
(NIZK)
No→zÉe : can we construct a zero-knowledge proof system where the proof is a single message from the

prover
to the verifier?

¥701 1×1
Why do we care? Interaction in practice
is expensive!É

1-
b C- {0,13

✓ languages that can be decided by a

Unfortunately , NIZKS are only possible for sufficiently - easy languages (i.e . . languages in Bpp) .

randomized polynomial- time algorithm G-h.pt

↳ The simulator (for 2k property) can essentially be used to decide the language
if ✗ c- L : S (X) → IT and it should be accepted by the verifier (by 2k)

if ✗ ← £ : S(×) → T' but I should not be accepted by verifier (by soundness,
} NIZK impossible for NP unless

NP E BPP (unlikely !)

""""""" """ "
" " °" " " " * " """ """ " " """"

"

§
" "" " " " """" °"

common random /reference string (CRS) model : random oracle model :

1- prover and verifier
have

t¥¥.access to shared randomness

*⇒ or . *s⇒,

*(could be a uniformly random
-

in this model
, simulator is allowed to choose lie

.
simulate) the CRS in { in this model

,
simulator can

"

program
"
the random

conjunction with the proof , but soundness is defined with respect to an oracle [again, asymmetry
between real prover

and the

honestly- generated CRS [asymmetry between the capabilities of the real /
simulator]

prover
and the simulator]

⇒ In both cases
,
simulator has additional "power

"

than the real
prover , which is critical for enabling NIZK constructions for NP

.

I_É : CRS sampled from Setup (E)
Simulator is able to choose CRS

-

Must be computationally indistinguishable from real CRS

- simulated CRS will typically have a simulation trapdoor that can be used to simulate proofs
Real protocol : CRS is sampled by a _rustedpar-y_ (essential for soundness)

Zero - knowledge says that a particular choice of (CRS
,
Ti) can be simulated given only the statement X

InÉmdel : simulator has ability to program random oracle - must properly simulate distribution of

random oracle outputs

can extend to NIZK proofs of knowledge

FÉÉi: NIZKS in random oracle model

Recall Schnorr's protocol for proving knowledge of discrete log:
×)

In this protocol , verifier's message is uniformly random

u← gr É| land in fact , is
"

public coin
" - the verifier has nd

← c←R Ip
secrets)÷÷⇐÷

verify that g
7-
= a. he

Ke#a : Replace the verifier's challenge with a hash function H : { 0,13
*
→ Ip

Namely , instead of sampling CE Zp , we sample c← H (g, h , a) .
←

prover can now compute this quantity on its own!

Completes , zero- knowledge , proof of knowledge follow by a similar analysis as Schnorr [will rely on random oracle]

Signatures from discrete log in RO model (Schnorr) :
-

setup : ✗ F- Zp
vk :(g. h=g×) sk :X

-

Sign (SK , m) : r # Zp } signature
is a NIZK proof of knowledge

of discrete log of h (with challengeu ← gr c ← H (g , h , u , m) z ← rtcx

derived from the message m)0 = (il , z) C

z
-

Verify (vk.im,
0) : write 0=6,2-1 , compute c←H(g.hu, m) and accept if g

= a. h
vk =L

Security essentially follows from security of Schnorr's identification protocol (together with Fiat -Shamir)
↳ forged signature on a new message m is a pnootofknwedge of the discrete log (can be extracted from adversary)

Length of Schnorr's signature : vk: lg, h=g×) 0 :(gr , c = H(g. h.gr, m) , 2- = rtcx) verification checks that gZ=grh
'

-
sk: ✗

can be computed given
other components, so ⇒ lol = 2- 161 [512 bits if 161=2256]
do not need to include

But
,
can do better

. . .
observe that challenge c only needs to be 128-bits (the knowledge error of Schnorr is YKI where C

is the set of possible challenges), so we can sample a 128 -bit challenge rather than 256- bit challenge . Thus
,
instead of sending

(gr , Z) , instead send (C
,
Z) and compute gr = 9%

'

and that c. = Hlg, h.gr , m) . Then resulting signatures are 384b

128 bit challenged
+

256 bit group element

Importantnoe : Schnorr signatures are randomized , and security relies on having good randomness

↳ What happens if randomness is reused for two different signatures ?

