Computational problems: in the following, kt \mathbb{G} be a finite cyclic group generated by g with order q

- Discrete log problem: sample $x \mathbb{R} \mathbb{Z}_{q}$
given $h=g^{x}$, compute x
- Computational Diffie-Hellman (CDH): sample $x, y \stackrel{R}{\leftarrow} \mathbb{Z}_{q}$
given g^{x}, g^{y}, compute $g^{x y}$
-Decisional Diffie-Hellman (DDH): sample $x, y, r \mathbb{Z}_{q}$
distinguish between $\left(g, g^{x}, g^{y}, g^{x y}\right)$ vs. $\left(g, g^{x}, g^{y}, g^{r}\right)$

Each of these problems translates to a corresponding computational assumption:

$$
-\operatorname{e.g.1} q=2^{\lambda}
$$

Definition. Let $b=\langle g\rangle$ be a finite cyclic group of order q (where q is a function of the security parameter λ)
The DDH assumption holds in \mathbb{G} if for all efficient adversaries A :

$$
\operatorname{Pr}\left[x, y \leftarrow \mathbb{Z}_{p}: A\left(g, g^{x}, g^{y}, g^{x y}\right)=1\right]-\operatorname{Pr}\left[x, y, r \stackrel{R}{\leftarrow} \mathbb{Z}_{p}: A\left(g, g^{x}, g^{y}, g^{r}\right)=1\right]|=\operatorname{neg}|(\lambda)
$$

The CDH assumption holds in \mathbb{G} if for all efficient adversaries A :

$$
\operatorname{Pr}\left[x, y \& \mathbb{Z}_{q}: A\left(g, g^{x}, g^{y}\right)=g^{x y}\right]=\operatorname{neg} \mid(\lambda)
$$

The discrete \log assumption holds in G if for all efficient adversaries A :

$$
\operatorname{Pr}\left[x^{\mathscr{R}} \mathbb{Z}_{q}: A\left(g, g^{x}\right)=x\right]=\operatorname{neg} \mid(\lambda)
$$

Certainly: if DOH holds in $G \Rightarrow C D H$ holds in $\mathbb{G} \Rightarrow$ discrete log holds in \mathbb{G}

there are groups where CDH believed to be hard, but DDH is easy

Instantiations: Discrete \log in \mathbb{Z}_{p}^{*} when p is 2048-bits provides approximately 128-bits of security $\tilde{O}(\sqrt[3]{\log p})$
\rightarrow Best attack is General Number Field Sieve (GNFS) - runs in time $2^{(\sqrt{l o g} P)}$ time

Much better than brute force - $2^{\log p}$
\rightarrow Need to choose p carefully
(eg., avoid cases where $p-1$ is smooth)
for DDH applications, we usually set $p=2 q+1$ where q is also a prime (p is a "safe prime") and work in the subgroup of order q in \mathbb{Z}_{p}^{*} (\mathbb{Z}_{p}^{*} has order $p-1=2 q$)

Lube root in exponent not ideal! if se want to double security, need to increase modulus by $8 x$? group operations all scale linearly (or worse) in bitleygth of the modulus

Elliptic curse groups: only require 256 -bit modulus for 128 bits of security
\rightarrow Best attack is generic attack and runs in time $2^{\log p / 2} \quad[\rho$-algorithm - can discuss at end of \quad Semester $\quad \rightarrow$ Much foster $\quad[$
\mapsto Much foster than using \mathbb{Z}_{p}^{*} : several standards

- NIST P256, P384, P512 $\}$ can discuss more at end of semester
- Dan Bernstein's curves: Curve 25519 (or in advanced crypto doss)
\rightarrow widely used for key-exchange + signatures on the well
When describing cryptographic constructions, we will work with an abstract group (easier to work with, less details to worry about)

Diffie-Hellman key exchange

- Let \mathbb{G} be a group of prime order p (and genentor g) - chase of group, generator, and order freed by standard

Compute $g^{x y}=\left(y^{y}\right)^{x}$
compute $g^{x y}=\left(g^{x}\right)^{y}$

But uscally, we want a random bit-string as the key, not random group element
\rightarrow Element $g^{x y}$ has $\log p$ bits of entropy, so should be able to obtain a random bit-string with $l<\log p$ bits
\rightarrow Solution is to use a "randomness extractor"
\rightarrow Information-theretctc constructions based on universal hashing / pairusie-independent hashing (loses some bits of entropy)
\rightarrow Use a "random oracle" or an "ideal hash function" [Heuristic: SHA-256 $\left.\left(g, g^{x}, g^{y}, g^{x y}\right)\right]\left[\begin{array}{c}\text { binds the key to } \\ \text { the entire } \\ \text { transcript }\end{array}\right]$ (very efficient in practice)

1. Rely on HashDH assumption $\left(g, g^{x}, g^{y}, H\left(g, g^{x}, g^{y}, g^{x y}\right) \approx\left(g, g^{x}, g^{y}, r\right)\right.$ where $H: G^{4} \rightarrow\{0,1\}^{2}$ and $r \&\{0,1\}^{n}$
2. Model H as ideal hash function $H: G^{4} \rightarrow\{0,1\}^{n}$ (ie., random orate) and rely on CDH in C [inability to evaluate H on $g^{x y} \Rightarrow$ output is random string]

Public-key encryption: Encryption scheme where encryption is public (does not require shared secrets)

- Setup ($\left.1^{x}\right) \rightarrow(p k, s k) \quad$ [generates a pubbic/private key-pair - also called Key Gen]
- Encrypt $(p k, m) \rightarrow c$
$-\operatorname{Decrypt}(s k, c) \rightarrow m$
Everyone can publish a public key (in a directory)
\rightarrow Can encrypt to anyone without exchanging keys (recipient can be offline)
Correctness: $\forall m \in M: \operatorname{Pr}\left[(p k, s k) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right): \operatorname{Decrypt}(s k, \operatorname{Encrypt}(p k, m))=m\right]=1$

Security: semantic security from secret-key setting, but adversary also gets public hey

$$
\begin{aligned}
& \downarrow \\
& \operatorname{SSAdv}\left[A, \Pi_{\text {iKE }}\right]=\mid \operatorname{Pr}[A \text { outputs } 1 \mid b=0]-\operatorname{Pr}\left[A_{\text {outputs }} 1 \mid b=1\right] \mid
\end{aligned}
$$

