
n

signatures from trapdoor permutations the full domain hash) :
In order to appeal to security of TDP

, we need that the argument to F-
'

(td ,
•) to be random_

idea: hash the message first and sign the hash valve (often called " hash- and- sign
")

↳ Anomfit: Allows signing long messages (much larger than domain size of TDF)

FD#nsttig :

-Setup (1") : sample (
pp, 1-d)

← setup 117 for the TDP and output rk : pp.sk = td
-

Sign 6km1 : Output 0 ← F-
' (td

,
Html)

-

Verify (vk.m.co) : Output 1 if F(pp, 0) = Hlm) and 0 otherwise

theorem
.
If F is a trapdoor permutation and H is modeled as a random oracle

,
then the full domain hash

signature scheme defined above is secure
.

.
Let A be an adversary for the FDH signature. We use A to build an adversary B for the trapdoor permutation

:

Algorithm B TDP challenger

(pp, +d)
← setup 11

")

Algorithm A x*←R✗
, j ← Hpp, E)

,

<
PP

>a
Élan

↓
1m¥ of
=

Claim. If A succeeds with advantage E , then it must query H on m* with probability E- 41×1
.

Pref. Suppose A does not
query

m*
.

Now
,
(m*

,
0 *) is a valid forgery only if Flpp,) = H(m*)

.

However
,
it A does not

query
m*
,
value of H(m*) uniform and independent of F(pp,o*) . Thus, A succeeds with prob . 41×1 .

Keya : If A succeeds
,
it will invert the TDP at H(m*)

.

[Algorithm B will
program

the challenge y for HIM*)]
.

But which query is
m* ?

Without loss of generality , assume A queries H on message m before making a signing query to m
.

Suppose A makes at most Q queries
to the random oracle

. Algorithm B will
guess which random oracle

query is on?

1. Algorithm B samples it
I [Q]

.

2 . When A makes a query to H on input mi
-

sample ✗it ✗ . Let
y;
← Flppixi) } for all queries other than query

c-*

- Set Hfxi) to yi and remember the mapping mi ↳ (✗ i. y:)

On
query
it to H for message M:*

-

Respond with challenge y* .
When A makes a signing query for message m

:

- If m = mix , then algorithm B aborts and outputs 1- .

- Otherwise
,
B looks

up mapping m ↳ (Xy) and replies with × .

3. If B does not abort and A outputs (m*
,
) where m* = m:*

,
B outputs 0¥ .

Otherwise
,
it outputs 1- .

By construction
,
all queries

to H are answered properly (since ✗ is uniform and F(pp,
-) is a permutation)

If A does not make signing query
on mix , then all signing queries answered perfectly

-

With probability E- 41×1
, algorithm A will

query H on m*
,
not make a signing query on m*

,
and forge a

signature on m*

-

With probability YQ
, mix

= m* in which case B perfectly simulates the signature security game
Algorithm B succeeds with probability at least YQ (e- %xD = % -

neg/ (a).
↳ TDPADVEB] ≥ SigAdvCA] - neg!

← " loss in security reduction
"

some (partial) attacks can

exploit very small public exponent
(e-- 3)

Recap : RSA- FDH signatures : ↳
Setup (E) : sample modulus N

, e.
d such that ed = 1 (mod 41N)) - typically e = 3 or e. = 65537

Output vk = IN , e) and sk = (N
,
d)

Sign (sk , m) : 0 ← H(m)ᵈ [Here , we are assuming that H
maps into 2nF]

Verify (vk.m.ir) : output 1 if Htm) = Oe and 0 otherwise

standard : PKCSI v1.5 (typically used for signing certificates)
↳ standard cryptographic hash functions hash into a 256- bit space leg.. SHA -256) , but FDH requires doma
↳ PKCS I v1.5 is a way to pad hashed message before signing:

-

/OO0ll/=FFF-_FFO0DI
167b¥_pad- ↓ ↳

message hash (e.g, computed using SHA -256)

digest info

(e.g., which hash functionwas used)

↳

Padding important to protect against chosen message attacks (e-g. , preprocess to find messages mi , ma , Ms
where H (mi) = Hlmz) - Hlmsl)

(but this is Lot a full- domain hash and cannot prove security under RSA
- can make stronger assumption . . .)

