So far in this course, we have shown that:

\[\text{PRF} \Rightarrow \text{CPA-secure encryption} \Rightarrow \text{authenticated encryption} \]

Conceptually “simpler” object

From HW1, we saw how to construct a PRF from a (length-doubling) PRG:

\[\text{can be built from any PRG with 2-bit stretch} \]

Question: Can we distill this further? Can we base symmetric cryptography on an even simpler primitive?
- Cryptography is about exploiting some kind of asymmetry: we want an operation that is “easy” for honest users, but hard for adversaries.
- Suggests a notion of “hard to invert”: (cannot recover seed from PRG, cannot decrypt without knowledge of secret, etc.)

Definition. A function \(f: X \rightarrow Y \) is one-way if
1. \(f \) is efficiently computable.
2. For all efficient adversaries \(A \):

 \[
 \Pr[X \leftarrow X, \ y \leftarrow A(f(x)) : f(x) = f(y)] = \text{negl}(\lambda)
 \]

"Function is hard to invert on average"

Theorem (Hastad-Imaglische-Lein-Luby). \(\text{OWF} \Rightarrow \text{PRG} \) [implies OWF is sufficient (and necessary) for symmetric cryptography]

We will consider a weaker statement: one-way permutation \(\Rightarrow \text{PRG} \)

Definition. A function \(f: X \rightarrow X \) is a one-way permutation if
1. \(f \) is one-way
2. \(f \) is a permutation.

Goal: given a OWP \(f: X \rightarrow X \), can we construct a PRG with one-bit stretch.
Idea: if \(X \leftarrow X \), then \(f(x) \) is uniformly random
moreover, given \(f(x) \), should be difficult to recover (all or) \(X \leftarrow \) leverage this to get 1 pseudorandom bit

Definition. Let \(f: X \rightarrow Y \) be a one-way function. Then \(h: X \rightarrow \mathbb{R} \) is a hard-core predicate for \(f \) if no efficient adversary can distinguish the following distributions:
\[
D_0: \left\{ X \leftarrow X : (f(x), h(x)) \right\} \\
D_1: \left\{ X \leftarrow X, r \leftarrow R : (f(x), r) \right\}
\]

If a OWP has a hard-core predicate, that immediately implies a PRG:
\[
\text{PRG}(\lambda) := f(\lambda) \| h(\lambda)
\]

Typically, we will consider hard-core bits

\(\text{(i.e., } R = \{0,1\} \text{)} \)

Lemma. Let \(f: X \rightarrow Y \) be a one-way function. Suppose \(h: X \rightarrow \{0,1\} \) is unpredictable in the following sense: for all efficient adversaries \(A \):

\[
| \Pr[X \leftarrow X : A(f(x)) = h(x)] - \frac{1}{2} | = \text{negl}(\lambda)
\]

If \(h \) is unpredictable, then it is a hard-core bit.

[Note: Converse of this is immediate]
Proof. Suppose there exists an efficient A that can distinguish between $(f(x), h(x))$ and $(f(x), r)$ for $x \notin X$ and $b \in \{0,1\}$ with advantage ε. We use A to build a predictor B:

1. On input $f(x)$, sample $b \xleftarrow{\$} \{0,1\}$ and run A on input $(f(x), b)$.
2. If A outputs 1, then output b. Otherwise, output 1-b.

Intuition: Suppose A is more likely to output 1 given inputs from the “hard-core bit distribution”. This means that A outputs 1 if we guess correctly.

Formally: $\Pr[B(f(x)) = h(x)] = \Pr[A(f(x), b) = h(x)]$

$$= \Pr[A(f(x), b) = 1 \mid b = h(x)] \Pr[b = h(x)] + \Pr[A(f(x), b) = 0 \mid b = 1 - h(x)] \Pr[b = 1 - h(x)]$$

$$= \frac{1}{2} + \frac{1}{2} \left(\Pr[A(f(x), b) = 1 \mid b = h(x)] - \Pr[A(f(x), b) = 1 \mid b = 1 - h(x)] \right)$$

Now, $\varepsilon = \left| \Pr[A(f(x), h(x)) = 1] - \Pr[A(f(x), b) = 1] \right|$

$$= \left| \alpha - \Pr[b = h(x)] \Pr[b = h(x)] \right| - \frac{1}{2} \left| \Pr[b = h(x)] \right|$$

$$= \frac{1}{2} \left| \alpha - \beta \right|$$

$$= \frac{1}{2} \left| \alpha - \beta \right|$$

Theorem (Goldreich-Levin). Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way function. For a string $r \in \{0,1\}^n$, define the function $h_r : \{0,1\}^n \rightarrow \{0,1\}$ where $h_r(x) = \Sigma r_i x_i \mod 2$. Then the function $g(x, r) = (f(x), r)$ is one-way and h_r is a hard-core predicate for g.

Observe that if f is a OWF, then so is g.

Proof Idea. One-wayness of g immediately follows from one-wayness of f. Suffices to show that h_r is hard-core. Suppose that h_r is not a hard-core predicate for g. This means that there is an adversary A that can predict h_r given $(f(x), r)$ with probability $\frac{1}{2} + \varepsilon$. We will use g to construct an adversary B that can invert f (and thus g).

