
Up to a negligible fraction
of inputs-

Now
,
a digression . . . appealing property of discrete log problem : either it is ha_rdeveryw=e or barge.

-

Suppose we have an efficient algorithm A ^

Pr [ ✗ Eap : Alg,g×) → × ] = E (for non -negligible E)
"

- We can use A to build B that solves any discrete log instance arbitrarily close to 1 : random self -reduction :
"

reduce

-On input (g, h=g✗) , B samples y
⇐ Ip and runs A on (g , hY) problem to random instance

- Since
y
is uniform

, gY is a uniform group element so of itself

Pr[Alg , his) → xy ]
= E

If A succeeds leg., outputs t = Xy where hᵗ=gᵗ ,
then A outputs ✗ = g-

'

t

-

A can repeat this process
% times so the success probability becomes

1- ( 1- e)% ≤ / - e
-n [ since / + ✗ ≤ e.

×

for all ✗ ]
-

Co#sin : discrete log either easy everywhere or hard everywhere
↳ "" " """

"""" """""
⇒

Implication : instead of assuming that most

Visually: instances are hard
,
it suffices

that at least an E-fraction of

instances are hard for any

n.n.mg
,.gg, ,

G G

Algorithm A works on an Algorithm B work everywhere in 6

E-fraction of ①

In cryptography , we need problems that are hard in the avenge case ( nearly all keys are
"

good
")

↳ differs from worst-case hardness (e.g. , NP
-hardness -

many
NP - complete problems believed to be hard in worst case

,
but good

algorithms exist for
"

typical
"

instances - riot a good basis for crypto)

↳ when a problem has a random self - reduction
,
then worst - case hardness effectively implies average

-case hardness ; cannot

have setting where problem is easy on E- fraction of instances for any non-negligible E)
↳

appealing property for crypto !

4

This is an example of a
"

random self - reduction - we can generate random instances of the problem from any instance

↳ this is often times a very useful property

An algebraic PRF with ma¥ useful properties :
- Let 6 be a group

of prime order p and generator g
p
th : HH) is uniformly

-

PRF key is a random exponent K
£
Ep distributed over

①
- PRF (K , X) : = Htx)

"
where H : {0,13

"
→ 6 is a hash function (modeled as a random oracle)



Before proving its security, let's look at some useful properties of this PRF :

-

Supports oblivious evaluation:

click server

r←R2p Useful for anonymous credentials
← uniform random_É→

group element (independent of ×)
- Cloudflare's Privacy Pass

(browser plugin) : solve
CAPTCHA → obtain

t
( HH)" ]
"

= Hfx )
"

= prp (k
,
× )

set of authentication

tokens (× , , PRF /Kix ,)) , . . .

lxn
,
PRFCK,xn))

-

Key - homomorphic : PRF (k
, ,
x) = Htxlk ' ↳ tokens cant be

PRF (ka
,
✗I = H(✗jkz } Hfx)

"
'

- H(×)
%

linked to user

= H(×)
"
'
""

= PRF (k, + kz ,
×)

Useful building block for updatable encryption :
- Server has

many ciphertext encrypted under ki

Ct
,
= (× , , PRFLK, × ,) - mi) Ct

,

'
= (× , , PRFIK

'

,
×
,) -

m
,)

: : ⇒ : :
0

Ctn = (✗ n , PRHK.xnl.mn) ↑ ctn
'
= (✗ n

,
PRF (K'

,
✗n) .mn)

client sends

K' - k

E-
server can non-interactive perform a key - rotation

(without decrypting ciphertext ! )

-heÉE: assume parties have grade access to a truly random function

↳
can view oracle as maintaining a truth table that is lazily sampled
(namely ,

if ✗ C- {0,13
"

is in the table T
, reply with Ttx); otherwise,

sample y
⇐ 6

,
add (✗→ y) to T and reply with g.)

adversaries are modeled as oracle Turing machines (with a randomness tape)
↳

success probability taken over its own randomness and the randomness of oracle outputs
when a reduction runs an adversary, it is responsible for answering oracle queries by the adversary



Tkm .
If the DDH assumption holds in 6, and H is modeled as a random oracle

,
then PRF(K

,
X) : = Htx)

"
is a secure PRF.

Iowa. DDH assumption
: (g , ga, gb , gab) indistinguishable from (g , ga , gb.gr) where a.b , r

⇐ Zp
↳

try to set k ↳ a

Hlx) ↳ gb
⇒ then Htx)

"
= gab
↳ which is indistinguishable from uniform under DDH

Protein : PRF adversary can make multiple queries and need to answer ad of them using a single DDM challenge

Appt : Use a random self reduction to randomize Lgb, gab) : [a is fixed in PRE ]
ab

Given (g , h , u,
✓) where h=g

"

, u=gb , and v=g or v=gʳ :
sample S

,
-1£ Zp and output (

g ,
h
, Uˢgᵗ , ✓sht ) .

Eases: v=gab so 1g , h , usgt , ✓sht )
= (g , ga, gbstt, gabs

+ at )

= ( g , ga, gbstt, gacbstt
))

←
t is uniform in Ip so this is a fresh DDH

tuple

✗ independent and uniform
cas.ee#v=gr so (g , h , usgt , ✓sht ) over Ip whenever r ≠ ab

= (g , h, gbstt rs + at)ig (
b 1

r all :)
↑
uniform over ↑

① since t is uniform
linearly independent (invertible)
if rtab

P . Let A be a PRF adversary . We use A to construct an adversary B for DDH :

P C- {on}

AtB DDH Challenger ↓
Initialize empty a ,b←R2p

table T

Algorithm A É 13=0: c=ab
query Hon ✗ 13=1 : CEZP

t_↳ry PRF on ✗[ U ←ga , ✓ ←gb , 1-← g-

I
←

When A queries
H on × : 1

.

Check if ✗ ↳ (y , Z) is in the table
.

If so
, reply with

y .

2. Otherwise, sample sit
£
Zp and add ✗ ↳ (Usj , Pti ) to the table

.

3. Reply to A with usgt .
When A queries PRF on ×

: 1
. Check if ✗ ↳ ly , z) is in the table. If so

, reply with 2-
.

2. Otherwise
, sample s,t←2p and add ✗ ↳ lusgt , ✓ˢhᵗ ) to the table

.

3. Reply to A with vsgt
By the analysis above

,
if 7- gab, then B perfectly simulates the PRF security game where the key is a

and H (x) is usgt for s
,
-1 Ep ( namely, Htx) is random group element. If

TEG
,
then the responses to

the

PRF queries are uniform and independent of ✗ (from the analysis of the self - reduction above).


