Diffie-Hellman key-exchange is an <u>anonymous</u> key-exchange protocol: neither side knows who they are talking to is valuerable to a "man-in-the-middle" attack

Alice	Bab	Alice	Eve Bob	Observe Eve can
<u>9</u> ^	\rightarrow	~~~~>	<u>9</u> ^x <u>9</u> ^z ' >	now decrypt all of the messages
/ «97		4	g ² 2 $e^{g^{2}}$	between Allice and
axy	Jary	\checkmark	422 9yr,	Bob and Allice + Bub
J *		a ^{XZ} 2	9 ^{x2} 9 ^{y2}	have no solea!

What we require: <u>authenticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) Lo On the web, one of the parties will <u>authenticate</u> themself by presenting a <u>certificate</u>

To build authenticated key-exchange, we require more ingredients - namely, an <u>integrity</u> mechanism [e.g., a way to bind a message to a sender - a "public-key MAC" or <u>digital signature</u>]

- Setup (1ª) -> (vk, sk): Outputs a verification key uk and a signing key sk

- Sign (ok, m) -> o: Takes the signing key 5k and a message m and outputs a signature o

-Verify $(vk,m,\sigma) \rightarrow 0/2$: Takes the verification key vk, a message m, and a signature σ , and outputs a bit 0/2Two requirements:

- Correctness: For all messages $m \in M$, $(vk, sk) \leftarrow KeyGen(1^{a})$, then

Pr [Verify (vk, m, Sign (sk, m)) = 1] = 1. [Honestly -generated signatures always verify]

- Unforgeability: Very similar to MAC security. For all efficient adversaries A, SigAdv[A]=Pr[W=]]=reg!(2), where W is the output of the following experiment:

adversary vk $m \in M$ $(vk, sk) \in KayGen(1^{\lambda})$ $\sigma \in Sign(sk,m)$ (m^{*}, σ^{*})

Let $m_1, ..., m_Q$ be the signing queries the adversary submits to the challenger Then, W = 1 if and only if: Verify $(vk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, ..., m_Q\}$

Adversary cannot produce a valid signature on a new message.

Exact analog of a MAC (slightly weaker unforgeability: require adversary to not be able to forge signature on <u>new</u> message) MAC security required that no forgery is possible on <u>any</u> message [needed for authunticated encryption] Standards (widely weak galgorithm 2 DSA J on the web - eg, TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)

L> But construction not intuitive until we see zers knowledge proofs

his we will first construct from RSA (traphor permutations)

We will now introduce some facts on composite-order groups:

Let
$$N = pq$$
 be a product of two primes p, q . Then, $\mathbb{Z}_{N} = \{0, 1, ..., N-1\}$ is the additive group of integers
modulo N. Let \mathbb{Z}_{N}^{K} be the set of integers that are invertible (under multiplication) modulo N.
 $\chi \in \mathbb{Z}_{N}^{K}$ if and only if $gcd(x, N) = 1$
Since $N = pq$ and p, q are prime, $gcd(x, N) = 1$ unless χ is a multiple of p or q :
 $\|\mathbb{Z}_{N}^{K}\| = N - p - q + 1 = pq - p - q + 1 = (p - 1)(q - 1) = \Psi(N)$
 Γ Euler's phi function
Recall Lagrange's Theorem:
for all $\chi \in \mathbb{Z}_{N}^{K}$: $\chi^{\Psi(N)} = 1$ (mod N) [called Euler's theorem, but special case of Lagrange's theorem]
 Γ important: "ring of exponents" operate modulo $\Psi(N) = (p - 1)(q - 1)$
Hard problems in composite-order groups:

- = Factoring: given N = pq where p and q are sampled from a suitable distribution over primes, output p, q = <u>Computing cube roots</u>: Sample random $X \notin \mathbb{Z}_{N}^{*}$. Given $y = \chi^{3} (mod N)$, compute $\chi (mod N)$.
 - Lo This problem is easy in \mathbb{Z}_{p}^{*} (when $3 \neq p-1$). Namely, compute 3^{-1} (mod p-1), say using Euclid's algorithm, and then compute $y^{3^{-1}}$ (mod p) = $(\chi^{3})^{3^{-1}}$ (mod p) = χ (mod p).

and solve this system of equations over the integers (and recover p,g)

Hundress of computing cube roots is the basis of the <u>RSA</u> assumption: distribution over prime numbers.

