Focus thus far in the course: protecting communication (e.g., message confidentiality and message integrity) with surprising implications (e.g., DSA/ECDSA signatures based on ZK!)

Remainder of course: protecting computations

Zero-knowledge: a defining idea at the heart of theoretical cryptography

\[\text{Idea will seem very counter-intuitive, but surprisingly powerful} \]

\[\text{Shoos away the importance and power of definitions (e.g., "What does it mean to know something?")} \]

We begin by introducing the notion of a "proof system"

\[\text{Goal: A prover wants to convince a verifier that some statement is true} \]

\[\text{e.g., "This Sudoku puzzle has a unique solution"} \]

\[\text{The number } N \text{ is a product of two prime numbers } p \text{ and } q \]

\[\text{I know the discrete log of } h \text{ base } g \]

We model this as follows:

\[\text{prover}(X) \xrightarrow{\pi} \text{ verifier}(X) \]

\[X: \text{Statement that the prover is trying to prove (known to both prover and verifier)} \]

\[\pi: \text{the proof of } X \]

\[\left\{ \begin{array}{l}
\text{We will write } L \text{ to denote the set of true statements (called a language)}
\end{array} \right. \]

\[\left\{ \begin{array}{l}
b \in \{0,1\}^* \Rightarrow \text{given statement } X \text{ and proof } \pi \text{, verifier decides whether to accept or reject}
\end{array} \right. \]

Properties we care about:

\[\text{Completeness: Honest prover should be able to convince honest verifier of true statements} \]

\[\forall X \in L : \Pr[\pi \leftarrow P(X) : V(X, \pi) = 1] = 1 \]

\[\text{Could relax requirement to allow for some error} \]

\[\text{Soundness: Dishonest prover cannot convince honest verifier of false statement} \]

\[\forall X \notin L : \Pr[\pi \leftarrow P(X) : V(X, \pi) = 1] < \frac{1}{3} \]

\[\text{Important: We are not restricting to efficient provers (for now)} \]

Typically, proofs are "one-shot" (i.e., single message from prover to verifier) and the verifier's decision algorithm is deterministic

Languages with these types of proof systems precisely coincide with NP (proof of statement \(X \) is to send NP witness \(w \))

Recall that NP is the class of languages where there is a deterministic solution-checker:

\[L \in \text{NP} \iff \exists \text{ efficiently-computable relation } R \text{ s.t.} \]

\[\forall X \in L : \exists \omega \in \{0,1\}^{|X|} : R(X, \omega) = 1 \]

\[\text{Statement \ language \ witness \ \ NP \ relation} \]

Proof system for NP:

\[\text{prover}(X) \xrightarrow{\omega} \text{ verifier}(X) \]

\[\left\{ \begin{array}{l}
\text{Accept if } R(X, \omega) = 1
\end{array} \right. \]

Perfect completeness + soundness
Interactive proof systems (Goldwasser–Micali–Rackoff):

\[
\begin{array}{c}
\text{prover} (x) \\
\vdots \\
\end{array}
\rightarrow
\begin{array}{c}
\text{interactive proof} \\
\text{may be inefficient} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{efficient and} \\
\text{randomized} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{verifier} (x) \\
\end{array}
\rightarrow
\begin{array}{c}
\text{Verifier randomness is critical. Otherwise, class of languages that} \\
\text{can be recognized collapses to NP. (See [HRS].)} \\
\end{array}
\]

Interactive proof should satisfy completeness + soundness (as defined earlier).

We define IP[k] to denote class of languages where there is an interactive proof with k messages.

We write IP = IP[pol(n)] where n is the statement length.

(i.e., IP is the class of languages with an interactive proof with polynomially-many rounds)

\[
\text{Verdict (prover) } \rightarrow \text{Verdict (verifier)}
\]

Special case: Arthur–Merlin proofs: verifier randomness is public and known to the prover.

\[
\text{AM}[k] : \text{AM proof with k messages, class AM = AM}[2] \text{ (two-message public-coin proofs)}
\]

For constant k, AM[k] = AM = AM[1] (constant message = 2 message) \rightarrow equivalent to BP-NP (class of languages with randomized reduction from 3-SAT)

\[
B \subseteq C \iff \exists \text{efficient } M : \forall x : Pr[M(A(s)) = B(x)] \geq \frac{1}{2}
\]

Theorem (Goldwasser–Sipser): For every k \in \mathbb{N}, IP[k] \subseteq AM[k+2]

(Any private-coin interactive proof can be simulated by a public-coin interactive proof with two extra rounds)

What is the power of IP?

- For constant number of messages, seems comparable to NP (IP[1] collapses to AM for constant k \in \mathbb{N})
- Going from constant to polynomial number of rounds is significant!

Theorem. (Lund–Fortnow–Karloff–Nisan’90, Shamir’90) IP = PSPACE.

Proof (Idea). We will prove a weaker statement which illustrates all of the main techniques of the proof.

