Consider following example: Suppose prover wants to convince verifier that \(N = pq \), where \(p,q \) are prime (and secret).\

\[
\begin{array}{c}
\text{prover} (N,q) \\
\hline
\rightarrow \quad \pi = (p,q) \\
\downarrow \\
\text{accept if } N = pq \text{ and reject otherwise}
\end{array}
\]

Proof is certainly complete and sound, but now verifier also learned the factorization of \(N \)... (may not be desirable if prover was trying to convince verifier that \(N \) is a proper RSA modulus (for a cryptographic scheme) without revealing factorization in the process.\

\[\Leftrightarrow \quad \text{In some sense, this proof conveys information to the verifier [i.e., verifier learns something it did not know before seeing the proof]}. \]

Zero-knowledge: ensure that verifier does not learn anything (other than the fact that the statement is true).

How do we define “zero-knowledge”?\] We will introduce a notion of a “simulator.”

\[\text{Definition. An interactive proof system } \langle P, V \rangle \text{ is zero-knowledge if for all efficient (and possibly malicious) verifiers } V^* \text{ there exists an efficient simulator } S \text{ such that for all } x \in L : \]

\[
\text{View}_{P} (\langle P, V \rangle (x)) \cong S(x)
\]

random variable denoting the set of messages sent and received by \(V^* \) when interacting with the prover \(P \) on input \(x \).

What does this definition mean?

\[\text{View}_{P} (P \leftrightarrow V^* (x)) : \text{this is what } V^* \text{ sees in the interactive proof protocol with } P \]

\[S (x) : \text{this is a function that only depends on the statement } x, \text{ which } V^* \text{ already has} \]

If these two distributions are indistinguishable, then anything that \(V^* \) could have learned by talking to \(P \), it could have learned just by invoking the simulator itself, and the simulator output only depends on \(x \), which \(V^* \) already knows.

\[\Leftrightarrow \quad \text{In other words, anything } V^* \text{ could have learned (i.e., computed) after interacting with } P, \text{ it could have learned without ever talking to } P! \]

Very remarkable definition!\]

More remarkable: using cryptographic commitments, then every language \(L \in \text{IP} \) has a zero-knowledge proof system.

\[\Leftrightarrow \quad \text{Namely, anything that can be proved can be proved in zero-knowledge!} \]

We will show this theorem for NP languages. Here it suffices to construct a single zero-knowledge proof system for an NP-complete language. We will consider the language of graph 3-colorability.

\[\text{3-colorable} \quad \text{and not 3-colorable} \]

3-coloring: given a graph \(G \), can you color the vertices so that no adjacent nodes have the same color?
We will need a commitment scheme. A (non-interactive) commitment scheme consists of three algorithms (Setup, Commit, Open):

- **Setup** \((1^k) \rightarrow \sigma \): Outputs a common reference string \(\sigma \) (used to generate/validate commitments).
- **Commit** \((\sigma, m) \rightarrow (c, \pi) \): Takes the CRS \(\sigma \) and message \(m \) and outputs a commitment \(c \) and opening \(\pi \).
- **Verify** \((\sigma, m, c, \pi) \rightarrow 0/1 \): Checks if \(c \) is a valid commitment to \(m \) (given \(\pi \)).

Typical Setup:

<table>
<thead>
<tr>
<th>Committer</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma \leftarrow \text{Setup}(1^k))</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>((c, \pi) \leftarrow \text{Commit}(\sigma, m))</td>
<td>(c)</td>
</tr>
<tr>
<td>(sometime later)</td>
<td>(m, \pi)</td>
</tr>
<tr>
<td>can check that (\text{Verify}(\sigma, m, c, \pi) = 1)</td>
<td></td>
</tr>
</tbody>
</table>

Requirements: [see HW5 for construction from OWFs]

- **Correctness**: for all messages \(m \):
 \[
 \Pr[\sigma \leftarrow \text{Setup}(1^k); (c, \pi) \leftarrow \text{Commit}(\sigma, m); \text{Verify}(\sigma, c, m, \pi) = 1] = 1
 \]

- **Hiding**: for all common reference strings \(\sigma \in \{0,1\}^k \) and all efficient A, following distributions are computationally indistinguishable:

 \[
 \begin{align*}
 & \text{adversary} & \text{challenger} \downarrow \\
 & \sigma & \rightarrow \text{commit}(\sigma, m, \pi) \\
 & m, m \downarrow & c \\
 & b' \in \{0,1\} \\
 \end{align*}
 \]

 \[
 \Pr[b' = 1 | b = 0] = \Pr[b' = 1 | b = 1] = \text{negl}(\lambda)
 \]

- **Binding**: for all adversaries A, if \(\sigma \leftarrow \text{Setup}(1^k) \), then:
 \[
 \Pr[(m, m, c, \pi, \pi_0) \leftarrow A : m \neq m \text{ and } \text{Verify}(\sigma, c, m, \pi_0) = 1; \text{Verify}(\sigma, c, m, \pi) = 1] = \text{negl}(\lambda)
 \]
A 2K protocol for graph 3-coloring:

