
Now that we have digital signatures, let's revisit the question of key exchange (with active security)

Alice gx Bobe

-

←) completely vulnerable to an active

¢ y
network adversary that can intercept and inject packets

gxy gxy

In addition
,
should guarantee that one compromised session should not affect other honest sessions

-

Alice T Eve should not compromise security of Alice ← Bob

Authenticated key exchange CAKE) : provides security against active adversaries

-

Requires a
"
root of trust

"
(certificate authority)

→
we need some binding between keys and identities

AP¥/ (one- time setup , at least for duration of validity period)¥te CA

-

[
the certificate binds Alice's public key pls Alice to Alice's identity

- Certificates typically have the following format (11509) :
-

Subject (entity being authenticated)
- Public key (public key for subject for signature scheme)
- CA : identity of the CA issuing the certificate

- Validity dates for certificate
- CA's signature on certificate ← the browser and operating system have a set of hard- coded

certificate authorities and their respective public keys
Basic flow of Diffie-Hellman based AKE : (usually several hundred authorities)

Ate
×

Baek [public
- key infrastructure (PKI)]

x#Zp g y Eep
-7

k
,
K'← Hfg,g7g'd , god)
o ← Sign CskBank .lg.gl?gYpkBankDderitek.k'-HCg,g7g4gM) sets
ion key k

'

check 0 is signature on Cg ,g×, g
'd
,pkBa! } intuition: CertBank identifies server as Bank (with PkBank)

under pkBank is the public key identified by CertBank 0 binds the session parameters (
g , g? g

'd) to

the public key identified by Cert
Bank

nEdofprl : Alice knows she is talking to Bank (but not vice versa!)
"

one- sided AKE
"
- most common mode on the web

↳
Basis of TLS 1.3 handshake (" one- sided

"

AKE) ALWAYS USE TLS 1.3 - Don't invent your own
AKE protocol !

They
't.TL: Clientele : list of supported ciphersuites f- dderma.qsjemsffffffsne.SIstems
→ (e.g . . AES- GCM- 128, AES

- GCM-256) ciphers

JDSFTheyt.ws# Possible TLS extensions folder versions of
certificate Servo: Chosen ciphersuite TLS vulnerable to
(encrypted)

cipher downgrade attacks

/ /
Application layer secured using unidirection keyscapitation> 1-

- Data KA→ B and KB→ A

TLS supports session setup using a
"

pre
-shared key

"

(so full handshake not needed) :

client server client server
-

full handshake - -
-

← ClientHello t PreSharedkey Cid)
New SessionTicket (nonce

,
id)

first message {-=) vulnerable to Erica⇐ (k , data)
←

"
O -RTT data

"

j replay attack
[derived from preshared key

server response

pre
shared key c-

derived from session secrets
,
nonce, and id

fresh key kA→B , kB→A derived for

rest of session (based on initial messages)

negotiated I [identity of peer
OutpAKEpr : (key , id)

Authenticity : only party that knows key is id lie
,
the party identified by id)

Secrecy : All parties other than client and id cannot distinguish key from random (i.e.
, key is hidden)

consistency : If id also completes protocol , then it outputs (key, idclient)
←
if we do not have client authentication

, then

idclient is empty

Often also require ¥cy :
compromise of server in the future Canino affect secrecy of sessions in the past

↳
In TLS

,
server secret is a signing key

- fresh Diffie-Hellman secret used for each session is fresh (" ephemeral
")

Compromising signing key allows impersonation of server
,
but does not break secrecy of past sessions

↳
As we will see

,
not all AKE protocols provide forward secrecy

Very tricky to get right as we will see . . . Just use ts!

AKE#PKE : suppose server has certificate authenticating a public key for a PRE scheme (CCA - secure) :

f nonce

r , CertBank

k£KAe ftp.p/#skBank Yields statically - secure AKE

-
-

Cert
Bank (no forward secrecy)

µ
,

Lga, ¥ , qq.gg?.qyzyryy+,fsy..an,,c, } compromise of skean, compromise, ¥ pas,

sessions

[
no client authentication

If we do not encrypt the nonce r : replay attack possible (adversary replays messages from past session - e.g. .
"

send Eve $10
")

←
nonce ensures fustiness

MU-kealauthen-tication.co Bank has certificate identifying public key for PKE scheme

Alice has certificate identifying public key for signature scheme

r
,
CertBank
=

KEK /h tekke")) Ba④-
-

o← Sign (ska,ice
,
Cri,

"Bank""
(k, Alice) ← Dec (SkBank, c)t cert

Alice t
check Alice matches id in certificate

k
,
Bank K

,
Alice check Alice's signature on Cr

,
c
,

"Bank
") under PkAlice in artAlice

Above protocol provides static (no forward secrecy) mutual authentication

Most variants to this protocol are broken! AKE very delicate:

-

Example: suppose Alice encrypts (K
,
r) instead of Ck

,

" Alice") like in the server - auth protocol above
- Vulnerable to

"

identity misbinding
"

attack where Alice thinks she's talking to Bank but Bank thinks it 's talking to Eve :

r
,
CertBank
=

keek n/¥a⇐÷% Bandi
-

10-ssigncskmice.cr.4.BA/cT/t cert
Alice t
-

k
,

Bank
ff k

,
Alice

o ← sign (Sk Eve , Cr, c ,
"

Bank
")) ⇒ Bank thinks it's talking to Eve

Cert
Eve

if Alice now sends
"

deposit this check into my account
"

to Bank,

Bank deposits it into Eve's account !

← observe that Eve didnt break secrecy
(she does not know k)

,
but nevertheless

,
broke

consistency

Above protocols supported by TLS 1.2
,
but deprecated in TLS 13 due to lack of forward secrecy

broken without signature,
To get forward secrecy , use ephemerality : adversary can replace pk

← fresh public key
with pk

' and

learn Alice's

Pk , Certpoank, O← Sign (skisank, Pk) f
for signature scheme

provides one-sided authentication chosen key
" I:*:'m /⇐÷÷÷÷÷÷:÷::i"on, on.I t k← Dec(Sk

,
c)
,

and long- term secret is signing key
k
,
Bank K

,
I delete sk

f
hardware security module (used to protect cryptographic secrets)

Problem : Does not provide
" HSM security

"

↳ Suppose adversary breaks into the bank and learns a single (pk
'

,
sk
'

) pair with o
← Sign (SkBank , pk

')

↳
Adversary can now impersonate the bank to any

client :

adversary always use the message (pk
'

,
Cert

Bank ,
o) } defending against this requires testiness from client

↳ can decrypt keys for all clients that responds !

- ok
KEK

|A B } Provides HSM security
: client chooses fresh pk each time

,
so signature

on pk functions as a
" proof

"
that the other

CertBank or←Sign(SkBank
, lpk.cl)

f n f party possesses signing key for id identified by

k
,
Bank / k

,
I certpoank

In
many cases, also want to hide the endpoint (the id identified by Cert)

Possible by encrypting two keys (k
,
K') and

using K
'
to encrypt certpsank

Diffie-Hellman key - exchange : substitute Diffie-Hellman handshake for the PRE scheme (simpler)

(TLS 1.2
,
1.3)