Let 3col be the graph 3-coloring problem

- Given graph $G = (V, E)$, can we color the nodes so two adjacent nodes have different colors? [NP complete]

Let #3col be the problem of counting the number of 3-colorings of a graph.

We will show #3col \in IP (this implies for instance that coNP \subseteq IP since #3col is coNP-hard)

\[
\Rightarrow \#3col \in \#P \text{- complete} \quad (\text{Toda's Theorem: } \text{PH} \subseteq \#P) \\
\Rightarrow \text{counting the number of witnesses to a polynomial-time relation}
\]

Step 1 (Arithmeticization): We will construct a polynomial Pb that outputs 1 on a valid coloring and 0 otherwise.

- Let $G = (V, E)$ be the graph. For each vertex $u \in V$, let $x_u \in \{0, 1, 2\}$ be the associated color.

\[
|V| = n \quad |E| = m
\]
Consider the polynomial
\[\hat{P}_0(x_1, \ldots, x_n) = \prod_{(u, v) \in E} (x_u - x_v) \]

Suppose \((x_1, \ldots, x_n)\) is an invalid coloring. Then, for some \((u, v) \in E\), \(x_u = x_v\), and \(P_0(x_1, \ldots, x_n) = 0\).

Suppose \((x_1, \ldots, x_n)\) is a valid coloring. Then, for all \((u, v) \in E\), \(x_u - x_v \in \{-2, -1, 1, 2\}\).

Define \(f: \mathbb{R} \to \mathbb{R}\) be a polynomial where \(f(0) = 0\) and \(f(\pm 2) = f(\pm 1) = f(3) = 1\).

For example, \(f(x) = \frac{5}{4} x^2 - \frac{1}{4} x^4\) satisfies the desired properties.

Define \(P_0(x_1, \ldots, x_n) = \prod_{(u, v) \in E} f(x_u - x_v)\)

- For an invalid coloring: \(P_0(x_1, \ldots, x_n) = 0\)
- For a valid coloring: \(P_0(x_1, \ldots, x_n) = 1\)

Goal: interactive proof to check sum of this polynomial
\[K = \sum_{x_1 \in \{0, 1\}} \cdots \sum_{x_n \in \{0, 1\}} P_0(x_1, \ldots, x_n) \]

Step 2 (Sumcheck protocol): Instead of working over \(\mathbb{R}\), we will work over \(\mathbb{Z}_p\) (for prime \(p\))

If \(p > 3^n\), this is guaranteed to be correct.

Approach: Prover first computes polynomial
\[P_t(x) = \sum_{x_1 \in \{0, 1\}} \cdots \sum_{x_n \in \{0, 1\}} f(x_u - x_v) \]

- This is a polynomial with degree \(d \leq 4m\), since \(\deg(f) = 4\)
- Polynomial is univariate, so can be described by at most \(4m + 1\) coefficients
- Prover can send \(P_t\) to verifier \((4m + 1)\) coefficients) and verifier can check that
 \[K = \sum_{x_1 \in \{0, 1\}} P_t(x) \]

This can be checked efficiently! But what if prover cheats and sends \(\hat{P}_t\) that does not satisfy (\(x\))

- Verifier needs to check validity of \(\hat{P}_t\).

Idea: Sample \(r \in Z_p\) and ask prover to prove that
\[\hat{P}_t(r) = \sum_{x_1 \in \{0, 1\}} \cdots \sum_{x_n \in \{0, 1\}} P_0(r, x_1, \ldots, x_n) \]

The verification process can be continued until we get a univariate polynomial.
if the statement is false \(\Rightarrow \) verifier always rejects

otherwise, verifier always accepts

Can now argue soundness inductively:

- for false statement on \(n \) variables: verifier rejects false statement w.p. at least \((1 - \frac{4n}{p}) \)
- trivial for case where \(n = 1 \)
- for general case on \(n \) variables: \(\exists_{p \leq Z_p} \text{ is not a root of } P_n - P_n \) w.p. \(1 - \frac{4n}{p} \), in which case prover must show false statement on \(n-1 \) variables

\(\Rightarrow \) soundness \((1 - \frac{4n}{p})(1 - \frac{4n}{p})^{n-1} = (1 - \frac{4n}{p})^n \)

Choose \(p > 4^{4n} \) so soundness holds with constant prob.

Boolean formula:

\[
\forall x_1, \exists x_2, \forall x_3, \ldots, \exists x_n \Phi(x_1, \ldots, x_n)
\]

Implication: \(\#3SAT \in \text{IP} \Rightarrow \text{coNP} \subseteq \text{IP} \).

Approach directly generalizes to the total quantifier Boolean formula (TQBF) problem which is complete for PSPACE

\(\Rightarrow \) PSPACE \(\subseteq \text{IP} \Rightarrow \text{IP} = \text{PSPACE} \)

\(\Rightarrow \) arithmetic (with linearization), followed by sumcheck

Sumcheck protocols very useful for verifying polynomial-time computations with small communication

"interactive proofs for muggles" [Goldwasser-Kalai-Rothblum '08]

] key building block for succinct arguments and verifiable computation