- let \(K_i \in \{0,1,2\} \) be a 3-coloring of \(G \)
- choose random permutation \(\pi \) of \(\{0,1,2\} \)
- for \(i \in (n) \):
 - \((c_i, \pi_i) \leftarrow \text{Commit}(\sigma, K_i)\)
 - for random \(r_i \):
 - \((K_i, r_i), (K_i, \pi_i) \) \leftarrow (c_i, \pi_i, r_i) \)
- reject if \((ij) \notin E\)

Verifier (\(G \))
- \(\sigma \leftarrow \text{Setup}(\tau^2) \)
- \((i,j) \in E \)
- accept if \(K_i \neq K_j \) and \(K_i, K_j \in \{0,1,2\} \)
- \(\exists \) \((c_i, c_j, K_i, r_i) \in \text{Commit}(\sigma, K_i, K_j) \)
- \(\text{Verify}(\sigma, c_i, K_i, r_i) = 1 = \text{Verify}(\sigma, c_j, K_j, r_j) \)
- reject otherwise

Intuitively: Prover commits to a coloring of the graph.
Verifier challenges prover to reveal coloring of a single edge.
Prover reveals the coloring on the chosen edge and opens the entries in the commitment.

Completeness: By inspection, if coloring is valid, prover can always answer the challenge correctly except with prob. \(1 - \frac{1}{\tau} \).

Soundness: Suppose \(G \) is not 3-colorable. Let \(K_1, \ldots, K_n \) be the coloring the prover committed to. If the commitment scheme is statistically binding, \(c_1, \ldots, c_n \) uniquely determine \(K_1, \ldots, K_n \). Since \(G \) is not 3-colorable, there is an edge \((i,j) \in E\) where \(K_i = K_j \) or \(i \notin \{0,1,2\} \) or \(j \notin \{0,1,2\} \). [Otherwise, \(G \) is 3-colorable with coloring \(K_1, \ldots, K_n \).] Since the verifier chooses an edge to check at random, the verifier will choose \((ij)\) with probability \(\frac{1}{|E|} \). Thus, if \(G \) is not 3-colorable,
\[
\Pr[\text{verifier rejects}] > \frac{1}{|E|}
\]
Thus, this protocol provides soundness \(1 - \frac{1}{|E|} \). We can repeat this protocol \(O(|E|^2) \) times sequentially to reduce soundness error to
\[
\Pr[\text{verifier accepts proof of false statement}] \leq \left(1 - \frac{1}{|E|}\right)^{|E|^2} \leq e^{-\frac{1}{|E|}} = e^{-e} \leq e^{-e} \quad \text{[since } 1+x \leq e^x \text{]}
\]
Zero Knowledge: We need to construct a simulator that outputs a valid transcript given only the graph G as input.

Let V^* be a (possibly malicious) verifier. Construct simulator S as follows:

1. Run V^* to get c^*.
2. Choose $K_i \leftarrow \{0,1,2,5\}$ for all $i \in [n]$. Let $(c_1,\ldots,c_n)\leftarrow \text{Commit}(c^*,K_i)$.
 - Simulator does not know coloring: so it commits to a random one.
 - Give (c_1,\ldots,c_n) to V^*.
3. V^* outputs an edge $(i,j) \in E$.
4. If $K_i \neq K_j$, then S outputs (K_i,K_j,i,j).
 - Otherwise, restart and try again (it fails λ times, then abort).

Simulator succeeds with probability $\frac{2}{3}$ (over choice of K_{i_1},\ldots,K_n). Thus, simulator produces a valid transcript with prob. $1 - \frac{1}{3^\lambda} = 1-\text{neg}(\lambda)$ after λ attempts. It suffices to show that simulated transcript is indistinguishable from a real transcript.

- Real scheme: prover opens K_i,K_j where $K_i,K_j \leftarrow \{0,1,2,5\}$ [since prover randomly permutes the colors]
- Simulation: K_i and K_j sampled uniformly from $\{0,1,2,5\}$ and conditioned on $K_i \neq K_j$, distributions are identical.

In addition, (i,j) output by V^* in the simulation is distributed correctly since commitment scheme is computationally-hiding (e.g. V^* behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring).

If we repeat this protocol (for soundness amplification), simulator simulate one transcript at a time.

Summary: Every language in NP has a zero-knowledge proof (assuming existence of OWFs).

Can be used to obtain ZK proof for IP:

(Without loss of generality, suppose proof is public-coin - e.g., an Arthur-Merlin proof)\[\text{recall: IP}(k) \in \text{AM}(k+2) \]

To construct ZK proof for $L \in \text{IP}$, proceed as follows:

1. Replace prover’s message with a computationally-hiding and statistical binding commitment to message.
2. Verifier just send its random coins as in the AM protocol.
3. Prover proves in zero-knowledge at the very end that the set of messages it committed to would cause the verifier to accept.

This is an NP statement [witness is the commitment opening and messages, relation checks openings to commitment and that verifier accepts the transcript].

Implication: Everything that can be proven (IP) can be proven in zero knowledge!