
CS 388H: Introduction to Cryptography

Attacks and Reductions in Cryptography

Instructor: David Wu

In this short note, we give several examples of proofs involving PRGs and PRFs.

PRG security. Let’s begin by reviewing the PRG security game:

The PRG security game is played between an adversary A and a challenger. Let G : {0,1}λ→ {0,1}n be
a candidate PRG. The game is parameterized by a bit b ∈ {0,1}:

1. If b = 0, the challenger samples a seed s
R←− {0,1}λ and computes t ←G(s). If b = 1, the challenger

samples a random string t
R←− {0,1}n .

2. The challenger gives t to A.
3. At the end of the game, A outputs a bit b′ ∈ {0,1}.

For an adversary A, we define its PRG distinguishing advantage PRGAdv[A,G] to be the quantity

PRGAdv[A,G] = ∣∣Pr[b′ = 1 | b = 0]−Pr[b′ = 1 | b = 1]
∣∣ .

Finally, we say that a a PRG G is secure if for all efficient adversaries A,

PRGAdv[A,G] = negl(λ).

We will often refer to this game (also called an “experiment”) where b = 0 as PRGExp0[A,G] and the game
where b = 1 as PRGExp1[A,G]. In this case, we can also write

PRGAdv[A,G] = ∣∣Pr
[
A outputs 1 in PRGExp0[A,G]

]−Pr
[
A outputs 1 in PRGExp1[A,G]

]∣∣ .

Example 1 (An Insecure PRG). Suppose G : {0,1}λ→ {0,1}n is a secure PRG and define G ′ : {0,1}λ→ {0,1}n+λ

to be G ′(s) =G(s)‖s. We show that G ′ is not a secure PRG.

Proof. We construct an adversary A for G ′ as follows:

1. On input t ∈ {0,1}n+λ, A parses the input as t = t1‖t2 where t1 ∈ {0,1}n and t2 ∈ {0,1}λ.
2. Output 1 if G(t2) = t1 and 0 otherwise.

By construction, algorithm A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing
advantage:

• Suppose b = 0. In this case, t ← G ′(s) where s
R←− {0,1}λ. By construction of G ′, t = t1‖t2 where

G(t2) = t1. In this case, the adversary outputs 1 with probability 1.

• Suppose b = 1. In this case, t
R←− {0,1}n+λ. In particular, t1 and t2 are independently uniform, so

Pr[t1 =G ′(t2)] = 1/2n .

The distinguishing advantage of A is then

PRGAdv[A,G ′] = ∣∣Pr[b′ = 1 | b = 0]−Pr[b′ = 1 | b = 1]
∣∣= 1−2−n ,

which is non-negligible.

Example 2 (A Secure PRG). Suppose G : {0,1}λ→ {0,1}n is a secure PRG and define the function G ′ : {0,1}λ→
{0,1}n to be the function G ′(s) =G(s)⊕1n . Namely, G ′ simply flips the output bits of G. We show that if G is
secure, then G ′ is also secure.

Proof. When proving statements of this form, we will prove the contrapositive:

If G ′ is not a secure PRG, then G is not a secure PRG.

To prove the contrapositive, we begin by assuming that G ′ is not a secure PRG. This means that there
exists an efficient adversary A that breaks the security of G ′ with non-negligible advantage ε (i.e.,
PRGAdv[A,G ′] = ε). We use A to construct an efficient adversary B that breaks the security of G :1

1. At the beginning of the game, algorithm B receives a challenge t
R←− {0,1}n from the challenger.

We are constructing an adversary for the PRG security game for G . This game begins with the

challenger sending a challenge t ∈ {0,1}n to the adversary where either t ←G(s) or t
R←− {0,1}n .

2. Algorithm B starts running algorithm A. Essentially, we are constructing a reduction here. Our
goal is to reduce the problem of distinguishing G to the problem of distinguishing G ′. To do
this, we will rely on our adversary A for distinguishing G ′.