 $\frac{\text{RSA assumption}: \text{Take } p, q \leftarrow \text{Primes}(1^{n}), \text{ and set } N = pq. \text{ Then, for all efficient adversaries } A, \\Pr[x \leftarrow Z_{N}^{n}; y \leftarrow A(N, x) : y^{3} = x] = \text{regl}(A) \\ \hline \text{more generally, can replace } 3 \text{ with any } e \text{ where } gad(e, \varphi(N)) = 2 \\ \hline \end{array}$

Hardness of RSA relies on $\mathcal{P}(N)$ being hard to compute, and thus, on hardness of factoring common choices: (Rurerise direction factoring $\stackrel{2}{\Longrightarrow}$ RSA is <u>not</u> known) e=3

1

Hardwess of factoring / RSA assumption:
Best attack based on general number field sieve (GNFS) — runs in time ~ 2
Same algorithm used to break discrete log over Zp^{*})
For 112-bits of security, use RSA-2048 (N is product of two 1024-bit primes)
Cost => ECC governly preferred over RSA
128-bits of security, use RSA-3072
Both prime factors should have <u>similar</u> bit-length (ECM algorithm factors in time that scales with <u>smaller</u> factor)

RSA problem gives an instantistic of one genul action called a trapher percentables:
Then :
$$\mathbb{Z}_n^{t} \to \mathbb{Z}_n^{t}$$

Then (\mathcal{X}) := \mathcal{X}^{t} (and N) size gol(N, e) = 1.
Given (P(N), we an compare $d \in \mathbb{C}^{t}$ (and P(N)). Observe that given d_r , we can insert Flat:
Find (\mathcal{X}) := \mathcal{X}^{t} (and N).
Thus, for all $\mathcal{X} \in \mathbb{Z}_n^{t}$:
For (Fam (\mathcal{X})) = $(\mathcal{X}^{e})^{d}$ = \mathcal{X}^{d} (and $\mathcal{V}(N)$) = \mathcal{X}^{t} = \mathcal{X} (and N).
Thus, for all $\mathcal{X} \in \mathbb{Z}_n^{t}$:
For (Fam (\mathcal{X})) = $(\mathcal{X}^{e})^{d}$ = \mathcal{X}^{d} (and $\mathcal{V}(N)$) = \mathcal{X}^{t} = \mathcal{X} (and N).
The distributions: A trapher permutation (PR) on a domain \mathcal{X} consists of three algorithms:
Schup (\mathcal{X})) = $(\mathcal{X}^{e})^{d}$ = \mathcal{X}^{e} (and $\mathcal{V}(N)$) = \mathcal{X}^{t} = \mathcal{X} (and N).
The distribution is a strapher that the plate parametes pp and raph \mathcal{X} , a trapher that
 $-\mathcal{F}(\mathcal{Y}, \mathcal{X}) = \mathcal{Y}^{e}$ (on uppot the plate parametes pp and raph \mathcal{X} , a trapher that
 $-\mathcal{F}(\mathcal{Y}, \mathcal{X}) = \mathcal{Y}^{e}$ (on part the plate parametes proveduation on \mathcal{X}
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{F}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{F}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{F}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{F}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{F}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{X}$ for all $\mathcal{X} \in \mathcal{X}$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X})) = \mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X}))$.
 $-\mathcal{F}^{erit}(\mathcal{A}, \mathcal{V}(p, \mathcal{X}$