Now, a digression... appealing puperty of discrete log problem: either it is hard everywhere or hard nowhere.

- Suppose we have an efficient algorithm A

$$
\operatorname{Pr}\left[x \stackrel{R}{\curvearrowleft} \mathbb{Z}_{p}: A\left(g, g^{x}\right) \rightarrow x\right]=\varepsilon \quad \text { (for non-negligible } \varepsilon \text {) }
$$

- We can use A to build B that solves any discrete log instance arbitrarily dore to 1:
-On input $\left(g, h=g^{x}\right), B$ samples $y^{2} \mathbb{Z}_{p}$ and runs A on $\left(g, h^{y}\right)$
- Since y is uniform, g^{y} is a uniform group element so

$$
\operatorname{Pr}\left[A\left(y, h^{y}\right) \rightarrow x y\right]=\varepsilon
$$

If A succeeds leg, outputs $t=x y$ where $h^{y}=g^{t}$, then A outputs $x=y^{-1} t$

- A can repeat this process n / ε times so the success probability becomes

$$
1-(1-\varepsilon)^{n / \varepsilon} \leq 1-e^{-n} \quad\left[\text { since } 1+x \leq e^{x} \text { for all } x\right]
$$

- Conclusion: discrete log either easy everywhere or hard everywhere
\mapsto easy on non-negligible fraction \Rightarrow easy everywhere

Visually:

Algorithm A works on an
ε-fraction of \mathbb{G}

Implication: instead of assuming that most instances are hard, it suffices that at least an ε-fraction of instances are hard for any non-neyligible ε

In cryptography, we need problems that are hard in the average case (nearly all keys are "goad")
\rightarrow differs from worst-case hardness (e.g., NP-hardness - many NP-complete problems believed to be hard in worst case, but good algorithms exist for "typical" instances - not a good basis for crypto)
\longrightarrow when a problem has a random self-reduction, then worst-case hardness effectively implies average-case hardness; cannot have setting where problem is easy on ε-fraction of instances for any non-negligible ε)
\rightarrow appealing property for crypts!
This is an example of a "random self-reduction" - we can generate random instances of the problem from any instance
\rightarrow this is often times a very useful property

An algebraic PRF with many useful properties:

- Let G be a group of prime order p and generator g
- PRF key is a random exponent $k \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{p}$
$-\operatorname{PRF}(k, x):=H(x)^{k}$ where $H:\{0,1\}^{n} \rightarrow G$ is a hash function (modeled as a random oracle) distributed over G

Before proving its security, let's look at some useful properties of this PRF:

- Supports oblivious evaluation:

$$
\frac{\text { client }(x)}{r \mathbb{R} \mathbb{Z}_{p}}
$$

Server (k)
 group element (independent of x)

$$
\left[H(x)^{r k}\right]^{r^{-1}}=H(x)^{r k}=\operatorname{PRF}(k, x)
$$

- Key-homomorphic:

$$
\left.\begin{array}{rl}
\operatorname{PRF}\left(k_{1}, x\right) & =H(x)^{k_{1}} \\
\operatorname{PRF}\left(k_{2}, x\right)=H(x)^{k_{2}}
\end{array}\right\} H(x)^{k_{1}} \cdot H(x)^{k_{2}} \quad \begin{aligned}
& =H(x)^{k_{1}+k_{2}}=\operatorname{PRF}\left(k_{1}+k_{2}, x\right)
\end{aligned}
$$

Useful building block for updatable encryption:

- Server has many ciphertexts encrypted under k_{1}

$$
\left.\begin{array}{cc}
c t_{1} & =\left(x_{1}, \operatorname{PRF}\left(k, x_{1}\right) \cdot m_{1}\right) \\
\vdots & \Longrightarrow \\
c t_{n} & =\left(x_{n}, \operatorname{PRF}\left(k, x_{n}\right) \cdot m_{n}\right)
\end{array} \uparrow \quad c t_{1}^{\prime}=\left(x_{1}, \operatorname{PRF}\left(k^{\prime}, x_{1}\right) \cdot m_{1}\right)\right)
$$

client sends

$$
k^{\prime}-k
$$

τ server can non-interactively perform a bey-rotation (without decrypting ciphertexts!)

