In this short note, we give several examples of proofs involving PRGs and PRFs.

PRG security. Let’s begin by reviewing the PRG security game:

The PRG security game is played between an adversary A and a challenger. Let $G : \{0, 1\}^\lambda \rightarrow \{0, 1\}^n$ be a candidate PRG. The game is parameterized by a bit $b \in \{0, 1\}$:

1. If $b = 0$, the challenger samples a seed $s \overset{R}{\leftarrow} \{0, 1\}^\lambda$ and computes $t \leftarrow G(s)$. If $b = 1$, the challenger samples a random string $t \overset{R}{\leftarrow} \{0, 1\}^n$.
2. The challenger gives t to A.
3. At the end of the game, A outputs a bit $b' \in \{0, 1\}$.

For an adversary A, we define its PRG distinguishing advantage $\text{PRGAdv}[A, G]$ to be the quantity

$$\text{PRGAdv}[A, G] = \left| \Pr[b' = 1 \mid b = 0] - \Pr[b' = 1 \mid b = 1] \right|.$$

Finally, we say that a PRG G is secure if for all efficient adversaries A, $\text{PRGAdv}[A, G] = \text{negl}(\lambda)$.

We will often refer to this game (also called an “experiment”) where $b = 0$ as $\text{PRGExp}_0[A, G]$ and the game where $b = 1$ as $\text{PRGExp}_1[A, G]$. In this case, we can also write

$$\text{PRGAdv}[A, G] = \left| \Pr[A \text{ outputs 1 in } \text{PRGExp}_0[A, G]] - \Pr[A \text{ outputs 1 in } \text{PRGExp}_1[A, G]] \right|.$$

Example 1 (An Insecure PRG). Suppose $G : \{0, 1\}^\lambda \rightarrow \{0, 1\}^n$ is a secure PRG and define $G' : \{0, 1\}^\lambda \rightarrow \{0, 1\}^{n+\lambda}$ to be $G'(s) = G(s) \parallel s$. We show that G' is not a secure PRG.

Proof. We construct an adversary A for G' as follows:

1. On input $t \in \{0, 1\}^{n+\lambda}$, A parses the input as $t = t_1 \parallel t_2$ where $t_1 \in \{0, 1\}^n$ and $t_2 \in \{0, 1\}^\lambda$.
2. Output 1 if $G(t_2) = t_1$ and 0 otherwise.

By construction, algorithm A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing advantage:

- Suppose $b = 0$. In this case, $t \leftarrow G'(s)$ where $s \overset{R}{\leftarrow} \{0, 1\}^\lambda$. By construction of G', $t = t_1 \parallel t_2$ where $G(t_2) = t_1$. In this case, the adversary outputs 1 with probability 1.

- Suppose $b = 1$. In this case, $t \overset{R}{\leftarrow} \{0, 1\}^{n+\lambda}$. In particular, t_1 and t_2 are independently uniform, so $\Pr[t_1 = G'(t_2)] = 1/2^n$.

The distinguishing advantage of \mathcal{A} is then
\[
\text{PRGAdv}[\mathcal{A}, G] = |\Pr[b' = 1 \mid b = 0] - \Pr[b' = 1 \mid b = 1]| = 1 - 2^{-n},
\]
which is non-negligible.

\begin{example}[A Secure PRG] Suppose $G : \{0, 1\}^\lambda \to \{0, 1\}^n$ is a secure PRG and define the function $G' : \{0, 1\}^\lambda \to \{0, 1\}^{n'}$ to be the function $G'(s) = G(s) \oplus 1^n$. Namely, G' simply flips the output bits of G. We show that if G is secure, then G' is also secure.
\end{example}

\begin{proof}
When proving statements of this form, we will prove the contrapositive:

\begin{center}
\textbf{If G' is not a secure PRG, then G is not a secure PRG.}
\end{center}

To prove the contrapositive, we begin by assuming that G' is not a secure PRG. This means that there exists an efficient adversary \mathcal{A} that breaks the security of G' with non-negligible advantage ε (i.e., $\text{PRGAdv}[\mathcal{A}, G'] = \varepsilon$). We use \mathcal{A} to construct an efficient adversary \mathcal{B} that breaks the security of G.

