
So far in this course
,
we have shown that

PRF ⇒ CPA - secure encryption ⇒ authenticated
encryption⇒

secure MAC

From Hw? we saw how to construct a ppg from a yengyh.dougy.gg
pp[

"""*"""Y
" simpler

"

object

[ can be built from any PRG with 1- bit stretch

Question: Can we distill this further ? Can we base symmetric cryptography on an even simpler primitive?
-

Cryptography is about exploiting some kind of asymmetry : we want an operation that is
"

easy
" for honest users

, but hard for adversaries
-

Suggests a notion of " hard to invert" :( cannot recover seed from PRG, cannot decrypt without)
knowledge of secret , etc .

Definition. A function f : ✗ → Y is o if
>

Technically, ✗ = {Xx} > c- IN and Y = { Yx } yen are

1. f is efficiently computable idexed by a security parameter 7 and

2. for all efficient adversaries A : /Xx / = poly (7) .
Pr [ ✗I ✗ , y

←Alftxl) : ffx) = fly) ] =

negl (a)
"

Function is hard to invert on→
"

Kem (Holstad - Impagliazeo - Levin -Luby) . OWF ⇒ PRG [ implies OWF is sufficient land necessary) for symmetric}
cryptography

We will consider a weaker statement : one-way permutation
⇒ PRG

Definition . A function f : ✗ → ✗ is a one - way permutation if

1. f is one -way
2. f- is a permutation

Goat : given a OWP f :X → ✗
, can we construct a PRG with one- bit stretch .

idea: if ✗ I ✗ , then ftx) is uniformly random

moreover
, given ftx), should be difficult to recover (all of) × ← leverage this to get 1 pseudorandom bit

Definition
.

Let f : ✗→ Y be a one - way function .
Then h : ✗ → R is a hard-core predicate for f if no

efficient adversary can distinguish the following distributions :

Do : { ✗ EX : ( th)
,

htx))
D , : { ✗ EdX

,
r ER : Cffxl

,
r) }

If a OWP has a hard - core predicate, that immediately implies a PRG : } Typically, we will consider hard- core bits

PRG (s) : = fls) 11h(s) (i. e
,
R :{0,13)

lemma . Let f- : ✗→ Y be a one -way function . Suppose h: ✗→ {0,13 is unpredictable in the

following sense : for all efficient adversaries A :

/ Pr (✗ EX : Altan)=h(x) ) - I / = negllx)

If his unpredictable, then it is a hard - core bit
.

[ Note: Converse of this is immediate]



Prost. Suppose there exists an efficient A that can distinguish between (f(x) ,htx)) and HAD ,r) for ✗EX and

be { 0,13 with advantage E. We use A to build a predictor B :

1. On input f- (X)
, sample b £ { 0113 and run A on input ( 11-1×1 , b) .

2
.
If A outputs 1 , then output b. Otherwise

, output 1- b.

Intuition : Suppose A is more likely to output 1 given inputs from the
"

hard- core bit distribution
"

.
This means that

A outputs 1 if we
"

guess correctly!

Formality : Pr [Blftx)) = htxl]
= Pr [AHH

,
b) = htx) )

= Pr [A (th)
,
b) = 1 / b=h(✗1) Pr [b-- hlx)) + Pr [A (ft), b) = 0 I b = 1- htxl]Pr[b= that]
IF =TÉnÉÉÉÉFÉ

= d- + £ (Pr [A (1-1×1,6)=1 / b-- had] - Pr /A (1-1×1,6) = 1 / b = 1-htx)))

=L + £ (Pr /A (1-1×1,21×1)=1] - prfn-lftxl.is/p--1/b----h)=

Now
,

E =/ Pr[A (1-1×1,4×7)=1] - Pr /Alflxl , b) = I ] /
=/ ✗ - Prfaltlxl, b) = 1 / b-- had ]Pr[b=hlx)]
i →yay,,,, = , , , . ,.µ*, , , ,,,µµ⇒,=nµ,.± ,
=/✗ - Ela -1ps) / =/ £ (a - p) /
= I /x-p /

= E

IÉÉiÉ .

Let f :{0,13
"
→ { 0.13

"

be a one-way function
.
For a string r c- {0,15

,
define the function

hr : {0,1 )
"
→ { 0,13 where hr (X) = SriXi (mod 2) . Then the function gfx.ir/:--lflx),r)

is one - way and hr is a hard-core predicate for g.

Observe that if f is a OWP
,
then so is g.

ÉÉ . One- Waynes, of g immediately follows from one-wayness of f. Suffices to show that hr is hard- core
.