The random oracle model: assume parties have orade access to a truly random function
\rightarrow can view oracle as maintaining a truth table that is lazily sampled (namely, if $x \in\{0,1\}^{n}$ is in the table T, reply with $T(x)$; othernsixs sample $y \stackrel{R}{\leftarrow} \mathbb{C}$, add $(x \mapsto y)$ to T and reply with $y)$
adversaries are modeled as oracle Turing machines (with a randomness tape)
\longrightarrow success probability taken over its own randomness and the randomness of orack outputs when a reduction runs an adversary, it is responsible for answering oracle queries by the adversary

Theovem. If the DOH assumption holds in \mathcal{G}, and H is modeled as a random orack, then $\operatorname{PRF}(k, x):=H(x)^{k}$ is a secure PRF.
Proof Idea. DDH assumption: $\left(g, g^{a}, g^{b}, g^{a b}\right)$ indistinguishable from $\left(g, g^{a}, g^{b}, g^{r}\right)$ where $a, b, r \stackrel{\&}{<} \mathbb{Z}_{p}$

$$
\rightarrow \text { try to set } \begin{aligned}
k & \mapsto a \\
H(x) & \mapsto g^{b}
\end{aligned} \Rightarrow \text { then } H(x)^{k}=\underbrace{a b}
$$

\longrightarrow which is indistinguishable from uniform under DDH
Problem: PRF adversary can make multiple queries and need to answer all of them using a single DDH challenge
Approach: Use a random self reduction to randomize $\left(g^{b}, g^{a b}\right)$: $[a$ is fixed in PRF]
Given (g, h, u, v) where $h=g^{a}, u=g^{b}$, and $v=g^{a b}$ or $v=g^{r}$:
Sample $s, t \stackrel{R}{\mathbb{Z}_{p}}$ and output $\left(g, h, u^{s} g^{t}, v^{s} h^{t}\right)$.
Case 1: $v=g^{a b}$ so $\left(g, h, u^{s} g^{t}, v^{s} h^{t}\right)$

$$
\begin{aligned}
& =\left(g, g^{a}, g^{b s+t}, g^{a b s+a t}\right) \\
& =\left(g, g^{a}, g^{b s+t}, g^{a(b s+t)}\right)
\end{aligned}
$$

${ }^{\tau} t$ is uniform in \mathbb{Z}_{p} so this is a fresh DDH tuple
Case 2: $v=g^{r}$ so $\left(g, h, u^{s} g^{t}, v^{s} h^{t}\right)$ independent and uniform

$$
=\left(g, h, g^{b s+t}, g^{r s+a t}\right)
$$ over \mathbb{Z}_{p} whenever $r \neq a b$

$$
\left[\begin{array}{ll}
b & 1 \\
r & a
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

\mathbb{G} since t is uniform
\uparrow
linearly independent (imuorible) if $r \neq a b$
Proof. Let A be a PRF adversary. We are A to construct an adversary B for DDH:

When A queries H on x : 1. Check if $x \mapsto(y, z)$ is in the table. If so, reply with y.
2. Otherwise, sample $s, t \mathbb{L}^{R} \mathbb{Z}_{p}$ and add $x \mapsto\left(u^{s} g^{t}, v^{s} h^{t}\right)$ to the table.
3. Reply to A with $u^{s} g^{t}$.

When A queries PRF on x :

1. Check if $x \mapsto(y, z)$ is in the table. If so, reply with z.
2. Otherwise, sample $s, t \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$ and and $x \mapsto\left(u^{s} g^{t}, v^{s} h^{t}\right)$ to the table.
3. Reply to A with $v^{s} g^{t}$

By the analysis above, if $T=g^{a b}$, then B perfectly simulates the PRF security game where the bey is a and $H(x)$ is $u^{s} g^{t}$ for $s, t \leftarrow \mathbb{Z}_{p}$ (namely, $H(x)$ is random group element). If $T \in \mathbb{G}$, then the responses to the PRF queries are uritoon and independent of x (from the analyis of the self-reduction above).

