Diffie-Hellman key-exchange is an anonymous key-exchange protocol: neither side knows who they are talking to
\longrightarrow vulnerable to a "man-in-the-middle" attack

Observe Eve can now decrypt all of the messages between Alice and Bolo and Alice $+B 6$ have no idea!

What we require: authenticated key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) \rightarrow On the web, one of the parties will authenticate themself by preventing a certificate

To build authenticated key-exchange, we require more ingredients - namely, an integrity mechanism [e.g., a way to bind a message to a sender - a "public-key MAC" or digital signature]

We will revisit when discussing the TLS protocol
Digital signature scheme: Consists of three algorithms:

- Setup $\left(1^{A}\right) \rightarrow(v k, s k):$ Outputs a verification key $v k$ and a signing key sk
- Sign $(s k, m) \rightarrow \sigma$: Takes the signing key sk and a message m and outputs a signature σ
- Verify $(v k, m, \sigma) \rightarrow 0 / 1$: Takes the verification key $v k, a$ message m, and a signature σ, and outputs a bit $d / 1$

Two requirements:

- Correctness: For all messages $m \in M, \quad(u k, s k) \leftarrow \operatorname{Key} \operatorname{Gen}\left(1^{\lambda}\right)$, then

Let m_{1}, \ldots, m_{Q} be the signing queries the adversary submits to the challenger Then, $\omega=1$ if and only if:

$$
\operatorname{Verify}\left(v k, m^{*}, \sigma^{*}\right)=1 \text { and } m^{*} \notin\left\{m_{1}, \ldots, m_{Q}\right\}
$$

Adversary cannot produce a valid signature on a new message.

Exact analog of a MAC (slightly weaker unforgeability: require adversary to not be able to forge signature on new message)
\rightarrow MAC security required that no forgery is possible on any message [needed for authenticated encryption] digital signature elliptic-earve \} s t a n d a r d s ~ (w i d e l y ~ a x e d ~ T algorithm DSA \rightarrow on the web - eg. TLS)
It is possible to build digital signatures from discrete \log based assumptions (DSA, ECDSA)
\longrightarrow But construction not intuitive until we see zero knowledge proofs
\rightarrow We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite-order groups:

Let $N=p q$ be a product of two primes p, q. Then, $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$ is the addifire group of integers modulo N. Let \mathbb{Z}_{N}^{*} be the set of integers that are invertible (under multiplication) modulo N. $x \in \mathbb{Z}_{N}^{*}$ if and only if $\operatorname{gcd}(x, N)=1$
Since $N=p q$ and p, q are prime, $\operatorname{gcd}(x, N)=1$ unless x is a multiple of p or q :

$$
\left|\mathbb{Z}_{N}^{*}\right|=N-p-q+1=p q-p-q+1=(p-1)(q-1)=\varphi(N)
$$

C Euler's phi function
Recall Lagrange's Theorem:
(Euler's totient function)
for all $X \in \mathbb{Z}_{N}^{*}: X^{\varphi(N)}=1(\bmod N) \quad$ [called Euler's theorem, but special case of Lagrange's theorem]
L -important: "ring of exponents" operate modulo $\varphi(N)=(p-1)(q-1)$

Hard problems in composite-order groups:

- Factoring: given $N=p q$ where p and q are sampled from a suitable distribution over primes, output p, q
- Computing cube roots: Sample random $x \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{N}^{*}$. Given $y=x^{3}(\bmod N)$, compute $x(\bmod N)$.
\rightarrow This problem is easy in $\mathbb{Z}_{p}^{*}($ when $3+p-1)$. Namely, compute $3^{-1}(\bmod p-1)$, say using Euclid's algorithm, and then compute $y^{3^{-1}}(\bmod p)=\left(x^{3}\right)^{3-1}(\bmod p)=x(\bmod p)$.
\rightarrow Why does this procedure not work in \mathbb{Z}_{N}^{*}. Above procedure relies on computing $3^{-1}\left(\bmod \left|\mathbb{Z}_{N}^{*}\right|\right)=3^{-1}(\bmod \varphi(N))$ But we do not know $\varphi(N)$ and computing $\varphi(N)$ is as hard as factoring N. In particular, if we know N and $\varphi(N)$, then we can write

$$
\left\{\begin{array}{l}
N=p q \\
\varphi(N)=(p-1)(q-1)
\end{array} \quad[\text { both relations hold over the integers }]\right.
$$

and solve this system of equations over the integers (and recover p, q)