1. At the beginning of the game, algorithm \mathcal{B} receives a challenge $t \leftarrow \mathcal{R}\{0, 1\}^n$ from the challenger. We are constructing an adversary for the PRG security game for G. This game begins with the challenger sending a challenge $t \in \{0, 1\}^n$ to the adversary where either $t = G(s)$ or $t \leftarrow \mathcal{R}\{0, 1\}^n$.
2. Algorithm \mathcal{B} starts running algorithm \mathcal{A}. Essentially, we are constructing a reduction here. Our goal is to reduce the problem of distinguishing G to the problem of distinguishing G'. To do this, we will rely on our adversary \mathcal{A} for distinguishing G'.
3. Algorithm \mathcal{B} sends $t \oplus 1^n$ to \mathcal{A} and outputs whatever \mathcal{A} outputs. Algorithm \mathcal{A} is an adversary for G', so it expects a single input $t \in \{0, 1\}^n$ where either $t = G'(s)$ or $t \leftarrow \mathcal{R}\{0, 1\}^n$. Note that this is the only setting for which we have guarantees on the behavior of \mathcal{A}. The behavior of algorithm \mathcal{A} on a string drawn from some other distribution is undefined. As part of our analysis, we need to argue that \mathcal{B} correctly simulates the view of \mathcal{A} in the PRG distinguishing game against G'.

First, if \mathcal{A} is efficient, then \mathcal{B} is also efficient (by construction). It suffices to compute the distinguishing advantage of algorithm \mathcal{B}. We consider two cases:

- Suppose $b = 0$. Then, \mathcal{B} receives a string $t \leftarrow G(s)$ where $s \leftarrow \mathcal{R}\{0, 1\}^\lambda$. In this case, $t \oplus 1^n$ is precisely the value of $G'(s)$. Namely, \mathcal{B} has simulated $\text{PRGExp}_0[\mathcal{A}, G']$ for \mathcal{A}. Since \mathcal{A} is a distinguisher for G', this means that
 \[
 \Pr[\mathcal{B} \text{ outputs } 1 \mid b = 0] = \Pr[\mathcal{A} \text{ outputs } 1 \text{ in } \text{PRGExp}_0[\mathcal{A}, G']].
 \]

- Suppose $b = 1$. Then, \mathcal{B} receives a random string $t \leftarrow \mathcal{R}\{0, 1\}^n$. Since t is uniformly random over $\{0, 1\}^n$, the string $t \oplus 1^n$ is also uniformly random over $\{0, 1\}^n$. This means that \mathcal{B} has simulated $\text{PRGExp}_1[\mathcal{A}, G']$ for \mathcal{A}. This means that
 \[
 \Pr[\mathcal{B} \text{ outputs } 1 \mid b = 1] = \Pr[\mathcal{A} \text{ outputs } 1 \text{ in } \text{PRGExp}_1[\mathcal{A}, G']].
 \]

\begin{footnote}
In the following description, we provide some clarifying remarks in green. These remarks are unnecessary in a formal proof.
\end{footnote}
We conclude now that the distinguishing advantage of \(B \) is exactly

\[
\text{PRGAdv}[B, G] = |\Pr[B \text{ outputs } 1 \mid b = 0] - \Pr[B \text{ outputs } 1 \mid b = 1]| \\
= |\Pr[A \text{ outputs } 1 \text{ in } \text{PRGExp}_0[A, G'] \mid - \Pr[A \text{ outputs } 1 \text{ in } \text{PRGExp}_1[A, G']]| \\
= \text{PRGAdv}[A, G'] = \varepsilon,
\]

which is non-negligible by assumption.

PRF security game. Next, we review the definition of a secure PRF. Let \(F : K \times X \rightarrow Y \) be a function with key-space \(K \), domain \(X \), and range \(Y \). The PRF security game is defined as follows:

The PRF security game is played between an adversary \(A \) and a challenger. Let \(F : K \times X \rightarrow Y \) be a candidate PRF. The game is parameterized by a bit \(b \in \{0, 1\} \):

1. If \(b = 0 \), then the challenger samples a key \(k \stackrel{R}{\leftarrow} K \) and sets \(f \leftarrow F(k, \cdot) \). If \(b = 1 \), the challenger samples a uniformly random function \(f \stackrel{R}{\leftarrow} \text{Funs}[X, Y] \).
2. The adversary chooses \(x \in X \) and sends \(x \) to the challenger.
3. The challenger replies with \(f(x) \).
4. The adversary can continue to make queries to the adversary (repeating steps 2 and 3). At the end of the game, adversary outputs a bit \(b' \in \{0, 1\} \).

