Lamport signatures: Let \(f: X \rightarrow Y \) be a one-way function.

- Setup \((1^n, 1^n) \): Sample \(X_i, b_i \in X \) \(\forall i \in [n], b_i \in \{0, 1\} \) and compute \(y_i, b_i \leftarrow f(X_i, b_i) \)

\[\text{Set } S_k = \begin{array}{c} X_0 \quad X_1 \quad \cdots \quad X_{n-1} \\ X_0 \quad X_1 \quad \cdots \quad X_{n-1} \end{array} \quad \text{pk} = \begin{array}{c} y_0 \quad y_1 \quad \cdots \quad y_{n-1} \\ y_0 \quad y_1 \quad \cdots \quad y_{n-1} \end{array} \]

- Sign \((sk, m)\): Output \(X_{im}, \ldots, X_{in}, m\)
- Verify \((sk, m, \sigma)\): Output \(1 \) if \(\forall i \in [n] \), \(f(X_i, m_i) = y_i \), and 0 otherwise

\textbf{Theorem}: If \(f \) is one-way, then Lamport signatures are secure one-time signatures (i.e., where adversary can only make 1 signing query).

\textbf{Proof}: Suppose A is a one-time signature adversary. We construct B \textcolor{red}{(will fix later!)} as follows:

1. Algorithm A receives challenge \(y \leftarrow f(x) \) where \(x \in X \) from challenge.
2. Choose \(i^* \in (n), b^* \in \{0, 1\} \) to program challenge. Sample \(X_i, b_i \in X \), \(y_i, b_i \leftarrow f(X_i, b_i) \) for \((i, b) \neq (i^*, b^*) \).

\[\text{Set } \text{pk} = (y_0, y_1, \ldots, y_{n-1}, y_{i^*}). \]
3. Send \(\text{pk} \) to B. If B makes signing query on \(m = m_0, \ldots, m_n \):
 - If \(m_i = b^* \), then abort.
 - Otherwise, reply with \((X_{i^*}, \ldots, X_{in}, m) \).

4. After A outputs a forgery \((m^*, c^*) \), if \(m^*_i \neq b^* \), then abort. Otherwise, output \(c^* \).

By construction, \(m_i = b^* \) with probability \(1/n \). Thus \(\Pr[A \text{ succeed}] = \Pr[b^* \land \text{at least one success}] \).

\textbf{Limitations}: One-time only \[\text{Long public keys, secret keys, and signatures} \]

- Compare with CRHF to get \(\text{poly}(n) \)-size parameters (independent of message length)
- Secret key can be derived from PRG (e.g., just 1 bit)
- Public key can also be shortened to \(2n \) bits (special case of Winternitz construction below)

\textbf{Many combinatoric tricks to reduce signature size:}

- Winternitz signatures: use an iterated one-way function \(f: X \rightarrow X, f^{(d)} = f(f(\ldots f(x) \ldots)) \)

\[\text{pk} = H(g_1, \ldots, g_d) \quad \text{key length} \]

\[\Rightarrow P(m) \text{ maps onto } [d]^\ast \]

\[\text{L gives out values} \]

\[\text{corresponding to shaded nodes} \]

\[\text{we say that } P(m) \leq P(m') \text{ if each component of } P(m) \text{ is smaller than } P(m') \]

\[\Rightarrow \text{signature on } m \text{ can be used to obtain signature on } m' \]

\[\Rightarrow \text{for security, just need a function } P \text{ where } P(m) \neq P(m') \]
Constructing $P(m)$:
- View m ∈ $\{0,1\}^t$ as a number in base d: $s_1, ..., s_t$ ($d \sim t/\log d$)
- Compute $d (s_1 + \cdots + s_t)$ and write this in base d: $t_1, ..., t_{d'}$ ($d' \sim \log d$)
- Output $(s_1, ..., s_t, t_1, ..., t_{d'})$

Suppose $m \leq P(m)$ for some $m = m'$. This means that $s_i \leq s_i'$, ..., $s_t \leq s_t'$ (and at least 1 strict). Then, $(s_1 + \cdots + s_t) < (s_1' + \cdots + s_t')$. Thus, $d (s_1 + \cdots + s_t) < d (s_1' + \cdots + s_t')$ so there is at least one t_i where $t_i > t_i'$, which is a contradiction.

Benefit of Winteritz construction: if messages are $O(\lambda)$ bits and $\log |X| = O(\lambda)$ bits, then
- Lamport signatures: $|pk| = O(\lambda^2)$, $|\sigma| = O(\lambda^2)$
- Winteritz: $|pk| = O(\lambda)$, $|\sigma| = O(\lambda/\log d)$

This is very significant in practice! Using CRHF as our CRHF evaluation is very expensive.

Winteritz ($d=2$): $|pk| = 2$ bytes
- $|\sigma| = 8.5143$ KB
- $|\alpha| = 0.9$ KB

Winteritz ($d=16$): $|pk| = 21.1$ KB
- $|\sigma| = 0.9$ KB

One-time signatures are very fast: (only needs symmetric cryptography)
- Very useful in streaming setting: each packet in stream should be signed, but expensive to do so
- Instead: include pk for one-time signature in first packet
- Sign first packet using standard signature algorithm (public key)
- Each packet includes OTS public key for next packet:
 - (m_i, vk_i), $\sigma \rightarrow (m_i, vk_{i+1})$, $\sigma_i \rightarrow (m_{i+1}, vk_{i+2})$, $\sigma_{i+1} \rightarrow (m_{i+2}, vk_{i+3}), \sigma_{i+2}, \ldots$
 - Signed using key vk_i for vk_{i+1}
 - Signed using key vk_{i+1} for vk_{i+2}

Stateful many-time signatures from one-time signatures:
- Idea: use a tree of one-time signatures:
 - Only uk needed to verify signatures

```
   vk_0, sk_0
     /   \
    /     /
  vk_1, sk_1
      /   \
     /     /
  vk_2, sk_2
```

- Example: Signing message m using (vk_0, sk_0):
 - σ_0 ← Sign $(sk, vk_0 || vk_1)$
 - σ_o ← Sign $(sk_0, vk_0 || vk_1)$
 - σ_m ← Sign (sk_m, m)
 - Output $(vk_0 || vk_1, vk_0 || vk_1, \sigma_o, \sigma_m)$

To verify, check:
- Verify (vk, σ_o)
- Verify (vk_0, σ_0)
- Verify $(vk_0 || m)$

Only root vk needed here, all other keys included in σ.
Security (Intuition): Keys for internal nodes only used to sign single message (verification keys of children)
- As long as leaf node never reused, then leaves are also only used once
- Security now reduces to one-time security of signature scheme

How to remove state?
- Consider a tree with 2^t leaves and choose leaf at random for signing
- If we sign poly(n) messages, there will not be a collision in the leaf with $1 - \negl(n)$ probability
- Problem: Signing key is exponential (need to store $O(2^t)$ signing keys)
 Solution: Derive signing keys from a PRF!

\[
(vk_i, sk_i) \leftarrow \text{KeyGen}(1^t; \text{PRF}(k, i))
\]

For many-time signature

To sign, choose random leaf.
Derive all (sk_i, vk_i) along path.
Each node along path signs verification node associated with children.
Leaf node signs message.
Signature contains complete $(sk_0, vk_0) \leftarrow \text{KeyGen}(1^t; \text{PRF}(k, 0))$

validation path from root to leaf and signature of leaf on message.
Every internal node still signs only one message.

Signature contains complete $(sk_0, vk_0) \leftarrow \text{KeyGen}(1^t; \text{PRF}(k, 10))$