Hardness of computing cube roots is the basis of the RSA assumption: distribution over prime numbers.
RSA assumption: Take $p, q \leftarrow \operatorname{Primes}^{\left(1^{\lambda}\right)}$, and set $N=p q$. Then, for all efficient adversaries A,

$$
\operatorname{Pr}\left[x \leftarrow \mathbb{Z}_{N}^{*} ; y \leftarrow A(N, x): y^{3}=x\right]=\operatorname{negl}(\lambda)
$$

more generally, can replace 3 with any e where $\operatorname{gcd}(e, \varphi(N))=1$ \uparrow
Hardness of RSA reties on $\varphi(N)$ being hard to compute, and thus, on hardness of factoring
(Reverse direction factoring $\stackrel{?}{\Rightarrow} R S A$ is not known)
common choices:

$$
\begin{aligned}
& e=3 \\
& e=65537
\end{aligned}
$$

Hardness of factoring / RSA assumption:

- Best attack based on general number field sieve (GNFS) - runs in time ~ $2 \tilde{O}(\sqrt[3]{\log N})$ (same abgorithmen used to break discrete \log over \mathbb{Z}_{p}^{*})
- For 112 bits of security, use RSA-2048 (N is product of two 1024-bit primes) \longleftrightarrow cost \Rightarrow ECC generally 128-bits of security, are RSA-3072
large key-sizes and computational
- Both prime factors should have similar bit-length (ECM algorithm factors in time that scales with smaller factor)

RSA problem gives an instantiation of more general notion called a trapdoor permutation:

$$
F_{R S A}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}
$$

$F_{\text {RA }}(x):=x^{e}(\bmod N)$ where $\operatorname{gcd}(N, e)=1$
Given $\varphi(N)$, we can compute $d=e^{-1}(\bmod \varphi(N))$. Observe that given d, se can invert FRSA:

$$
F_{R S A}^{-1}(x):=x^{d}(\bmod N) \text {. }
$$

Then, for all $x \in \mathbb{Z}_{N}^{*}$:

$$
F_{R S A}^{-1}\left(F_{R S A}(x)\right)=\left(x^{e}\right)^{d}=x^{e d(\bmod \varphi(N))}=x^{1}=x(\bmod N) .
$$

Trapdoor permutations: A trapdoor permutation (TDP) on a domain X consists of three algorithms:
-Setup $\left(1^{\lambda}\right) \rightarrow$ ($\left.p p,+d\right):$ Outputs pubic parameters $p p$ and a trapdoor td
$-F(p p, x) \rightarrow y: O_{n}$ input the public parameters pp and input x, outputs $y \in X$
$-F^{-1}(t d, y) \rightarrow X: O_{n}$ input the trapdoor td and input y, output $x \in X$
Requirements:

- Correctness: for all pp output by Setup:
- $F(p p, \cdot)$ implements a permutation on X.
$-F^{-1}(+d, F(p p, x))=X$ for all $x \in X$.
-Security: $F(p p, \cdot$) is a one way function (to an adversary who does not see the trapdoor)
Naive approach (common "textbook" approach) to build signatures:
Let $\left(F, F^{-1}\right)$ be a trapdoor permutation
- Verification key will be $p p\}$ to sign a message m, compute $\sigma \leftarrow F^{-1}(t d, m)$
- Signing key will be td \int to verity a signature, check $m \stackrel{?}{=} F(p p, \sigma)$

Correct because:

$$
F(p p, \sigma)=F\left(p p, F^{-1}(+d, m)\right)=m
$$

Secure because F^{-1} is hard to compute without trapdoor (signing key) FACSE!
\rightarrow This is not true! Security of TDP just says that F is one-way. One-wayness just says function is hard to invert on a random input. But in the case of signatures, the message is the input. This is not only not random, but in fact, adversarially chosen!
\longrightarrow Very easy to attack. Consider the 0 -query adversary:
Given verification key $v k=p p$, compute $F(p p, \sigma)$ for any $\sigma \in X$
Output $m=F(p p, \sigma)$ and σ
\longrightarrow By construction, σ is a valid signature on the message m, and the adversary succeeds with advantage 1.
Textbook RSA signatures: [NEVER USE THIS!]
Setup (1 ${ }^{\lambda}$): Sample (N, e, d) where $N=p q$ and $e d=1(\bmod \varphi(N))$
Output $v k=(N, e)$ and $s k=d$

$$
\begin{aligned}
& \operatorname{Sign}(s k, m): \text { Output } \sigma \leftarrow m^{\prime \prime}(\bmod N) \\
& \operatorname{Verify}(v k, m, \sigma): \text { Output } 1 \text { if } \sigma^{e}=m(\bmod N)
\end{aligned}
$$

Looks temping (and simple)... but totally broken!