Suppose that hr is not a hard - core predicate for g. This means that there is an adversary
A that can predict hr given (f-(x),r) with probability It E. We will use g

to construct an

adversary B that can invert f (and thus g) .

there : suppose A succeeds with probability 1 :
Pr[Alg (x,r)) = hrlx) ] = 1 Ifor ×

,
r
E {0,13

")
Given

y
= ftx)

,
run A on inputs ly , e, ) , . . . , ly , en) where e; is the ith basis vector

-

he:(x) = Lei , ×) mod 2
= ✗ i C- {0,13

Suppose now that A succeeds with probability 3/4 + E for constant E > 0 :

S Evaluating at e
, , . . . ,

en not guaranteed to work since A could be wrong on of these inputs



✗ integers modulo 2

Analysis proceeds in two steps :

1. Fix an ✗ c- Zi
. Suppose we have a function t : Zi → {0,13 where

Pr [r E Zi : + (r) = tx.rs] 7 ¥ + e

We show that we can learn ✗ by evaluating t on carefully
- chosen points .

Similar to before
,
I could be wrong one , , . . , en .

Need evaluation points to be randy .

Sample r
F- Ii

.

and evaluate t at r and e
,
+ r

.

By assumption
: Prfllr) = (x ,r>] 2 f- + e
Prfllrt e.) = (x

,
rte

,)] 2 f- to (since r t e
,
with r F- Zi is uniform)

But these events are not independent : inputs are correlated !

Consider the complements : Pr [tlr) =/ Hr) ] < ¥ - E ⇒ By union bound:

Pr [tert e.) =/ (✗
,
rte

,)) < ¥ - E Pr [tlr) =/ Car> or tlrt e.) =/ (x, rte , >]
< £ - Le < £

Thus
,
with prob . at least £+22

,
tlr) = (x,r> and -1Gt e.) = fx

,
rte

,>

Set 2- = tlr) t tlrte,)

If tcr) = (x,r> and tcrte,) = fx, rte,)
,

tlr + e.) - t (r) = fx
,
rte
, ) - far> = fx , e , > = × ,

Ike : sample K independent pairs (ri , ri ④ e ,) for ri F-Ii and compute estimates Z
, , . . ., Zk

*

Take the first bit ✗ ,
to be Majority (Z , , . . . , ZK)

Repeat this procedure to obtain estimates Ñz
,
. . .

.
In

. Output I.Iz - - - in
.

Analysis will use a Chernoff bound . Simple version for our setting:

Let Xi
, .. ,

✗KE {0,1} be independent random variables where Pr [✗ ; = Y ] 7£ + E . Then
,

Pr [Majority (X , , . .,
✗k) =/ Y ] £2e-

2" "

In particular , if e--041 , Pr[Majority (× , . . . . , ✗±) =/ Y ] f 2-
01k)

(when k= 0cm)
v four each bit of ✗

By the Chernoff bound
,
Xi = X , with probability 1 - neg/ (n) . Repeating this n times yields the desired result .

Total evaluations of t :O (ri) ↳
( can

also set K = 0110g n) . Each bit correct
2. Our setting is not quite this : with prob. 1- In

,
so correct with constant }probability.Pr/Ir ←R{0,13

"
: A / fan,r) = (x ,r> ] 2 ¥ + e

randomness taken over both ✗ and r while above analysis only looks at r
.

Let's say an X is
"

good
" if

Pr[r←R{0,13" : Alfa) , r) =/× , r> ] 2¥ + £
If ✗ is " good

"

,
then can recover ✗ using above algorithm.

How many ×
's are good ? If Pr[✗ * {0,13

"

:X is
"

good
" ] is non- negligible, then we have proven the

claim
. Algorithm B runs above decoder on A and recovers ✗ whenever ✗ is good , which happens with

non-negligible probability.

If A succeeds on (¥ + E) - fraction of X's
,
cannot have

"

too
many

"

bad ✗ 's
.
(Averaging argument?

Suppose 8 fraction of ×'s are bad . Then
, probability of A succeeding over choice of ✗ ,r←R{0113

"

is at most



spy + E) + (1-8)
=L - § +÷

y
constant for all

E > 0

Require that 1- § + ¥7 F- + E ⇒ 1-8+28274 E ee ;
⇒ sci -24£ 1-Lie ⇒ se 1¥

Confusion : At most constant fraction is
" bad

"

so inversion will succeed on constant fraction of inputs .

HW} : show how to go
from ¥ + E to £ + E for constant E > 0


