
Diffie-Hellman key - exchange is an ano_ key - exchange protocol : neither side knows WI they are talking to

↳ vulnerable to a
" man-in-the-middle

"

attack

Alice Bob_ Alice Eve Bob Observe Eve can

runs
now decrypt all
of the messages← ⇐É { between mice and

↓ ↓ Bob and Alice +Bob

gxy get gxzz gyugxzz

↓

g)
& have ≈ idea !

What we require : Etat key - exchange (not anonymous) and relies on a root of trust leg. , a certificate authority)
↳ On the web

,
one of the parties

will authenticate themself by presenting a certificate

To build authenticated key - exchange, we require more ingredients
- namely , an integrity mechanism [e.gs a way to bind a

message to a sender - a " public-key MAC
"
◦r ᵈiÉᵈˢ¥ʳᵈ"-% will revisit when discussing the TLS protocol

Digital signature scheme : consists of three algorithms :
-

Setup (E) → (vk.sk) : Outputs a verification key vk and a signing key sk
-

Sign Csk , m) → 0 : Takes the signing lay sk and a message m and outputs a signature O
- V (vk.vn

,
0)→ 0/-7 : Takes the aificat.in lay vk

,
a message m ,

and a signature on
,
and outputs a bit 0/1

Two requirements :
-

Correctness : For all messages me M ,
(vk.sk)← KeyGen (17 , then

Pr [Vñfy(vk.in , sign(skin)) = 1] = 1 . [Honestly -gated signatures alw# verify]
-

Untorgeability : Very similar to MAC security . For lal efficient adversaries A, SigAdv [A] = PREW = -7] = neglia, where
W is the output of the following experiment :

adq ch⇒

[
Ksk)←keyGen (Ia)

+
⇔ÉG
-

(m*
,
0*1

Let Mi
,
. . .

, MQ be the signing queries the adversary submits to the challenger Then, W = 1 if and only if :

Verify lvk , m*,) = 1 and m* ¢ { mi , . . . , ma}

Adversary cannot produce a valid signature on a new_ message .

Exact analog of a MAC (slightly weaker unforgeability : require adversary to not be able to forge signature on new message)
↳ MAC security required that no forgery is possible on any message [needed for authenticated

encryption] digital signature elliptic-carve } standards (widely used
q
algorithm DSA on the web - e.g., TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)
↳ But construction not intuitive until we see zero knowledge proofs
↳ We will first construct from RSA (trapdoor permutations)

We will now introduce some facts on composite- order groups :

Let N = pq be a product of two primes p , g. Then
, 2N

= {0,1 , - -
-

,
N - I } is the additive group of integers

modulo N
.
Let ZÑ be the set of integers that are invertible (under multiplication) modulo N

.

X E 2nF if and only if gcd (X , N)
= 1

Since N = pq and
p, q are prime, gcdfx, N) = 1 unless ✗ is a multiple of p or q:

ITLÑ / = N -
p
-

q +1
=

pq
-

p
-

g + I
= (p

- 1) (g- 1)
= 41N)
←
Euler's phi function

Recall Lagrange's Theorem : (Euler's totient function)
for all ✗ C- 2nF : ✗

%)
= 1 (mod N) [called Euler's theorem

,
but special case of Lagrange's theorem]

←
important :

"

ring of exponents
"

operate modulo GCN) = (p- 1) Iq- 1)

Hard problems in composite - order groups
:

-

=a#oring : given N=pq where
p
and q are sampled from a suitable distribution over primes, output p, q

-

C-omputinet.si Sample random ✗ EEF .
Given y=ÑmodN) , compute ✗ (mod N)

.

↳ This problem is easy in 2¥ (when 3 Xp - 1) . Namely , compute 3
"
(mod p

- 1)
, say using Euclid's algorithm , and

then compute y
"

lmodp) = (✗3)
"

(modp) = ✗ (mod p) .
↳

Why does this procedure not work in 2nF
.

