
Instructor : David Wu (dwu4@ cs.utexas.edu)
TA : Jeff Champion, Niki-1ha Got/amadi

,
Charlotte LeMay

0#fcryptgr¥:

securing
communication over untrusted networks

Alice→ Bob
↓

third party should not be able to
1) eavesdrop of communication (confidentiality)
2) tamper with the communication (integrity)

today: secure communication on web (https:// . . .)
TLS protocol (transport layer security)
two components : handshake (key exchange)

record layer (confidentiality + integrity)

protecting data at rest : disk encryption

Mo_st#hie:_ study mechanics for protecting confidentiality + data
-

Encryption schemes for confidentiality
-

Signature schemes for message integrity
-

key exchange for setting up shared secrets

Either : protecting communication ⇒ protecting computation
-

Two users want to learn a joint function of their private inputs
↳

training models on private (hidden) data
↳

comparing two
DNA

sequences privately
↳

private auction to determine winner without revealing bids
↳

private voting mechanisms (can identify winner of election without revealing individual votes)
- We can show the following remarkable theorem:

"

Anything that can be computed with a trusted party can be computed without !
"

L-gis-iandadmi-is-r.ua :
- Course website : https://www.cs.utexas.edu/~~dwu4/courses/fa22
- See Ed Discussion for announcements notes will be posted to course website (1-2 days after lecture)
- Homework submission via Gradescope (enroll via Canvas)
-

Course consists of 5 homework assignments (worth 75%) and one take-home final (worth 25%)
-

Five late days for the semester : use in 24 - hour increments
, Max 72 hours 13 late days) for any single assignment

- Some office hours will also be available on Zoom

Thissemester : Lectures will be recorded using Lectures Online

Please participate virtually if you are feeling unwell

see protect. utexas.edu for suggested guidelines , vaccine information, etc.

Abfhifcrygap :

Original goal was to protect communication (in times of war)
Basic idea : Alice and Bob have a shared key ko

Alice computes c ← F-ncr.pt (K, M)
↑ [

ciphertext key message (plaintext)

Bob computes m ← Decrypt (k, c) to recover the message
This tuple (Encrypt, Decrypt) is called a cipher

F K,
M

,
C are sets (e.g. , K = M = (= {0,13128)

Definition . A cipher is defined over (K
,
M

,
C) where Ko is a key - space , M is a message space and C is

a ciphertext space, and consists of two algorithms (Encrypt , Decrypt) :

Encrypt : Kim→ C

Decrypt : K ✗ (→ m } +""'"°" should be
"

efficiently - computable
"

theory : runs in probabilistic polynomial #me [algorithm can be randomized]

practice : fast on an actual computer (e.g. ,
< 10ms on my laptop)

correctness : VK.tk , Vm E M :

Decrypt (K , Encrypt (k, m)) = m
"

decrypting a ciphertext recovers the original message
"

Eqr1yciph→ :
- Caesar cipher :

" shift by 3
"

A ↳ D

131-3 F- Not a cipher ! There is key !
Anyone can decrypt !;
↳ Algorithm to encrypt is assumed to be public .✗ ↳ A

y ↳ B
NR RELY ON SECURITY BY OBSCURITY ! - Harder to change system than a key

2 ↳ C
- Less scrutiny for secret algorithms

- Caesar cipher tt :
"

shift by K
" 41<=13 : ROT-13)

Kis the key
↳ still otallybroken since there are only 26 possible keys (simply via brnteforegvessing)

- Substitution cipher : the key defines a permutation of the alphabet lie, substitution)
ART
B ↳ ✗ ABC ↳ CXJf. -1:

2 ↳ T ← substitution table is the key-

How many keys ? For English alphabet , 26 ! ≈ 2 possible keys
↑

very large value.ca#o+ brute force the key

Still broken by frequency analysis
-

e is the most frequent character 1^12%)
-

q is the least frequent character (~ 0.10 %)

Can also look at diagram, trigram frequencies
-

Vigener cipher (late 1500s)
-

"

poly alphabetic substitution
"

key is short phrase (used to determine substitution table) :
m = HELLO

K = CAT

Encrypt 1k , m) : HELLO

t_ATA← repeat the key
KFFPP

^[
interpret letters as number between 1 and26

addition is modulo 26

if we know the key length, can break using frequency analyse>
otherwise

,
can try all possible key lengths 1--1,2 , . - .

↳ general assumption : keys will be much shorter than the message
(otherwise if we have a

good mechanism to deliver long keys securely, then can use that mechanism

to share messages directly

- Fancier substitution ciphers : Enigma (based on rotor machines)
but .- - still breakable by frequency analysis

today : encryption done using computers ,
lots of different ciphers

- AES (advanced encryption standard ; 2000)
"

block cipher
"

-

Salsa (2005) / Chacha (2008)
"

stream cipher
"

f-
not ideal property . _ .

