
Thus far
, we

have assumed that parties have a shed key. Where does the shared key come from?

Can we do this using the tools we have developed so far ?

So far in this course : CPA - secure encryption
OWFS ⇒ PRGS ⇒ PRFs ⇒ authenticated encryption⇒

MAC key agreement :

Alice Bob
-

Can we show Owfs (or even OWPS) ⇒ key agreement ? / c- Requirements :

1) K , = kz
= k

= with high↓ ↓
probabilityKui K2

2) Eavesdropper
cannot learn

Kr (efficiently)

Me¥es : suppose f :X → Y is an injective one-way function

Alice Bob_

✗ I / - - - ,
✗
n
← ✗

i← En]

find Xi such that ftxi)=y ; [solve the "puzzle
" ]

_AE(ki- derive a key k from Xi ←
modeled as random oracle

↓
✓

derived from Xi leg , , using hard
- core bit or hash the input)

try each key ki to

decrypt ciphertext

suppose it takes time t to solve a puzzle . Adversary needs Time 0kt) to solve all puzzles and identify key.
Honest parties

work in time 0 Cnt -4
.

↳
Only provides iyap_ between honest parties and adversary

can we get a super
- polynomial gap just using Owfs ? Very difficult ! [ Impagliazzo- Radich ]

Can we get a super - linear gap just using
Owfs? Very difficult ! [Barak - Mahmood, ]

-

↳ A positive result
will require non- black-box

techniques.

Impagliazzo- Radich : Proving the existence of key -agreement that makes black-box use of OWB implies P ≠ NP.



Implication of black-box separations : constructing secure key agreement will require more than just one-way functions
"

↳ Distinction between Minicrypt and Cryptomania in Impagliazzo's five worlds
"

we will turn to algebra/ number theory for new sources of hardness to build key agreement protocols .

Definition. A group consists of a set ① together with an operation
* that satisfies the following properties

:

-

Closure : If g , .GE 6 ,
then g.

*92£ 6
-

Associativity : For all g, , gz.gs C- G
, g,

* (gigs)
= (g ,

* gz)
* 9}

-

Identity : There exists an element e c- 6 such that e * g
=

g
=

g
* e for all

g
c- 6

-

Inverses : For every element g C-
6
,
there exists an element g-

'
C- 6 such that

g.
* g-

'
= e = g-

'
*

g
In addition

,
we say a group is commutative (or abelian) if the following property also holds :

-CEie : For all g, , gz
C- G

, g,
* 92

=

92*91

f-
called "multiplicative

"

notation

Notation : Typically ,
we will use

"

•

"

to denote the
group operation

(unless explicitly specified otherwise)
.
We will write

g✗ to denote g. g. g-
- -

g (the usual exponential notation)
.

We use
"

1
"

to denote the multiplicativeidentity
-

✗ times

E-amplesofgnap.si (TR
,
+ ) : real numbers under addition

(I
,
t) : integers under addition

(Ip ,
+) : integers modulo p under addition [sometimes written as 242 ]

There,pisprime-TIME(an important group
for cryptography) :

Zp* = { ✗ c- Zp : there exists y
c- Ep where xy

= 1 lmodp) ]
← the set of elements with multiplicative inverses modulo

p



What are the elements in Zp* ?
greatest common

divisor

BEÉity : For all positive integers ×,y
c- 2

,
there exists integers a,b c- 2 such that ax + by =gcd(× , y) .

Corollary : For prime p , 2p* = { 1,2 , _ . -

, p
- I }

.

. Take
any ✗ C- { 1,2. . _ . ,p -13 . By Bezout's identity , gcd (Ap) = 1 so there exists integers a,b C- 2 where I = ax + bp.

Modulo
p ,
this is ax = I Cmodp) so a = ✗

- ' lmodp) .