Above procedure relies on computing 3-
'
(mod 12nF 1) = 3-

' (mod UNI)

But we do not know 41N) and computing 41N) isashardas factoring N . In particular, if we
know N and 91N)

,
then we can write

{ N=pq [both relations hold over the integers]
91N) = (p- 1) (g- 1)

and solve this system of equations over the integers (and recover p, g)

Hardness of computing cube roots is the basis of the RSAass.am/otion-:
distribution over prime numbers .

RS-Aassump-t.no. Take p, g
← Primes(1 and set N = pq. Then ,

for all efficient adversaries A
,

Prfx£25 ; y ← AIN , ×) : y3=x] =

negi (a)
←

more generally, can replace 3 with
any e where gcdle.cl/NH=1

↑
Hardness of RSA relies on 91N) being hard to compute , and thus

,
on hardness of factoring common choices :

(Reverse direction factoring ?⇒ RSA is not known) e =3

e = 65537

Hardness of factoring / RSA assumption : 8(FgÑ)
- Best attack based on general number field sieve (GNFS) - runs in time ~ 2

(same algorithm used to break discrete log over Zp*) large key -sizes and computational
-

For 112- bits of security , use RSA -2048 (N is product of two 1024 - bit primes)
cost p%¥d%£T¥g¥

128 - bits of security, use RSA -3072

-

Both prime factors should have similar bit- length (ECM algorithm factors in time that scales with smaller factor)

RSA problem gives an instantiation of more general notion called a trapdoorpermutation :

FRSA : 2nF → zN*

Frsa (x) : = Xe (mod N) where god IN, e) = 1
Given 61N)

, we can compute
D= e-

' (mod 91N))
.
Observe that given d, we can invert FRSA :

Fptsa (x) : = xd (mod N)
.

Then
,
for all ✗ c- 2£ :

Fria (Frsa (x)) = (✗e)
ᵈ

=
✗
ed lⁿᵈ "N"

= ✗
1
= ✗ (mod N)

.

rapcdoorp-ermuta-ion.si A trapdoor permutation (TDP) on a domain ✗ consists of three algorithms :
-Setup 117 → (pp, +d)

: Outputs public parameters pp
and a trapdoor td

-

Flpp , X) → y : on input the public parameters pp and input
✗
, outputs y

C- ✗

-F-' Ltd , g) → × : On input the trapdoor td and input y , output ✗ C- ✗

Requirements :
- forces : for all pp output by setup :

- Flpp, •) implements a permutation on X
.

-

F-
' Hd

, Flpp, xD = ✗ for all ✗ c- X
.

-

Security : Flpp, •) is a one-way
function (to an adversary who does not see the trapdoor)

Naive approach (common
" textbook

"

approach) to build signatures :

Let (F, F-
') be a trapdoor permutation

- Verification key will be pp } to sign a message m , compute 0
← F-

' (td
,
m)

-

Signing key will be td to verify a signature ,
check m =

?

Flpp, 5)
Correct because :

F (pp , 0)
= f- (pp, F-

' Ctd , m)) = m

secure because F-' is hard to compute without trapdoor (signing key) FACIE!

↳ This is not true ! Security of TDP just says that F is one-way .
One- wayness just says function is hard

to invert on a randoM_ input . But in the case of signatures , the imessage is the input. This is not only
not random, but in fact , adversarially chosen !

↳ Very easy to attack
.

Consider the 0-
query adversary :

Given verification key vk = pp, compute F(pp, 0) for any
0 C- ✗

Output m=F(pp, 0) and on

↳ By construction , 0 is a valid signature on the message me
,
and the adversary succeeds

with advantage 1 .
Textbook RSA signatures : [NEVER USE THIS !]

Setup 117 : Sample (N , e , d) where N=pq and ed = 1 (mod 61N))

Output VK = (Me) and sk = d } Looks tempting (and simple) . . .=D

Sign look , m) : Output 0 ← Md (mod N) but totallybroken !

Verify (vÉm ,
or) : Output 1 if = m (mod N)