3. Algorithm B sends t ⊕1n to A and outputs whatever A outputs. Algorithm A is an adversary for

G ′, so it expects a single input t ∈ {0,1}n where either t ←G ′(s) or t
R←− {0,1}n . Note that this is

the only setting for which we have guarantees on the behavior of A. The behavior of algorithm
A on a string drawn from some other distribution is undefined. As part of our analysis, we need
to argue that B correctly simulates the view of A in the PRG distinguishing game against G ′.

First, if A is efficient, then B is also efficient (by construction). It suffices to compute the distinguishing
advantage of algorithm B. We consider two cases:

• Suppose b = 0. Then, B receives a string t ←G(s) where s
R←− {0,1}λ. In this case, t ⊕1n is precisely

the value of G ′(s). Namely, B has simulated PRGExp0[A,G ′] for A. Since A is a distinguisher for G ′,
this means that

Pr
[
B outputs 1 | b = 0

]= Pr
[
A outputs 1 in PRGExp0[A,G ′]

]
.

• Suppose b = 1. Then, B receives a random string t
R←− {0,1}n . Since t is uniformly random over

{0,1}n , the string t ⊕1n is also uniformly random over {0,1}n . This means that B has simulated
PRGExp1[A,G ′] for A. This means that

Pr
[
B outputs 1 | b = 1

]= Pr
[
A outputs 1 in PRGExp1[A,G ′]

]
.

1In the following description, we provide some clarifying remarks in green. These remarks are unnecessary in a formal proof.

We conclude now that the distinguishing advantage of B is exactly

PRGAdv[B,G] = ∣∣Pr
[
B outputs 1 | b = 0

]−Pr
[
B outputs 1 | b = 1

]∣∣
= ∣∣Pr

[
A outputs 1 in PRGExp0[A,G ′]

]−Pr
[
A outputs 1 in PRGExp1[A,G ′]

]∣∣
=PRGAdv[A,G ′] = ε,

which is non-negligible by assumption.

PRF security game. Next, we review the definition of a secure PRF. Let F : K×X →Y be a function with
key-space K, domain X , and range Y . The PRF security game is defined as follows:

The PRF security game is played between an adversary A and a challenger. Let F : K×X →Y be a
candidate PRF. The game is parameterized by a bit b ∈ {0,1}:

1. If b = 0, then the challenger samples a key k
R←−K and sets f ← F (k, ·). If b = 1, the challenger

samples a uniformly random function f
R←− Funs[X ,Y].

2. The adversary chooses x ∈X and sends x to the challenger.
3. The challenger replies with f (x).
4. The adversary can continue to make queries to the adversary (repeating steps 2 and 3). At the

end of the game, adversary outputs a bit b′ ∈ {0,1}.

For an adversary A, we define the PRF distinguishing advantage PRFAdv[A,F] to be the quantity

PRFAdv[A,F] = ∣∣Pr[b′ = 1 | b = 0]−Pr[b′ = 1 | b = 1]
∣∣ .

We say that a PRF F is secure if for all efficient adversaries A,

PRFAdv[A,F] = negl(λ),

where λ is a security parameter (typically, the keys of the PRF are poly(λ) bits long: log |K| = poly(λ)). Sim-
ilar to the case with PRGs, we will often refer to the game (or “experiment”) where b = 0 as PRFExp0[A,F]
and the game where b = 1 as PRFExp1[A,F]. In this case, we can write

PRFAdv[A,F] = ∣∣Pr
[
A outputs 1 in PRFExp0[A,F]

]−Pr
[
A outputs 1 in PRFExp1[A,F]

]∣∣ .

Example 3 (An Insecure PRF). Suppose F : {0,1}n × {0,1}n → {0,1}n is a secure PRF and define F ′ : {0,1}n ×
{0,1}n → {0,1}n to be F ′(k, x) = F (k, x)⊕F (k, x ⊕1n). We claim that F ′ is not a secure PRF.

