
Computational : in the following, let ① be a finite cyclic group generated by g
with order of

-

DisgE: sample ✗ ⇐ 2g

given h=g✗, compute ✗
-

CompiffiHeD) : sample ✗if
d- Iq

given g✗ , gY , compute g✗Y
-DecisionalDiffie-HeHman(DDH)_ : sample ×,y ,

r
⇒
2g

distinguish between (g. g✗ , gY,g✗Y) us . (g. g✗ , g? g)

Each of these problems translates to a corresponding computational assumption :

←e-g.iq = 27

Definition
.

Let ① = 4g> be a finite cyclic group of order q (where q is a function of the security parameter 7)
The DDH assumption holds in ① if for all efficient adversaries A :

Pr / x.ge Ep : Alg,gYg7g%) = 1) - Prix,y , reap : Alg,g? go.gr/=1I/--neg1(a)
The CDH assumption holds in 6 if for all efficient adversaries A:

Prexy Ekg : Alg,gYgY) = g
"] = negl (a)

The discrete log assumption holds in 6 if for all efficient adversaries A :

Pr[✗⇐2g : Alg,g✗) = ×]
=

neg/ (a)

Certainly : if DDH holds in ① ⇒ CDH holds in ① ⇒ discrete log holds in 6

%?

Major open problem : does this hold?there are groups where CDH

Can we find a group
where discrete log is hard

believed to be hard
, but DDH is

but CDH is easy ?

easy

Instantiations : Discrete log in 2p* when p is 2048
-bits provides approximately 128- bits of security@ (gyp,

↳ Best attack is General Number Field Sieve (GNFS) - runs in time 2 time

Much better than brute force - 21% P [cube root in exponent not ideal !

↳ Need to choose p carefully ← having Smad prime factors if we want to double security,
leg, avoid cases where

p
- 1 is smooth) need to increase modulus by 8✗ !

for DDH applications , we usually set p
= 2g -11 where

group operations
all
← leg, , 16384- bit modulus for 256 bits

of is also a prime Cp is - a
" safe prime

") and work in the scale linearly (or worse) in of security)

subgroup of order q in Ipt (74¥ has order p
- 1=28) bit length of the modulus

Elliptic curve groups
: only require 256 -bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 2
↳%

[g- algorithm - can discuss at end of]
semester↳ Much faster than using 2¥ : several standards

- NIST 12256
,
P384

,
12512 } can discuss more at end of semester

-

Dan Bernstein's curves : curve 25519 (or in advanced crypto class)
↳

Widely used for key - exchange + signatures on the web

When describing cryptographic constructions
,
we will work with an abstract group

(easier to work with, less details to worry about)

Diffie-Hellman key exchange
-

Let ① be a group of prime order p (and generator g) - choice of group , generator,
and order fixed by standard

Alice

Botox£ Zp y
⇐ Ep
÷
←

compute g✗Y = (god)
"

compute g✗Y =
&

↳
shared secret : g✗Y

But usually , we want a random bit-string_ as the key , not random
group element

↳ Element g✗Y has log p bits of entropy , so should be able to obtain a random bit-string with ls tog p bits

↳ Solution is to use a
"

randomness extractor
"

good practice to↳ Information- theoretic constructions based on universal hashing / pairwise -independent hashing hash ay components
(loses some bits of entropy) L

↳ Use a
" random oracle

"
or an

"

ideal hash function
" [Heuristic : SHA-256 (g,gYgY , gxy)) (

binds the key +]the entire

transcript
(very efficient in practice)
↳

A⇔⇔±y : 1 . Rely on HashDH assumption (
g , g

"

,gY , Hlg,gYgYg✗s)É (g. g× , g? r)
4

where H : ① → {0,13
"

and r F- {0,15

2 .
Model H as ideal hash function H : ①

"
→ {0,13

" (i.e.
,
random oracle) and

rely on CDH in ① [inability to evaluate H on g✗J ⇒ output is random string
]

P¥rypt : Encryption scheme where encryption is public (does not require sharedsec.ve#)
-

Setup (17 → (pk.sk) [generates a public/private key - pair
- also called keyGen]

-

Encrypt Cpk, m) → c

-

Decrypt (sk, c) → m

Everyone can publish a public key (in a directory)
↳ Can encrypt to anyone without exchanging keys (recipient can be offline)

correctness : f- me M : Pr [(pk.sk) ← setup/1') : Decrypt Csk , Encrypt Cpk, m))
= m] = 1

Security : semantic security from secret-key setting , but adversary also gets public key
b. C- {on]

adversary challengers
↓

(pk.sk) ← Setup 117

→É
Encrypt)

↓
b' C- {0,13

SSAdv [A
, TIME]

= / Pr [A outputs 1 / b=o] - Pr [A outputs 1 I b = 1] /