Then
, we have

0
,
= (gr , G- Hlg, h.gr, ma), 2-1--49×7 } 2-

,
- zz = (c , -G) ✗ ⇒ ✗ = (a-G)

"

(Zi - Zz)

02 = (
g
"

, Cz = Hlg , h.gr, mz) , Zz-- rtczx)
This is precisely the set of relations the knowledge extractor uses to

recover the discrete log ✗ lie
,
the signing key) !

Deterministic: We want to replace the random value r E Ip with one that is deterministic
,
but which does not compromise security

↳ Derive randomness from message using a PRF
.

In particular, signing key includes a secret PRF key K, and

signing algorithm computes r ← FCK, m) and o ← sign (skim ; r) .
↳ Avoids randomness reuse Innisuse vulnerabilities

.

digital signature algorithm / elliptic -curve DSA
[TLS protocol #

In practice, we use a variant of Schnorr's signature scheme called DSA / ECDSA
but we use it because Schnorr

↳ larger signatures (2 group elements
- 512 bits) and proof only in

"

generic group
" model (

was patented . . .
until 2008)

ECDSA signatures (over a group G1 of prime order p
) :

-

setup : Xd Ip
or a 2

Vk : (g, h=g×) Sk : X
deterministic function specifically, flu) parses a

= (x.y) C- Fg where Fg is
-

Sign (Sk, m) : x E Ip f specified by ECDSA the base field over which the elliptic curve is defined
,

u ← ga r ← the) tap (gnwdaeo.yntputso.gg/Cmodp) , where k is viewed as a }
s ← (Hcm) t r . X) 1a c-Zp
o = (r

,
s)

- Verify (vk, m , o) : write on = (r, s) , compute a ← gttlmtlshrlls , accept it r = flu)

vk : he

gtkmyshrls.gl/tlmltrX7/s=glHlmttrx3/encmItrx] a
"

= gaCornes : u = and r=flg9

Security analysis non-trivial : requires either strong assumptions or modeling IG as an
" ideal

"

group

Signature size : O = (r
,
s) E 745 - for 128- bit security , p n 2256 so lol = 512 bits (can use P-256 or Curve 25519)

An application of zero-knowledge proofs to encrypted voting (based on El Gamal)

pk : g. h=g✗
sk:X

Suppose votes are 0/1 . Parties encrypt vote + c- {0,13 as

(gr, ti -j) where r←Rzp
Votes can be aggregated by computing

Tlgri
,
Tlhrigti It:

ion] iczn] decryption recovers g

11 " ↳ brute force discrete log to obtain Evi

Eri Eri Eti]
g , h g

But malicious voter can encrypt -1000 : (gr , hr . g-
'°o°)

.

Solution : require voters to provide ZK proof that encrypted vote (un) is valid :

either (g , h , U , ✓) is a DDH tuple oR_ } prove using chain -Pedersen along with

(g ,
h
,
U
, Yg) is a DDH tuple OR proof construction (not discussed here)

Basic approach generalizes to arbitrary ranges.
↳

can make non-interactive via Fiat -Shamir

Fancier versions of these types of ZKPS are used in private telemetry system by Mozilla (Price)
.

IÉfitiÉfmdiÉg :
y public verification key←

client's

client (x)
secret Ecredentiai) server (g,h=g×) Essentially, the discrete log of h (base g) is
-

the client's " password
"

and instead of sendingc-

- the password in the clear to the server
,
the client

protocol is precisely 3- round
proves in zero

-knowledge that it knows ✗

Schnorr proof of knowledge of discrete 1% [
> can be made non-interactive via Fiat-Shamir

correctness of this protocol follows from completeness of Schnorr 's protocol
(Active) security follows from knowledge property and zero- knowledge
↳
Intuitively : knowledge says that any client that successfully authenticates must know secret X

Zero -knowledge says that interactions with honest client (i.e, the prover)
do not reveal anything about ✗

(for active security, require protocol that provides general zero- knowledge rather than just HVZK)