Proof. We construct an adversary A for F ′ as follows:

1. Submit the query x1 = 0n to the challenger. The challenger replies with a value y1.
2. Submit the query x2 = 1n to the challenger. The challenger replies with a value y2.
3. Output 1 if y1 = y2 and 0 otherwise.

By construction, A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing advantage:

• Suppose b = 0. In this case, the challenger samples k
R←− {0,1}n and replies with

y1 = F ′(k, x1) = F (k, x1)⊕F (k, x1 ⊕1n) = F (k,0n)⊕F (k,1n)

y2 = F ′(k, x2) = F (k, x2)⊕F (k, x2 ⊕1n) = F (k,1n)⊕F (k,0n).

In this case y1 = y2, and A outputs 1 with probability 1.

• Suppose b = 1. In this case, the challenger samples f
R←− Funs[{0,1}n , {0,1}n] and replies with y1 =

f (x1) and y2 = f (x2). Since x1 6= x2, y1 and y2 are independent and uniformly random. Thus,
Pr[y1 = y2] = 1/2n .

The distinguishing advantage of A is then

PRFAdv[A,F ′] = ∣∣Pr[b′ = 1 | b = 0]−Pr[b′ = 1 | b = 1]
∣∣= 1−2−n ,

which is non-negligible.

Example 4 (A Secure PRF). Suppose F : K×X → {0,1}n is a secure PRF. Then, the function F ′ : K2 ×X →
{0,1}n where F ′((k1,k2), x) = F (k1, x)⊕F (k2, x) is also a secure PRF.

Proof. Similar to the case with PRGs, we will prove the contrapositive:

If F ′ is not a secure PRF, then F is not a secure PRF.

To prove the contrapositive, we begin by assuming that F ′ is not a secure PRF. This means that there exists
an efficient adversaryA that breaks the security of F ′ with non-negligible advantage ε (i.e.,PRFAdv[A,F ′] =
ε). We use A to construct an adversary B that breaks the security of F :

1. Choose a key k2
R←−K.

2. Start running the adversary A for F ′.

(a) Whenever A makes a query xi ∈X , forward the query to the challenger to obtain a value
yi ∈ {0,1}n . Give yi ⊕F (k2, xi) to A.

3. Output whatever A outputs.

Observe that the number of queries B makes is the same as the number of queries that A makes. Thus, if
A is efficient, then B is also efficient. It suffices to compute the distinguishing advantage of algorithm B.
We consider two cases:

• Suppose b = 0. In this case, the challenger in PRFExp0[B,F] samples a key k
R←−K and replies with

yi ← F (k, xi) on each query. Algorithm B in turns replies to A with the value

yi ⊕F (k2, xi) = F (k, xi)⊕F (k2, xi) = F ′((k,k2), xi).

Since k and k2 are both sampled uniformly and independently from K, algorithm B answers all of
A’s queries according to the specification of PRFExp0[A,F ′]. Thus,

Pr
[
B outputs 1 | b = 0

]= Pr
[
A outputs 1 in PRFExp0[A,F ′]

]
.

• Suppose b = 1. In this case, the challenger inPRFExp1[B,F] samples f
R←−Funs[X , {0,1}n] and replies

with yi ← f (xi) on each query. Algorithm B in turn replies to A with the value yi ⊕F (k2, xi) = f (xi)⊕
F (k2, xi). Since k2 is independent of f , and f is a random function, the value of f (xi)⊕F (k2, xi)
is uniform and independently random over {0,1}n . Thus, algorithm B answers all of A’s queries
according to the specification of PRFExp1[A,F ′], and so

Pr
[
B outputs 1 | b = 1

]= Pr
[
A outputs 1 in PRFExp1[A,F ′]

]
.

By definition, the distinguishing advantage of B is then

PRFAdv[B,F] = ∣∣Pr
[
B outputs 1 | b = 0

]−Pr
[
B outputs 1 | b = 1

]∣∣=PRFAdv[A,F ′] = ε,

which is non-negligible by assumption.

