
How do we combine confidentiality and integrity ?
↳ systems with both guarantees are called autaÉyptir schemes - gold standard for symmetric encryption

_ÉEp :

1. Encrypt - then MAC (TLS 1.2+
, IPsec)

←

guaranteed to be secure if we instantiate using CPA -secure encryption
and a secure MAC

2. MAC - then- encrypt (5513.0 /TLS 1.0
,
802. Hi) ←L

as we will see
, not always secure

Definition. An encryption scheme Tse:(Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:
- CPA security [confidentiality]
-

ciphertext integrity [integrity]

adversary challenger
KEK

{i←Encrypt(k,mi

✓
special symbol 1- to denote invalid ciphertext

output 1 if c ¢ {ci.cz, . . . }

and Decrypt (k, c) =/ 1-
<

Define CIADV [A
,
TISE] to be the probability that output of above experiment is 1. The scheme THE satisfies

ciphertext integrity it for all efficient adversaries A
,

CIAdr [A , THE] = negKx)
E

security parameter determines key length

ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertext it can generate are those that are

already valid
. Why do we want this property ? Encrypted under ka

ka
,
KB KE

ToiBobConsider the following active attack scenario : [M⇒
/

mail server

-

Each user shares a key with a mail server
µ,
a) |To:BKA
Bob

iMessage-

To send mail, user encrypts contents and send to mail server Alice

Encrypted under- Mail server decrypts the email
, re

-

encrypts it under recipient's key and delivers email
Eve intercepts and KB

modifies message
Encrypted under KA

If Eve is able to tamper with the encrypted message, KA
,
KB KE

then she is able to learn the encrypted contents (even if mail server] [É=the scheme is CPA- secure) k,
iMessage

KB
↳ More broadly , an adversary can tamper and inject ciphertext's

KA
Alice Bob Eve Encrypted

under KE
into a system and observe the user's behavior to learn information

about the decrypted values - against active attackers, we need stronger notion of security

Definition . An encryption scheme -11¥:(Encrypt, Decrypt) is secure against chosen- ciphertext attacks (CCA- secure) if for all efficient

adversaries A
,
CCAAdv[A

,
THE] = negl. where we define CCAADVEA, Tse] as follows :

b. C- {on}

adamant

EtKEKmi"→/ ci-Encryp-CK.mil#- ✓÷¥÷f←
b' C- {°"} adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertext it received from the

challenger (otherwise, adversary can trivially break security)
CCAAdv[A , -11s:] = / Pr[b' = I / b=o] - Pr[b' =L / b-- I]/

↳ called an " admissibility
"
criterion

CCA- security captures above attack scenario where adversary can tamper with ciphertext
↳ Rules out possibility of transforming encryption of ✗ HZ to encryption of

y
117

↳ Necessary for security against active adversaries [CPA- security is for security against passive adversaries]
↳ We will see an example of a real CCA attack in HWI

teen.
If an encryption scheme TISE provide authenticated encryption, then it is CCA- secure .

Pnoflea). Consider an adversary A in the CCA- security game. Since THE provides ciphertext integrity , the challenger's response
to the adversary's decryption query will be 1- with all but negligible probability. This means we can implement the

decryption oracle with the
"

output 1-
"

function. But then this is equivalent to the CPA- security game .
[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext

in a CCA-secure scheme (stripped away duringf decryption)
Note: Converse of the above is not true since CCA -security # ciphertext integrity.
↳ However

, CCA
-

security
+ plaintext integrity

⇒ authenticated encryption

-aly : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

F-ncrypt-I-MA.io Let (Encrypt, Verify) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

Encrypt- then- MAC to be the following scheme :

Encrypt
' ((ke

,
km)

,
m) : C← Encrypt (KE, m)

↑
t ← sign (km, c)independent keys
output (Gt)

Decrypt
" ((KE

,
Kmt

,
Lc

,
-11) : if Verify 1km, c , -4=0, output 1-

else
, output Decrypt (ke , c)

Tien.
If (Encrypt, Decrypt) is CPA - secure and (Sign, Verify) is a secure MAC

, then (Encrypt
'

, Verify
') is an authenticated

encryption scheme
.

pooof.IS/-etch). CPA - security follows by CPA- security of (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertext and not

the
messages . MAC key is independent of encryption key so cannot compromise CPA -

security.

Ciphertext integrity follows directly from MAC Security (i.e
, any valid ciphertext must contain a new tag on some

ciphertext that was not given to the adversary by the challenger .)

simulate ciphertext /MACS - only possible if reduction can choose its own key).

"" """"

::÷:*: ÷:÷
.

↳ Can also give explicit constructions that are complete.ly/oroken- if same key is used (ie, both properties fail to

hold)

-

MAC needs to be computed over the entire ciphertext
f means first

-

Early version of ISO 19772 for AE did not MAC IV (CBC used for CPA -secure encryption) block lie,
"header

")
- RNcryptor in Apple iOS (for data encryption) also problematic (HMAC not applied to encryption IV) -/ is

matkabIMA-EE.pt: Let (Encrypt, Verify) be a CPA- secure encryption scheme and (sign, Verify) be a secure MAC. We define

MAC- then- Encrypt to be the following scheme :

Encrypt
' ((ke

,
km)

,
m) : t ← sign (km, m)

C ← Encrypt (KE , Cm,-4)

output c

Decrypt
" ((KE

,
km) , (4+1) : compute (mi)

← Decrypt (ke, c)
if Verify (km ,

m
,
t) = 1

, output m ,
else

, output 1-

Not generally secure ! SSL 3.0 (precursor to TLS) used randomized CBC t secure MAC

↳
Simple CCA attack on scheme (by exploiting padding in CBC encryption)

[POODLE attack on SSL 3,0 can decrypt all encrypted traffic using a CCA attack]

Padding is a common source of problems with MAC- then- Encrypt systems [see HW2 for an example]

In the past, libraries provided separate encryption + MAC interfaces
-

common source of errors

↳ Good library design for crypto should minimize ways
for users to make errors

, not provide more flexibility

Today , there are standard block cipher modes of operation that provide authenticatedencryption
- One of the most widely used is GCM (Galois counter model. - standardized by NIST in 2007

GCMm_ode: follows encrypt- then
- MAC paradigm

-

CPA - secure encryption is nonce- based counter mode } Most commonly used in conjaction with AES

- MAC is a Carter -Wegman MAC (AES-GCM provides authenticated encryption)