0ne--imepad_ [Vigenwe cipher where key is as long as the message!]
K = {0,15 Encrypt (k , m) : output c-- k ⊕ M

M = {0,13
"

Decrypt (k , c) : output m = k ⊕ C

C = { 0,13
" ←

bitwise exclusive OR operation (addition mod 2)

Ictus : Take any K C- {0,11
"

,
m C- {0,13

"
:

Decrypt (K , Encrypt (k , m)) = Is ⊕ (k ⊕ m) = (k G- K) +0m = me (since k ⊕ K =)

Is this secure? How do we define security ?
- Given a ciphertext , cannot recover the key ?

Not Good ! Says nothing about hiding message . Encrypt (K, M) = m would be secure under this definition
,
but this scheme

is totally insecure intuitively !
-

Given a ciphertext, cannot recover the message .

NOT GOOD ! Can leak part of the message. Encrypt (K , Imo , Mi)) = (Mo , M , ⊕ K) . This encryption might be considered secure

but leaks half the message . [Imagine if message was
"

username : alice 11 password : 12345-6
"

- Given a ciphertext, cannot recover any bit of
the message .

↳ this might be the

string that isNOT GOOD ! Can still learn parity of the bits (or every pair of bits) , etc . Information still leaked . _.
leaked !

- Given a ciphertext, learn nothing about the message.
GOOD ! But how to define this?

Coming up
with good definitions is difficult ! Definitions have to rule out ¥ adversarial behavior lie

, capture broad enough class

of attacks

↳
Big part of crypto is getting the definitions right. Pre - 1970s : cryptography has relied on intuition

,
but intuition is often

wrong
! Just because I cannot break it does not mean

How do we capture
"

learning nothing about the message
" ? someone else cannot . . .

If the key is random, then ciphertext should not give information about the message .

Definition
.
A cipher (Encrypt, Decrypt) satisfies perfectsecre.ci/- if for all messages Mo , M,

E M
,
and all ciphertexts CEC :

tr-k-K.FI/P-km--f=Pr(k-k:Encryptlk,m ,) = c)

probability that encryption of Mo
is C

,
where the probability is

taken over the random choice of

the key K

Perfect secrecy says that given a ciphertext , any two messages are equally likely.
⇒ Cannot infer anything about underlying message given only the ciphertext lie,

"

ciphertext - only
"

attack)

theorem. The one- time pad satisfies perfect secrecy.

Pet . Take any message ME {0113
"

and ciphertext C C- {on)? Then
,

Pr [K E {0,13
"
: Encrypt (k ,m) = a] = Pr [k←R {◦ it]

"
: K +0m = c)

= Pr [k I {0,13M : k = m ⊕ C]

= In
This holds for all messages m and ciphertexts c

, so one
- time pad satisfies perfect secrecy.

Are we done? We now have a perfectly - secure cipher !

No ! Keys are very long ! In fact , as long as the message . _ _ [if we can share keys of this length , can use same mechanism to]share the message itself"

One- time
"

restriction
•

Malleable

Issues with the one- time pad:
-

One-time : Very important . Never reuse the one-time pad to encrypt two messages . Completely broken!

Suppose C
,
= K ⊕ M, and Cz = k ⊕ Mz

Then
,
C
,
⊕ Cz = (K ⊕ mi) ⊕ (k ⊕ Mz) f-

can leverage this to recover messages
=
m
,
⊕ Mz

← learn the ✗or of two messages
!

One-time pad reuse :
-

Project Verona (US. counter-intelligence operation against U.s.s.R during Cold War)
↳ Soviets reused some pages in

codebook ~ led to decryption of ~ 3000 messages sent by Soviet

intelligence over 37- year period [notably exposed espionage by Julius and Ethel Rosenberg]
- Microsoft Point-to-point Tunneling CMS-PPTP) in Windows 98 /NT (used for VPN)

↳ Same key (in stream cipher) used for both server→ client communication AND for client → server

communication
↳ (RC4)

- 802.11 WEP : both client and server use same key to encrypt traffic

many problems just beyond one
-time pad reuse (can even recover key after observing small

number of frames !)
-M_e : one-time pad provides no integrity ; anyone can modify the ciphertext :

m ← K ⊕ C

←
replace c with c. ⊕ m

'

⇒ k ⊕ (c ⊕ m
') = m ⊕ m

'
← adversary's change now ✗cored into original message

