
-

Modern stream ciphers (eSTREAM project : 2004-2008)
-

Salsa20 12005) → Chacha (2008)

↳ core design maps 256- bit key , 64-bit nonce , 64-bit counter onto a 512-bit output

I [Design is more complex:/
- relies on a sequenceenables using same

allows run-down access into
of rounds

key (and different novices) the stream
- each round consists

of 32- bit additions
,
✗or}to encrypt multiple messages and bit - shifts

twill discuss later)

↳
very fast even in software (4-14 CPU cycles / output byte)

- used to encrypt TLS traffic between Android and Google
services

Re-cut : the one-time pad is not reusable (i.e, the two-time pad is totally broken)
NEVER REUSE THE KEY TO A STREAM CIPHER ?

But wait. . . we "proved
"

that a stream cipher was secure
,
and yet , there is an attack ?

Recall security game
: bE{0,13 Ibsen : adversary only sees one ciphertext

adversary challenges
!

key is only used

once-Eik-kc-b-cb-F-ncryptlk.mn) ⇒ Security in this model says nothing
1 about multiple messages / ciphertexts

b' C- {0113

Problems : If we want security with multiple ciphertext, we need a different or stronger definition (CPA security)

adversary does not just
passively observe

,
it can

RÉÉ+f :

security against chosen- plaintext attacks ICCPA-secur.it#- choose the messages to
be

↳ semantic security should hold even if adversary sees multiple encrypted messages of itschoosing encrypted !
↳

captures many settings where adversary might know the message that is encrypted leg, predictable headers or

site content in web traffic) or be able to influence it (e-g. , client replies to an email sent by adversary)
↳

goal is to capture as broad of a range of attacks as possible

Definition: An encryption scheme TISE
= (Encrypt, Decrypt) is secure against chosen- plaintext attacks (CPA

-

secure) it for all efficient

adversaries A :

CPAADUIA, -11s-1=1 =/ Pr /Wo =L] -Prfw , =D / = negl .
where Wb lb c- {0,13) is the output of the following experiment :

b C- {on]

⇐
ii¥¥

Éµµ ← same idea as in original semantic security game, but allow adversary
to make encryption queries (also called a

" left- or - right
"
oracle)

→ -

b' c- { 0,1}
Adversary 's goal is to guess which

of Mo or m , was encrypted, given access

output of experiment Wb { to an encryption lie, adversary gets to see encryptions of messages }
of its choice

.

Claim
.
A stream cipher is not CPA - secure .

Pro_of. Consider the following adversary :
be {0,13

t

adversary challenge
choose mom , c- Me s←R{0113

"
Pr [b' = 1 / b = 0] = 0 since c

'
= Mo ⑦ Gls) =L

where Mo =/ Mi Pr [b' = I / b = I] = 1 since c
'
= m

,
⑦ GG) =/ C

→
⇒ CPA Adv [A

,
TSE] = 1

É

>

ÉÉ
output 0 if c=c

'

output 1 if Cfc
'

Observe : Above attack works for
any deterministic encryption scheme

.

⇒ CPA - secure encryption must be randomized !
⇒ To be reusable

,
cannot be deterministic. Encrypting the same message twice should

not reveal that identical

messages were encrypted .

To build a CPA - secure encryption scheme
, we

will use a
" block cipher

"

-

Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits
-

Examples include 3DES (key size 168 bits
, block size 64 bits)

AES (key size 128 bits
,
block size 128 bits) block ciphers

Will define block ciphers abstractly first : pseudorandom functions (PRE) and pÉÉpermutations(PRP#
↳
Ge_É: PRFS behave like tandem functions

PRPS behave like random permutations

Definition
.
A function F : K ✗ ✗ → Y with key- space K , domain X , and range Y is a pseudorandom function (PRE) if for all

efficient adversaries A
, / Wo -Wi / = neg! , where Wb is the probability the adversary outputs 1 in the following

experiment : be {0,13

ad_E LEI
KI Ki, 5- C.)← FCK

.