For an adversary \(A \), we define the PRF distinguishing advantage \(\text{PRFAdv}[A, F] \) to be the quantity

\[
\text{PRFAdv}[A, F] = |\Pr[b' = 1 \mid b = 0] - \Pr[b' = 1 \mid b = 1]|.
\]

We say that a PRF \(F \) is secure if for all efficient adversaries \(A \),

\[
\text{PRFAdv}[A, F] = \text{negl}(\lambda),
\]

where \(\lambda \) is a security parameter (typically, the keys of the PRF are \(\text{poly}(\lambda) \) bits long: \(\log|K| = \text{poly}(\lambda) \)). Similar to the case with PRGs, we will often refer to the game (or “experiment”) where \(b = 0 \) as \(\text{PRFExp}_0[A, F] \) and the game where \(b = 1 \) as \(\text{PRFExp}_1[A, F] \). In this case, we can write

\[
\text{PRFAdv}[A, F] = |\Pr[A \text{ outputs } 1 \text{ in } \text{PRFExp}_0[A, F]] - \Pr[A \text{ outputs } 1 \text{ in } \text{PRFExp}_1[A, F]]|.
\]

Example 3 (An Insecure PRF). Suppose \(F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n \) is a secure PRF and define \(F' : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n \) to be \(F'(k, x) = F(k, x) \oplus F(k, x \oplus 1^n) \). We claim that \(F' \) is not a secure PRF.

Proof. We construct an adversary \(A \) for \(F' \) as follows:

1. Submit the query \(x_1 = 0^n \) to the challenger. The challenger replies with a value \(y_1 \).
2. Submit the query \(x_2 = 1^n \) to the challenger. The challenger replies with a value \(y_2 \).
3. Output 1 if \(y_1 = y_2 \) and 0 otherwise.

By construction, \(A \) is efficient (i.e., runs in polynomial time). We compute \(A \)'s distinguishing advantage:
We consider two cases:

- Suppose \(b = 0 \). In this case, the challenger samples \(k \sim \mathcal{K} \) and replays with

\[
\begin{align*}
y_1 &= F'(k, x_1) = F(k, x_1) \oplus F(k, x_1 \oplus 1^n) = F(k, 0^n) \oplus F(k, 1^n) \\
y_2 &= F'(k, x_2) = F(k, x_2) \oplus F(k, x_2 \oplus 1^n) = F(k, 1^n) \oplus F(k, 0^n).
\end{align*}
\]

In this case \(y_1 = y_2 \), and \(\mathcal{A} \) outputs 1 with probability 1.

- Suppose \(b = 1 \). In this case, the challenger samples \(f \sim \mathcal{F}_{\text{uns}}(\{0,1\}^n, \{0,1\}^n) \) and replays with \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). Since \(x_1 \neq x_2 \), \(y_1 \) and \(y_2 \) are independent and uniformly random. Thus,

\[
\Pr[y_1 = y_2] = 1/2^n.
\]

The distinguishing advantage of \(\mathcal{A} \) is then

\[
\PrFAdv[\mathcal{A}, \mathcal{F}'] = |\Pr[b' = 1 \mid b = 0] - \Pr[b' = 1 \mid b = 1]| = 1 - 2^{-n},
\]

which is non-negligible.

\[\square \]

Example 4 (A Secure PRF). Suppose \(\mathcal{F} : \mathcal{K} \times \mathcal{X} \to \{0,1\}^n \) is a secure PRF. Then, the function \(\mathcal{F}' : \mathcal{K}^2 \times \mathcal{X} \to \{0,1\}^n \) where \(\mathcal{F}'((k_1, k_2), x) = F(k_1, x) \oplus F(k_2, x) \) is also a secure PRF.