Here: Suppose A succeeds with probability $\frac{1}{2}$:

$$\Pr[A(g(x, r) = h_r(x)] = \frac{1}{2} \quad \text{(for } x, r \in \{0,1\}^n)$$

Given $y = f(x)$, run A on inputs $(y, e_1), ..., (y, e_n)$ where e_i is the ith basis vector:

$$h_{e_i}(x) = \langle e_i, x \rangle \mod 2$$

$$= x_i \in \{0,1\}$$

Suppose now that A succeeds with probability $\frac{3}{4} + \varepsilon$ for constant $\varepsilon > 0$:

Evaluating at $e_1, ..., e_n$ not guaranteed to work since A could be wrong on all of these inputs.
Analysis proceeds in two steps:

1. Fix an \(x \in \mathbb{Z}_2^n \). Suppose we have a function \(t : \mathbb{Z}_2^n \rightarrow \{0,1\} \) where
 \[
 \Pr[r \in \mathbb{Z}_2^n : t(r) = \langle x, r \rangle] \geq \frac{3}{4} + \varepsilon
 \]
 We show that we can learn \(x \) by evaluating \(t \) on carefully chosen points.
 Similar to before, \(t \) could be wrong on \(e_1, \ldots, e_n \). Need evaluation points to be random.

 Sample \(r \in \mathbb{Z}_2^n \) and evaluate \(t \) at \(r \) and \(e_1 + r \).

 By assumption:
 \[
 \Pr[t(r) = \langle x, r \rangle] \geq \frac{3}{4} + \varepsilon
 \]
 \[
 \Pr[t(r + e_1) = \langle x, r + e_1 \rangle] \geq \frac{3}{4} + \varepsilon
 \]
 (since \(r + e_1 \) with \(r \in \mathbb{Z}_2^n \) is uniform)

 But these events are not independent: inputs are correlated!

 Consider the complements:
 \[
 \Pr[t(r) \neq \langle x, r \rangle] < \frac{1}{4} - \varepsilon \quad \Rightarrow \quad \Pr[t(r) \neq \langle x, r + e_1 \rangle] < \frac{1}{4} - \varepsilon
 \]

 Thus, with prob. at least \(\frac{1}{2} + 2\varepsilon \), \(t(r) = \langle x, r \rangle \) and \(t(r + e_1) = \langle x, r + e_1 \rangle \)

 Set \(z = t(r) + t(r + e_1) \)

 If \(t(r) = \langle x, r \rangle \) and \(t(r + e_1) = \langle x, r + e_1 \rangle \),

 \[
 t(r + e_1) - t(r) = \langle x, r + e_1 \rangle - \langle x, r \rangle = \langle x, e_1 \rangle = x_1
 \]

 Idea: Sample \(k \) independent pairs \((r_i, r_i + e_{i1}) \) for \(r_i \in \mathbb{Z}_2^n \) and compute estimates \(z_1, \ldots, z_k \)

 Take the first bit \(\hat{x}_1 \) to be Majority(\(z_1, \ldots, z_k \))

 Repeat this procedure to obtain estimates \(\hat{x}_2, \ldots, \hat{x}_n \). Output \(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n \).

 Analysis will use a Chernoff bound. Simple version for our setting:

 Let \(X_1, \ldots, X_k \in \{0,1\} \) be independent random variables where
 \[
 \Pr[X_i = 1] \geq \frac{1}{2} + \varepsilon
 \]

 Then,
 \[
 \Pr[\text{Majority}(X_1, \ldots, X_k) = 1] \leq 2\varepsilon e^{-2\varepsilon^2 k}
 \]

 In particular, if \(\varepsilon = o(1) \),
 \[
 \Pr[\text{Majority}(X_1, \ldots, X_k) = 1] \leq 2^{-o(k)}
 \]

 for each bit of \(x \).

 By the Chernoff bound, \(\hat{x}_i = X_i \) with probability \(1 - \text{neg}(\varepsilon) \). Repeating this \(n \) times yields the desired result.

 Total evaluations of \(t \): \(O(n^2) \)

2. Our setting is not quite this:

 \[
 \Pr[X_r \in \{0,1\} : A(f(x), r) = \langle x, r \rangle] \geq \frac{3}{4} + \varepsilon
 \]

 Randomness taken over both \(x \) and \(r \) while above analysis only looks at \(r \).

 Let's say an \(x \) is "good" if

 \[
 \Pr[r \in \{0,1\} : A(f(x), r) = \langle x, r \rangle] \geq \frac{3}{4} + \varepsilon
 \]

 If \(x \) is "good", then can recover \(x \) using above algorithm.

 How many \(x \)'s are good? If \(\Pr[X \in \{0,1\} : x \text{ is "good"}] \) is non-negligible, then we have proven the claim. Algorithm B runs above decoder on \(A \) and recovers \(x \) whenever \(x \) is good, which happens with non-negligible probability.

 If \(A \) succeeds on \(\frac{3}{4} + \varepsilon \)-fraction of \(x \)'s, cannot have too many 'bad' \(x \)'s. (Averaging argument)

 Suppose \(8 \) fraction of \(x \)'s are bad. Then, probability of \(A \) succeeding over choice of \(x \)'s \(8 \frac{3}{4} + \varepsilon \) is at most
\[
\delta \left(\frac{3}{4} + \frac{\delta}{2} \right) + (1-\delta) = 1 - \frac{\delta}{4} + \frac{\delta^2}{2}
\]

Require that
\[
1 - \frac{\delta}{4} + \frac{\delta^2}{2} \geq \frac{3}{4} + \varepsilon \quad \Rightarrow \quad 1 - \delta + 2\delta\varepsilon \geq 4\varepsilon
\]

\[
\Rightarrow \quad 8(1-2\varepsilon) \leq 1-4\varepsilon \quad \Rightarrow \quad 8 \leq \frac{1-4\varepsilon}{1-2\varepsilon}
\]

Conclusion: At most constant fraction is “bad” so inversion will succeed on constant fraction of inputs.

HW: Show how to go from \(\frac{3}{4} + \varepsilon \) to \(\frac{1}{2} + \varepsilon \) for constant \(\varepsilon > 0 \).