.) if b-- O

f E Fans (X, Y] if b. =L

×_ ←
the space of all possible functions from ✗ → Y

(function f C- Funsay] can be represented by a truth table ot
←€q

, , , , ,
, , , µ, , um, ⇒way my ,

b' c- 90,13

PRFAdv[A
,
F] =/ Wo - W , / =/Pr /A outputs I / b-- o] - PTA outputs I / b=1] /

Intuiting : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally
- bounded

adversary)
3D ES : {0,13%8 ✗ {0,1364 → {0,1364 1141 = 2168 / Fun, [✗

,
y]/ = (264/2

">

IN = 2128 / Fun, fx.gg/=(zszgy(2R
" } space of random functions is

AES : { 0,13128 ✗ {0,1)
'"
→ {0,1528 exponentially - larger than key-space!

Definition : A function F : K ✗ ✗ → ✗ is a pseudorandom permutation CPRP) if
- for all keys K ,

FCK
,
•) is a permutation and moreover

,
there exists an efficient algorithm to compute

F- ' (k
,

•) :

Hk C- K : the ✗ : F-
' (k

,
FCK

,
x)) = ✗

- for K E K
,
the input-output behavior of FCK

,

•) is computationally indistinguishable from ft) where

f F- Perm Ex] and PermEX] is the set of all permutations on ✗ (analogous to PRF security)

No_t: a block cipher is another term for PRP (just like stream ciphers are PRGS)

Observe that a block cipher can be used to construct a PRG :

F :{on]×x{0,15 → {0,13
"

be a block cipher
en

Define G :{0,15 → {0,13 as

G (k) = FCK
, 1) 11 FCK

,
2) 11 - - - 11 FCK

,
1) ← this stream cipher allows random access !

T T

string concatenation write input as an n-bit string

we said PRP above (just require that n > loge)
(will revisit this) I

theorem. If F is a secure PRF
,
then G is a secure PRG .

P_Nof . As usual , we show the contrapositive: if G is not a secure PRG, then F is not a secure PRF
.

Suppose we have efficient adversary A for G. We use A to build adversary for F :
b C- {0,13

Algorithm for breaking F
> Expects to see
-

ÉF
)

1
. If l = poly , then B is efficient

b--0 : KEK ; t ←GCK)

)
b=o : KEK ; f ← Fail

2. If b--0 : B sends Glk) to A
b--1 : t ← {o, 1)

ln b. = 1 : f ←R Fans [{on]? {0,13
"](

i
random key

ft-H.IN
b' 40.13

"↳ " is a uniform,

If b = I :B sends uniformly random

string (f- is random-funct.in)

""
-

to A

3. PRFAdvlB.FI =/Pr [b' = I / b=o] -
Pr[b' =/ / b-- I] /

=/ Pr [A outputs I / b-- o] -PRCA outputs 1/6=1]
=PRGAdv[A

, G]

which is non -negligible by assumption .

But
. . .
we used a block cipher (PRP) in our construction above. Does the proof still go through?

Not quite . . .
for a random function

,
f- (1) = f- (2) with probability ¥

for a random permutation, fc,)
= ft) with pnogab.y.gg o

} but 2
"

might be
very very small .. .

adversary won't notice unless it sees a

"
collision

" [i.e.
,
two values ×,y

where

f-G) = fly)]

PRF-sw.it#emme . Let F : K ✗ ✗ → ✗ be a secure PRP
.
Then

,
for

any
Q -
query adversary A :

/ PRPADVIA
,
F) - PRFADVIA.FI/f 2¥,

ProotIdea_
. Adversary essentially cannot tell the difference unless it sees a collision

. If there is no collision
,
then it is just

seeing random values. How
many queries before there is a collision ? Birthday paradox : Q

~ VTXT

take-away : If 1×1 is large leg, , exponential) , then we can use a PRP as a PRF
.

- 3DES : n = 64 so 1×1=264 [if adversary makes ⇐ 232 queries , then can use it as a PRF]
-

AES : n = 128 so 1×1=2128 [if adversary makes << 2°"
queries, then can use it as a PRF]

