption schemes - gold standard for symmetric encryption

touring :

l. Encrypt - then MAC (TLS 1.2T
, IPsec)

←

guaranteed to be secure if we instantiate using CPA -secure encryption
and a secure MAC

2. MAC - then- encrypt (SSL 301%510
,
802. " i) T

as we will see
, not always secure

Definition. An encryption scheme The :(Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:
- CPA security (confidentiality]
-

ciphertext integrity (integrity]

-adversary challenger
KEK

mi
-←Entmf§C

-

-

f- [
special symbol L to denote invalid ciphertext

output 1 if c ¢ {Ci , Cz }

and Decrypt (k, c) =L I

Define CI Adv CA, Tse] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A
,

CIAdv CA, THE] = negkx)
←

security parameter determines key length

ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertext it can generate are those that are

already valid
. Why do we want this property ? Encrypted under KA

KA
,
KB KE

Consider the following active attack scenario : mail serverIE
(

x.
...

-

Each user shares a key with a mail server c) To:BoT/KA / Message-

To send mail, user encrypts contents and send to mail server Alice -

Encrypted under- Mail server decrypts the email
, re

-

encrypts it under recipient's key and delivers email
Eve intercepts and kB

Encrypted under Kp
modifies message

If Eve is able to tamper with the encrypted message,
Eve / KA

,
KB KE

then she is able to learn the encrypted contents (even if [m°e/¥ mail server

the scheme is CPA- secure)
ka k, ke

peed↳ More broadly , an adversary can tamper and inject ciphertext's Alice Bob
under KE

into a system and observe the user's behavior to learn information

about the decrypted values - against active attackers, we need stronger notion of security

Definition . An encryption scheme -11¥:(Encrypt, Decrypt) is secure against chosen- ciphertext attacks (CCA- secure) if for all efficient

adversaries A
,
CCAAdv[A

,
TSE] = negl. where we define CCAAdirt, Tse] as follows :

b. C- {on}

adversary

ÉKEN-mÉ>{ ci-Encryp-CK.ME#- ✓
⇐

b' C- {°"} adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertext it received from the

challenger (otherwise, adversary can trivially break security)
CCAAdr[A , -11s:] = / Pr[b' = I / b= 0] - Prfb' -- I / b-- I]/

↳ called an " admissibility
"
criterion

CCA- security captures above attack scenario where adversary can tamper with ciphertext
↳ Rules out possibility of transforming encryption of ✗ HZ to encryption of

y
HZ

↳ Necessary for security against active adversaries [CPA- security is for security against passive adversaries]
↳ We will see an example of a real CCA attack in HWI

teen.
If an encryption scheme TISE provide authenticated encryption, then it is CCA- secure .

Proofttdea . Consider an adversary A in the CCA- security game. Since TISE provides ciphertext integrity , the challenger's response
to the adversary's decryption query will be 1- with all but negligible probability. This means we can implement the

decryption oracle with the
"

output 1-
"

function. But then this is equivalent to the CPA- security game .
[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext

in a CCA-secure scheme (stripped away duringf decryption)
Note: Converse of the above is not true since CCA -security ⇒ ciphertext integrity.
↳ However

, CCA
-

security
+ plaintext integrity

⇒ authenticated encryption

_aay : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

Encryp--MA_C : Let (Encrypt, Verify) be a CPA- secure encryption scheme and (Sign, Verify) be a secure MAC. We define

Encrypt- then- MAC to be the following scheme :

Encrypt
' ((KE

,
km)

,
m) : c ← Encrypt CKE, m)

t 17
t ← sign (km, c)independent keys
output (at)

Decrypt
' ((KE

,
km) , Cc ,-4) : if Verify 1km, c , -4=0, output 1-

else
, output Decrypt (KE , c)