Proof. Similar to the case with PRGs, we will prove the contrapositive:

\[
\begin{align*}
\text{If } \mathcal{F}' \text{ is not a secure PRF, then } \mathcal{F} \text{ is not a secure PRF.}
\end{align*}
\]

To prove the contrapositive, we begin by assuming that \(\mathcal{F}' \) is not a secure PRF. This means that there exists an efficient adversary \(\mathcal{A} \) that breaks the security of \(\mathcal{F}' \) with non-negligible advantage \(\epsilon \) (i.e., \(\PrFAdv[\mathcal{A}, \mathcal{F}'] = \epsilon \)). We use \(\mathcal{A} \) to construct an adversary \(\mathcal{B} \) that breaks the security of \(\mathcal{F} \):

1. Choose a key \(k_2 \sim \mathcal{K} \).
2. Start running the adversary \(\mathcal{A} \) for \(\mathcal{F}' \).
 - (a) Whenever \(\mathcal{A} \) makes a query \(x_i \in \mathcal{X} \), forward the query to the challenger to obtain a value \(y_i \in \{0,1\}^n \). Give \(y_i \oplus F(k_2, x_i) \) to \(\mathcal{A} \).
3. Output whatever \(\mathcal{A} \) outputs.

Observe that the number of queries \(\mathcal{B} \) makes is the same as the number of queries that \(\mathcal{A} \) makes. Thus, if \(\mathcal{A} \) is efficient, then \(\mathcal{B} \) is also efficient. It suffices to compute the distinguishing advantage of algorithm \(\mathcal{B} \). We consider two cases:

- Suppose \(b = 0 \). In this case, the challenger in \(\text{PRFExp}_0[\mathcal{B}, \mathcal{F}] \) samples a key \(k \sim \mathcal{K} \) and replays with \(y_i \leftarrow F(k, x_i) \) on each query. Algorithm \(\mathcal{B} \) in turns replies to \(\mathcal{A} \) with the value

\[
y_i \oplus F(k_2, x_i) = F(k, x_i) \oplus F(k_2, x_i) = F'(f(k, k_2), x_i).
\]

Since \(k \) and \(k_2 \) are both sampled uniformly and independently from \(\mathcal{K} \), algorithm \(\mathcal{B} \) answers all of \(\mathcal{A} \)'s queries according to the specification of \(\text{PRFExp}_0[\mathcal{A}, \mathcal{F}'] \). Thus,

\[
\Pr[\mathcal{B} \text{ outputs 1} \mid b = 0] = \Pr[\mathcal{A} \text{ outputs 1 in } \text{PRFExp}_0[\mathcal{A}, \mathcal{F}']].
\]
• Suppose \(b = 1 \). In this case, the challenger in \(\text{PRFExp}_1[\mathcal{B}, F] \) samples \(f \overset{\$}{\leftarrow} \text{Funs}(\mathcal{X}, \{0, 1\}^n) \) and replies with \(y_i \leftarrow f(x_i) \) on each query. Algorithm \(\mathcal{B} \) in turn replies to \(\mathcal{A} \) with the value \(y_i \oplus F(k_2, x_i) = f(x_i) \oplus F(k_2, x_i) \). Since \(k_2 \) is independent of \(f \), and \(f \) is a random function, the value of \(f(x_i) \oplus F(k_2, x_i) \) is uniform and independently random over \(\{0, 1\}^n \). Thus, algorithm \(\mathcal{B} \) answers all of \(\mathcal{A} \)'s queries according to the specification of \(\text{PRFExp}_1[\mathcal{A}, F'] \), and so

\[
\Pr[\mathcal{B} \text{ outputs } 1 \mid b = 1] = \Pr[\mathcal{A} \text{ outputs } 1 \text{ in } \text{PRFExp}_1[\mathcal{A}, F']].
\]

By definition, the distinguishing advantage of \(\mathcal{B} \) is then

\[
\text{PRFAdv}[\mathcal{B}, F] = \left| \Pr[\mathcal{B} \text{ outputs } 1 \mid b = 0] - \Pr[\mathcal{B} \text{ outputs } 1 \mid b = 1] \right| = \text{PRFAdv}[\mathcal{A}, F'] = \epsilon,
\]

which is non-negligible by assumption. ∎