So for	in this	(SUGS	بد, w	e ha	ve sh	Nesa	that																
									authe	ntico	محرا	_				Cow CE	ed., a	tl.,	N C! m	olex	л ,	A	
	PRF ⇒ ⇒	se	we	AM.	۸۲	,				encry	bas on			1			7100	*"/	3111	7,-	٥	gec 1	
From Hu	01, we s	and b	رهد	40 c	ntena	.c+ (a PR	Fho	ma	(len	gth-d	لمساام	سر) '	PRG									
											L.	. can	pe p	a)+ f	rom	any	PRG	, wi	h 1	L-64	s4	retch	
Questin	on: Con	we	- dist	원 2	this -	furth	er"	Can ,	ne pane	- sym	me-tric	- cry	pto gro	phy (on a	v e	nen	Sim	pler	વય.	mitive	.?	
		- c	ulbpo	graph.	y is	abou	t exp	nitiols	Som	e ki	nd i	st of	symm	try:	. we	. ധ	tm	ov	oper	osto	ر	hat	`is
									hard														
		- s	ugges	3+5 (a no	Hon	of "	hard.	to inven) رد	***********	+ d	وددكما	+ .	voltic
											\ kno	wled	ge c	of se	ecret	, etc	<u>.</u>						
_ ,		+								→ >									.,	٠,	1		
Definition	L. A fu								+ (Tech			= 1									
	1	. J	is et	ficient	tly co	mputa	ble					sets	s ind	exed	by o	r se	curit	y 9	rowe	ter	λ	ano	4
	a	for	٠ م١/	effic	cient o	adrec	rsaries	A:				۲)	,1	\	, ,	χ_{λ}	-	Poly	(ኢ)				
	~ <u>~ _</u>			701	\ X ←	<u>-</u> χ	, y ←	- A (‡	(x)):	+ (x) =	J (Y)] =	regl	(8)								
	Fur	ction	ૉર્ડ	hard	A to	inve	rt ov	1 Ove	(x)) :														
اجـ																	_			1	r		
<u>I hearem</u>	(Håstad -	Impa	gliazza	o-Le	win -Lu	Ы).	OWI	r =;	> YK(is S	iut+ici	ent	(ond	l ne	cessa	(۲۲	40	r sy	me
		+		_							r cal	ptogra	by \										
												>	. ma										
We wil	conside	<i>c</i> a	. w	eaker	Sto	<i>ctemu</i>	NT.	ONCIL	عص الم	er mu	Tati or		7 1	.6									
Dobin	. 4			f : '	γ	> V							.2.										
Detinio	<u>m</u> . A f	WACH	t ·) = 1)(i · · · ·		(5	0.01	e-way	per	M CUTACT	1617	47										
		1	· · · · · · · · · · · · · · · · · · ·	, 014	permi	, to tic	.																
		φ.	J 13		iper into	2102110	<i>"</i> C																
(Sea):	given a	οw	1 P	$f: \chi$	-⇒ J	(c	o. n. 1.34	2 .	2024v.v.	+ (a	ም ጸ	.s:H	ana - 1	iit s	trotc	h						
	if x ex											,,,,	ω(π(GIVE I		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•						
	moreo ver	air	en fl	(x) <	charle	he.	J.H.	ild to	1 Cerm	e۲	(4)	4)	χ	<u>-</u> ,	ብ አ የ/2	ae}	his .	40	Aet	1	กละ	draw	ado~
		<i>,</i> 9		,			007,10		, , ,		Coca	,	•	Ì	,,,,,	J- 1			0		٢٠		
Definition	. Let f	: χ	-> y	be	a one	2 - WΦ.	y fun	ction.	Then	λ :	χ-	⇒R	is o	L ho	d-co	~e. o	redic	ate	for	f	;f	υρ	
	efficien	t ad	Juersa	rt 1	Con	dist	/ tinguish	the	follo	wing	dis	tribut	ions:			I							
	efficien		D. :	·	x & 7	χ :	(f(x)	h(x)	0													
			D_i :	{ ·	$\chi \stackrel{R}{\leftarrow} 7$	X , r	€ R	; (f	(x)' L)	}													
If a ()WP has	a ha									7RG:		7	pically,	we	ے ااند	nsidea	- ha	rd- c	pre	bits		
) h(s			/						' "	(:.e	, R	{o,	3)					
Lemma.	Let f	: χ	; → y) Je	2 a	one	حمصح	fune	tion.	Sup	pore	h :	γ →	را, ه}	ti.	Wr	pred	icta	ble	in	44	٩	
																	'						
)		1	_	e ,	. ^	1015	_ 1/	1/.	11		001/5	1									
	(\perp	19,	1 2 6	$-\mathbf{x}$: / t	(十(X) 1	- nı	<u>የ</u> ጓ ነ ተ	7	- 1	سرا رہ	./									
	followin (190	(x •	= X	: A	(+(x))	- n(% }}	2	- 1	سي الم										

```
Proof. Suppose there exists an efficient A that can distinguish between (f(x),h(x)) and (f(x),r) for x \in X and
                           b & 90,13 with advantage E. We use A to build a predictor B:
                                                            1. On input f(x), sample b \stackrel{\leftarrow}{\leftarrow} \{0,1\} and run A on input ((f(x),b).
                                                          2. If A outputs 1, then output b. Otherwise, output 1-6.
                          Intuition: Suppose A is more likely to output I given inputs from the "hard-core bit distribution". This means that
                                                         A outputs 2 if we "green correctly."
                          Formally: Pr[B(f(x)) = h(x)] = Pr[A(f(x), b) = h(x)]
                                                                                                                    = \Pr[A(f(x), b) = 1 \mid b = h(x)] \Pr[b = h(x)] + \Pr[A(f(x), b) = 0 \mid b = 1 - h(x)] \Pr[b = h(x)]
= \frac{1}{2} = 1 - \Pr[A(f(x), b) = 1 \mid b = 1 - h(x)] = \frac{1}{2}
                                                                                                                       = \frac{1}{2} + \frac{1}{2} \left( P_r \left[ A \left( f(x), b \right) \cdot 1 \mid b = k(x) \right] - P_r \left[ A \left( f(x), b \right) = 1 \right] b = 1 - k(x) \right] \right)
