
Also possible to use RSA to build PKE :

"

Textbook RSA
"

(How NOI to encrypt)
: consider the following candidate of a PKE scheme from RSA:

-

Setup (17) : sample IN
, e.d) where N=pq and ed = 1 (mod 41N)) . Output pk = IN , e) and sk= IN , d)

-

Encrypt lpk, m) : Output c
← med } Correct sincecd = (me)

D= med = m
'
= m (mod N)

-

Decrypt (sk, ct) : Output m
←
c

Correctness follows from correctness of TDP
.

How about security ? NI. 1. Security of TDP says that inverting run-down element should be difficult
↳ Does not apply if messages chosen adversarially (e.g. , semantic security definition)
↳
Does not say anything about hiding preimage (e.g-, Flpp, ✗) can leak information about ✗ so long
as leakage is not sufficient to fully recover ✗ - this is a weaker propay than full indistinguishability)

2. This scheme is deterministic : cannot be semantically secure !

NE_V_ER use textbook RSA ! ↳ in fact
,
vulnerable to message

-

recovery
attacks in

many

settings [see HWY]
To use RSA / TDPS to construct a PKE scheme

,
we will use a similar strategy as in the FDH signature construction :

-

setup 11
') : sample Cpp, +d) ← Setup (F) for the TDP scheme and output pk = pp

and sk= td

-

Encrypt /pk, m) ? Sample ✗
I ✗ from domain of TDP scheme is randomized!

Let K ← Htx) where H :X → Ko is an (ideal) hash function and K is the key
-

space for an

symmetric authenticated encryption scheme

compute y
← Flpp, X) and c-i-I-ncpx.lk , m)

Output (y.ci)
-

Decrypt (sk , ct
'
= ly.ci)) : compute ✗ ← F-

' ltd
, g) , k ←HCX)

,
and output m ← Dean (k , et

')

This is an example of hybrid encryption or KEM :

y is
used to encapsulate the key and et

'

is an encryption under
ko

theorem
.

If F is a trapdoor permutation and H is modeled as a random oracle
,
then the above encryption

scheme is

semantically secure . [In fact, this scheme is CCA - secure in the random oracle model]

Proofintuition. Given a ciphertext ly , ct
') and public key pk = pp :

-

Adversary cannot compute ✗ from y (by security of TDP - since ✗ is uniform)
-

Adversary cannot evaluate H on ✗ ,
so k is uniformly random and hidden from adversary

- Semantic security follows from semantic security of symmetric encryption scheme .

Rsttinstantiation:
-

Setup 11
') : sample CN

,e. d) where N=pq and ed= I Cmod UND
. Output pk= IN,e) , ski IN,d)

-

Encrypt lpk , m) : sample ✗
⇒ ZÑ and compute y

← ×
'

(mod N)
. } Output (y, ct')

compute K ← Htx) and compute ct
'
← ENCAE (K , M) .

-

Decrypt Csk , ct) : compute ✗ ← yd (mod N) , k ← HCK)
,

and output m ← Deca (k , et't

Inprae : Most widely- used standard for RSA encryption is PKCSI (by RSA labs)

↳ Has shorter ciphertext if we are encrypting a single IN element (no need for KEM t symmetric component]

(helpful if PKE just used to encrypt short token or metadata)

teach :

suppose N is 2048 bits and we want to encrypt 256- bit messages
↳

we will first apply a randomized padding to m to obtain a 2048 - bit padded message

PKCSI padding:
g-(mode 2) 00-02
- -

16 bits s bits where sat

it
- bits long

Encryption : compute mpad
← PKCS (m) and set c ← mpead Lie , directly apply RSA trapdoor permutationssayle padded)

Decryption : Compute Mpad
← Cd and recover m from mpad

In SSL v 3.0 : during the handshake , server decrypts client's message and checks if resulting mpad is well-formed

lie, has v.alidpkl.SI padding) and rejects if not

↳ scheme is vulnerable to a chosen - ciphertext attack !

↳ allows adversary to eavesdrop on connection

Devastating attack on SSL 3.0 and very hard to fix : need to change both servers t clients !

↳
ILI i fix is to set ME 2nF if decryption ever fails and proceed normally (never alert

client if

padding is malformed) - setup fails at a later point in time, but hopefully no critical information is leaked..-

Taay : PKCSI is not CCA - secure which is very problematic for key exchange
↳ Absence of security proof should always be troubling . . .

Newstedadd: Optimal Asymmetric Encryption Padding (OAEP) [19943 } Standardized in PKCSI
↳ Can be shown to be CCA - secure in random oracle model version 2-O

