
In many cases , we
want a stronger property

: the prover actually
"
knows

"

w¥ a statement is true (e.g. , it knows a
" witness

" )

For instance, consider the following language :

L = { he 61 7- ✗ c- Ep : h=g✗ } = G

group of order
p
←

generator of ①

Note : this definition of £ implicitly defines an Np relation R :

E R 1h
,
X) = 1⇐ h=g✗ c- 6

In this case
,
all statements in G1 are true ( i.e, contained in d) , but we can still consider a notion of proving knowledge of

the discrete log of an element he 6 - conceptually stronger property than proof of membership

Philosophiae: What does it mean to
" know

"

something
?

If a prover
is able to convince an honest verifier that it

"

knows
"

something, then it should be possible to extract that quantity
from the prover.

Definition. An interactive proof system (BV) is a proof of knowledge for an NP relation 12 if there exists an efficient

p-roofofknowledge.is parameterized by a specific
extractor E such that for any x and

any prover
P*

relation R (as opposed to the language Lf
p*

Pr [w← E (x) : Rlx, w) =L ] ZPrKP*, V7 1×7=1 ] - e
more generally} E

knowledge errorcould be polynomially smaller

Trivial proof of knowledge : prover sends witness in the ctear to the verifier
↳ In most applications, we additionally require zero

- knowledge

Note : knowledge is a strictly stronger property than soundness
-

↳ if protocol has knowledge error E ⇒ it also has soundness error E (i.e. a dishonest prover convinces an honest verifier of a

false statement with probability at most E)

assume g, he Gprouingknowledgeofdisc.net/og(schnorr'sprotocoD- where Gi has prime order q

Suppose prover wants to prove it knows ✗ such that h=g€e. prover demonstrates knowledge of discrete log of h base g)
_P_verifierE- Ip
u← gr

cat zpf-
z←r£-1-1-

verify that gt = u . he



Completeness : if z= rtcx
,
then
rtcx zero knowledge only required to hold against an honest verifier

,g£=g=grg"=U• (e.g. , view of the honest verifier can be simulated)

Honest-Verifierzero-knowkdge-ibu.tl a simulator as follows (familiar strategy : run the protocol in
"

reverse
" ) :

on input 1g , h) :
1. sample Z

± Ip
2. sample C

# Ip janitormy random challenge
3. set u = The and output (u, C, Z) } simulated +""""Pt " id""""Y distributed

I
← chosen so that

uniformly random
as the real transcript with an honest verifier

group element since gZ = a. he
2- is uniformly random

(relation
satisfied by a)valid proof

What goes wrong if the challenge is not sampled uniformly at random (i.e.
,
if the verifier is dishonest)

Above simulation no longer works (since we cannot sample 2- first)
↳ To get general zero- knowledge, we require that the

verifier first cominit to its challenge (using a satirically hiding commitment)

for simplicity, we assume
if P* succeeds with probability I

Knowtedge : Suppose P* is (possibly malicious ) prover that convinces honest verifier with probability 1. We construct an extractor as follows:

1. Run the prover
P* to obtain an initial message U .

2. Send a challenge C
,
#
Ip to P? The prover replies

with a response Zi .

3.
"

Rewind
"

the prover
P* so its internal state is the same as it was at the end of step 1. Then , send another

challenge Cz
*
Zp to P*. Let Zz be the response of P?

4. Compute and output ✗ = (Z ,
- 2-a) (a- ci5

'

c- Zp .

Since P* succeeds with probability 1 and the extractor perfectly simulates the honest verifier's behavior
,
with probability 1 , both (44,2-1)

and Cu , Ca, Zz) are both accepting transcripts . This means that

g£ '
= u . h

" and
g
"

= a. h
"

⇒ g±=§¥- ⇒ gZ ,
+ GX 2-2+921

= g
h
"

a-
with overwhelming probability,

⇒ ✗ = (z ,
- zz) (c , - Cz)

"

c- Ip 4-+02

Thus
,
extractor succeeds with overusing probability.

(Boneh- Shoup , Lemma 19.2)

If P* succeeds with probability E
,
then need to rely on

"

Rewinding Lemma
"

to argue that extractor obtains two accepting
transcripts with probability at least E-

- Yp.

The ability to extract a witness from
any

two accepting transcripts is very useful

↳ called specialsoundness (for 3- message protocols)

given Lu, -1 , , Z, ) and (u
,
-22

,
Zz) ⇒ can extract the witness

I t e
initial challenge

response [ same initial message , different challenges ]
message



3-message protocols that satisfy completeness , special soundness , and HVZK are called I- protocols
↳ I- protocols are useful for building signatures and identification protocols

How can a prover
both proveknowle.cl# and yet be zero- knowledge at the same time?

↳ Extractor operates by
"

rewinding
"

the prover
(if the

prover
has good success probability , it can answer most challenges correctly.

↳ But in the real (actual) protocol , verifier Canino rewind (i.e. , verifier only sees prover on fresh protocol executions) , which can

provide zero- knowledge.

Many extensions of Schnorr's protocol to prove relations in the exponent.

For example , suppose we want to prove
that (g.hav

) is a DDM tuple (i.e
, 7- ✗ C- Ip : h=g

"
and v=u×)

En:

prove verifier
÷.

←

r>
rtxt ?

check that g = (gr) ti

urtext (ar)i

co-mplete.si. Follows by construction
.

Spess
:

suppose we have accepting transcripts
( (a ,p) , -4 ,

Z , ) and ( cap) , Zz , Zz)
Then

Zi ah-4

g- =
- ⇒ z

,

- zz = ✗ (t , - tz) (modp)
✗ htz

g
£2

⇒ ✗ = (z , - Zz) It , - tz)
"

similar calculation shows that v=u✗
.

HVZK_ : construct simulator as follows :

1. Sample -2£ Ip
2. Sample t

£
Zp.

3. Output (gyht.it/ut ,
-1
,
Z )

since 2- is uniform and h=g× , v=u×, distribution of (g%t , u%t) is identical to (gr, ur) .
Challenge t is identically distributed

,
which uniquely determines 2-

.