                                                                                                                       = \frac{1}{2} + \frac{1}{2} \left( P_r \left[ A \left( f(x), L(x) \right) = 1 \right] - P_r \left[ A \left( f(x), b \right) = 1 \mid b = L(x) \right] \right)
                                                      Now, \varepsilon = |Pr[A(f(x),h(x)) = 1] - Pr[A(f(x),b) = 1]
                                                                                     = | x - Pr[A(f(x), b) = 1 | b = k(x)] Pr[b = k(x)]
                                                                                          1 - Pr[A (+(x),b) = 1 ) b = 1- h(x)] Pr [b= h(x)]
                                                                                                                                                                                                                                                                                        Pr[B(f(x)) = h(x)] - \frac{1}{2}
                                                                                                                                                                                                                                                                                                        = 1 ½ (x-B)
                                                                                     = |x - \frac{1}{2} (x + \beta)|
                                                                                                                                                                                                                                                                                                        = 8
                                                                                     =\frac{1}{2}\left|\alpha-\beta\right|
Theorem (Goldreich-Levin). Let f: \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function. For a string } r \in \{0,13^n \rightarrow \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function.} } For a string <math>r \in \{0,13^n \rightarrow \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function.} } For a string <math>r \in \{0,13^n \rightarrow \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function.} } For a string <math>r \in \{0,13^n \rightarrow \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function.} } For a string <math>r \in \{0,13^n \rightarrow \{0,13^n \rightarrow \{0,13^m \text{ be a one-way function.} } For a string <math>r \in \{0,13^n \rightarrow \{0
                                                                                    is one-way and hr is a hard-core predicate for g.
 Observe that if f is a OWP, then so is a
 Proof Idea. One-wayness of a immediately follows from one-wayness of f. Suffices to show that he is hard-core.
                                        Suppose that he is not a hard-core predicate for g. This means that there is an adversary
                                         A that can predict hr given (f(x),r) with probability \frac{1}{2} + \epsilon. We will use g to construct an
                                        adversary B that can invent f (and thus g).
                                      Here: Suppose A succeeds with probability 1:
                                                                                                  Pr[A(g(x,r)) = h_r(x)] = 1 \quad (for x, r \stackrel{?}{\leftarrow} \{0,13^{\circ}\})
                                                              Given y = f(x), run A on inputs (y, e_i), ..., (y, e_n) where e_i is the ith bosis rector
                                                                                                                                                                                                                he; (x) = (e,, x) mod 2
                                                                                                                                                                                                                                           = x; e {0,13
                                     Suppose now that A succeeds with probability 3/4 + E for constant E > 0:

Evaluating at e,..., en not guarenteed to work since A could be wrong on all of these inputs
```

```
Analysis proceeds in two steps:
 1. Fix an x \in \mathbb{Z}_2^n. Suppose we have a function t: \mathbb{Z}_2^n \to \{0,1\} where
                          P_r[r \stackrel{\leftarrow}{\leftarrow} \mathbb{Z}_2^n : t(r) = \langle x, r \rangle] \geqslant \frac{3}{4} + \varepsilon
