
Thus far
, we

have assumed that parties have a shader key. Where does the shared key come from?

Can we do this using the tools we have developed so far ?

So far in this course : CPA - secure encryption
OWFS ⇒ PRGS ⇒ PRFSÑ ⇒ authenticated encryption⇒

MAC key agreement :

Alice Bob
-

Can we show OWFS (or even OWPS) ⇒ key agreement ? | c- Requirements :

1) K , = kz
= k

c- with highI t
probabilityK

, K2
2) Eavesdropper

cannot learn

to (efficiently)

Me#µes : suppose f :X → Y is an injective one-way function

Alice Bob_

✗
ii. . - , Xn

← ✗

i← In]

find Xi such that ffxi)=y ; [solve the "puzzle
" ]

←ÉÉE- derive a key K from Xi ←
modeled as random oracle

t
✓

derived from Xi (e.g. , using hard
- core bit or hash the input)

try each key ki to

decrypt ciphertext

suppose it takes time t to solve a puzzle . Adversary needs time Olnt) to solve all puzzles and identify key.
Honest parties

work in *me 0 Cnt -4
.

↳
Only provides iÉgap_ between honest parties and adversary

can we get a super
- polynomial gap just using Owfs ? Very difficult ! [ Impagliazzo- Radich ]

Can we get a super - linear gap just using
Owfs? Very difficult ! [Barak - Mahmoody ]

-

↳ A positive result
will require non- black-box

techniques.



Impagliazzo- Radich : Proving the existence of key -agreement that makes black-box use of OWB implies Pt NP.

Intuition: Black-box construction means key -agreement protocol only needs reacted to one
-

way permutation (does not depend on the code)of the OWP
- Namely , given

OWP f
,
there is a key - agreement protocol 1T£ that is a

e-

key- agreement protocol (and security reduction also uses f- as black box)\
construction IT can make oracle queries to f-

In a world where P = NP
,
secure key agreement is impossible (only way to

interact with f is through queries)
(intuition : eavesdropper can guess internal state of one of the parties)

- Impossibility holds even if parties have access to a random permutation oracle

- without loss of generality , suppose Alice/Bob may one query
to H and then send a

H :{0,13m→ {0,13m
lrandom permutation) message and overall protocol is no rounds

-

☒ -

ob-servatigi.it Alice queries H on ✗ ,
but Bob does not

,
then secret cannot depend

Alice Bob on ✗ ( since Bob's view is essentially independent of Htx)) .
c-

key agreement protocol
-

to break key agreement, adversary has to guess intersection
queries made by

both Alice and Bob

-

on each round
, adversary samples many executions of protocol that is

consistent with Alice's / Bob's communication transcript (and previous simulated

queries)
- (IR89] : with high probability , adversary will identify all intersection queries made

by Alice and Bob ⇒ breaks key exchange
-

In a world with a random permutation oracle , one-way permutations exist unconditionally
↳ And if there was a black-box construction of key exchange from OWP

,
then secure key exchange is also

possible in this model ⇒ P =/ NP
. ✓ black-box

-

Conclusion : Proving a statement like OWPIOWF ⇒ secure key exchange will prove
that P =/ NP

-

This is an example of a bÉ^ '

owfs/owps?O_pÉbem : secure key exchange via non - black-box use of

-

Black- box separations also known for many other notions :

e.g. , Simon
: black-box separation between one-way permutations and CRHFS



Implication of black - box separations : constructing secure key agreement will require more than just one-way functions
"

↳ Distinction between Minicrypt and Cryptomania in Impagliazzo's five worlds
"

we will turn to algebra/ number theory for new sources of hardness to build key agreement protocols .

Definition. A group consists of a set ① together with an operation
* that satisfies the following properties

:

-

ctosure : If g , ,g€ 6 ,
then g.*gzE 6

-

Associativity : For all g, , gz.gs C- 16
, g,

* (gigs)
= (g ,

* ga)
* gs

-

Identity : There exists an element e c- 6 such that e *g-
-

g
=

g
☒ e for all

g
c- 6

-

Inverse : For every element g C-
6
,
there exists an element g-

'
c- 6 such that

g.
* g-

'
= e-- g-

'
*

g
In addition

,
we say a group is commutative (or abelian) if the following property also holds :

-⇐Eie : For all g, , ga C- 6
, g.
* ga

=

92*91

f-
called "multiplicative

"

notation

Notation : Typically ,
we will use

"

•

"

to denote the
group operation

(unless explicitly specified otherwise)
.
We will write

g× to denote g. g. g-
- -

g (the usual exponential notation)
.

We use
"

1
"

to denote the multiplicativeidentity
-

✗ times

Iiamplesofgmaps : (TR
,
+ ) : real numbers under addition

(I
,
t) : integers under addition

(Ip ,
t) : integers modulo p under addition [sometimes written as Z/p2 ]

There, p is prime
TÉÉp* (an important group

for cryptography) :

Zp* = { ✗ c- Zp : there exists g
c- Zp where xy

= I lmodp) )
← the set of elements with multiplicative inverses modulo

p



What are the elements in 2p* ?

µ
greatest common

divisor

Bntty : For all positive integers x.y
C- 2

,
there exists integers a , b C- 2 such that axt by

-

- god (x, y) .
Corollary : For prime p , Ipt = { 1,2 , - - -

, p
- I }

.

¥. Take
any X

E { 1,2. . . . , p
- 13

. By Beaut's identity , god (x ,p) = 1 so there exists integers a, b C- 2 where I = axtbp.

Modulo
p ,
this is ax = I (mod p) so a

-

- x
- ' (mod p) .

Coefficients a
,
b in Beaut's identity can be efficiently computed using the extended Euclidean algorithm :

Eudideanalgorithm_ : algorithm for computing ged (a, b) for positive integers a
> b :

relies on fact that god Ca , b) = ged ( b, a @od BD :

to see this : take any
a > b

↳
we can write a = b- qtr where q >

I is the quotient and

O E r < b is the remainder

↳ d divides a and b ⇐ d divides b and r

↳ god(a ,b) = god(b , r) = god(b, a (mod b))

gives an explicit algorithm for computing god : repeatedly divide :

god (60,27) : 60 = 2712) t 6 ( q
-

- 2
,
r -- 6] us god (60,27) = god (27 , 6)

← ←
27 = 6 (4) t 3 ( q

-

- 4
,
r =3] → god (27,6) = god (6,3)

←←
6 = 3 (2) t O ( q =L , r = O] → god(6,3) = god ( 3 , O ) =3

"

rewind
"

to recover coefficients in Beaut's identity :
60 = 2712) t 6 f 6=60

- 2712)
yFILTH! / 271694/+3 → 3=27-6.4
-

27 - (60 - 2712114
algorithm ←←

6 = 3 (2) t O = 27 (9) t 6044)
T →
coefficients

Iterations : O(loga) - ie, bit -length of the input (worst case inputs : Fibonacci numbers]

Implication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)