Coefficients a. b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm :

Eudideanalgorithm : algorithm for computing gcdla, b) for positive integers a
> b :

relies on fact that gcdca , b) = gcd ( b, a (mod bD :

to see this : take any
a > b

↳
we can write a = b. qtr where q ≥

1 is the quotient and

0 ≤ r < b is the remainder

↳ d divides a and b ⇔ d divides b and r

↳ gcdla ,b) = gcdcb, r) = gcd(b , a (mod b))

gives an explicit algorithm for computing gcd : repeatedly divide :

gcd (60,27) : 60 = 27 (2) + 6 [ q = 2 , r = 6] → gcd (60,27) = gcd (27 , 6)

27%6445+3 [ q = 4 , r =3] → gcd(27,6) = god (6,3)
6%3%7+0 [ q = 2 , r = 0]

→ gcd(6.3) = gcd (3,0) =3
"

rewind
"

to recover coefficients in Bezout's identity :
60 = 27 (2) + 6 I 6=60-2712) 1extended

Euclidean { 27%644%-3 → 3=27-6.4 27-(60-27121)4
algorithm ←=

6 = 3(2) + 0 = 27 (9) 1- 60 C- 4)
↑
coefficients

IteÉd: 0(loga) - i.e., bit -length of the input [worst case inputs : Fibonacci numbers]

Implication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)



f-
defined to be the identity element

f- cyclic groups
are commutative

"" }
.Definition .

A
group 6

is cyclic if there exists age g
such that 6 = {go.gl , . . . , g

Definition. For an element ge 6 , we write (g) = { go.gl , . . . ,g"°" } to denote the set generated by g (which need not be the

entire set. The cardinality of (g) is the order of g
lie,

the size of the
"

subgroup
" generated by g)

Example. Consider IF
= { 1,2, 3,4, 5,6} . In this case

,
↳ means that good = 1

(2) = { 1,2
,
4} [ 2 is not a generator of EF] ord (2) =3

(3) = { 1,3 , 2,6, 4,5} [ 3 is a generator of IF ] ord (3) = 6

L¥Éem . For a group
6
,
and

any
element

g
E G

,
ord (g) / 161 ( the order of

g
is a divisor of 161)

.

↳ For Zp* , this means that ordlg) Ip-1 for all g C- 6

corollaryt-erma-is-The.mn) : For all ✗ C- Ip* , XP
"

= 1 Cmodp)

Proof . / 2p* / = / { 1,2, . . . , p-is/ =p - l f for integer ko

p -1
= (✗ordCx))

"
= 1k = 1 (mod p)By Lagrange's Theorem, ord (X) / p - l so we can write p

- I = K . ord (X) and so ✗

Implication : Suppose ✗ c- 2¥ and we want to compute ✗
&

c- 2p* for some large integer y
→
p

↳ We can compute this as

xy = ✗
Y lm◦ᵈP") (mod p)

since XP
"

= 1 (mod p)

↳ Specifically , the exponents operate modulo the ceder of the group
↳

Equivalently : group 1g> generated by g is isomorphic to the group (Iq ,
+) where q = ord (g)

(g) ± (2g , -1)

g✗ ↳ ×

✗ times

Notation : g× denotes

g-g-i.gg-✗
denotes (g✗)

"

[ inverse of group element g✗ ]

g✗
"

denotes g(✗
")

where ✗
-1

computed mod cord (g)
- need to make sure this inverse exists!

C◦mpÉÉ : In cryptography , the groups we typically work with will be large leg. , 22
"

or 202" )
-

Size of group element
(# bits) : ~ log 161 bits (256 bits / 2048 bits)

-

Group operations in Zp* : log p bits per group
element

addition of mod
p elements : 0 (tog p)

multiplication of mod p
values : naively 01kg2 p)

karatsuba 0110g
""

p
)

Schionhage - Strassen (GMP library) : 0(log p tog tog p tog tog tog p)
best algorithm 0110g p tog tog p) [2019]

↳ not yet practical ( > 24°
"
big to be faster . . . )

exponentiation : using repeated squaring
:

g , g? g
"

, go , . . . , g"%Pt , can implement using ollogp?

multiplications [ 01kg3 p) with naive multiplication]

↳ Time/space trade-offs with more precomputed values

division (inversion) : typically 01kg2 p) using Euclidean algorithm (can be improved)