    We show that we can learn x by evaluating t on curefully-chosen points.
    Similar to before, I could be wrong on e,..., en. Need evaluation points to be random.
    Sample \Gamma \stackrel{<}{\leftarrow} \mathbb{Z}_2^n and evaluate t at \Gamma and e_1 + \Gamma.
    By assumption: Pr[t(r) = \langle x, r \rangle] \ge \frac{3}{4} + \varepsilon
                                                                                (since r + e, with r = Z2 is uniform)
                         Pr[t(r+e,)= (x,r+e,)] > = + &
                               But these events are not independent: inputs are correlated!
    Consider the complements: Pr[t(r) \neq (x,r)] < \frac{1}{4} - \epsilon
                                                                              By union bound:
                                 Pr[t(r + e,) $ (x,r+e,)) < + - E
                                                                                           Pr[t(r) # (x,r) or t(r+e,) # (x,r+e,)]
                                                                                                     < 1 - 28 < 1
    Thus, with pmb. at least \frac{1}{2}+2\varepsilon, t(r)=\langle x,r\rangle and t(r+e_i)=\langle x,r+e_i\rangle
     Set z = t(r) + t(r + e_1)
             If t(r) = (x,r) and t(r+e1) = (x,r+e1),
                             t(r+e_1)-t(r) = \langle x,r+e_1 \rangle - \langle x,r \rangle = \langle x,e_1 \rangle = \chi
    Idea: Sample & independent poirs (r:, r. & e,) for r. & Z'2 and compute estimates Z1,..., Zk
              Take the first bit \hat{x}_i to be Majority (z_1,...,z_k)
              Repeat this procedure to obtain estimates \hat{\chi}_2,...,\hat{\chi}_n. Dutput \hat{\chi},\hat{\chi}_2\cdots\hat{\chi}_n.
    Analysis will use a Chernoff bound. Simple version for our setting:
         Let X_1, ..., X_k \in \{0,1\} be independent random variables where \Pr[X_i = Y] \ge \frac{1}{2} + \epsilon. Then, \Pr[Majority(X_1, ..., X_k) \ne Y] \le 2\epsilon
         In particular, if \varepsilon = O(1), \Pr[Majority(X_1,...,X_k) \neq Y] \leq 2^{-O(k)}
                                                                        (when k=0(n))
                                                                                                     for each bit of X
    By the Chernoff bound, \hat{x}_i = x_i with probability 1-negl(n). Repeating this n times yields the desired result
       Total evaluations of t: O(n^2)
                                                                           Can also set k = O(\log n). Each bit correct
2. Our setting is not quite this:
                                                                                    with prob. 1- 1, so correct with constant probability.
              \Pr\left[\frac{\chi_{,\Gamma}}{+} \xleftarrow{\epsilon} \{v,i\}^n : A\left(\frac{1}{2}(x),r\right) = \langle x,r \rangle\right] \ge \frac{3}{4} + \epsilon
                    randomness taken over both x and r while above analysis only looks at T.
    Let's say an x is "good" if
                  P_{c}\left[r \stackrel{R}{\leftarrow} \{0,13^n : A(f(x),r) = \langle x,r \rangle\right] \ge \frac{3}{4} + \frac{\varepsilon}{a}
    If x is "good", then can recover x using above algorithm.
    How many x's are good? If Pr[x \stackrel{P}{\leftarrow} {\{0,13\}}^n : x is "good"] is non-negligible, then we have proven the
     claim. Algorithm B runs above decoder on A and recovers x whenever x is good, which happens with
     non-negligible probability.
    If A succeeds on (3 + E) - fraction of x's, cannot have "too many" bad x's. (Averaging argument).
```

Suppose 8 fraction of x's are bad. Then, probability of A succeeding over choice of x, r < 2 10,13" is at most

$$S\left(\frac{3}{4} + \frac{\varepsilon}{2}\right) + (1 - \delta)$$

$$= 1 - \frac{\delta}{4} + \frac{\delta \varepsilon}{2}$$

Require that $1-\frac{5}{4}+\frac{5\epsilon}{2}\geqslant\frac{3}{4}+\epsilon$ \Rightarrow $1-5+25\epsilon\geqslant4\epsilon$ \Rightarrow $5(1-2\epsilon)\leqslant1-4\epsilon$ \Rightarrow $5\leqslant\frac{1-4\epsilon}{1-2\epsilon}$

 $\frac{\text{constant}}{\epsilon > 0} \text{ for all}$ $\frac{\epsilon > 0}{\epsilon \leqslant \frac{1}{4}}$

Conclusion: At most constant fraction is "bad" so inversion will succeed on constant fraction of inputs,

HW3: Show how to go from $\frac{3}{4} + E$ to $\frac{1}{2} + E$ for constant E > 0