
Also possible to use RSA to build PKE :

"

Textbook RSA
"

(How NOI to encrypt)
: consider the following candidate of a PKE scheme from RSA:

-

Setup (17) : sample IN
, e.d) where N=pq and ed = 1 (mod 61N)) . Output pk = IN , e) and sk = (N , d)

-

Encrypt Cpk, m) : Output c
← med } Correct sincecd = (me)ᵈ = med = m

'
= m (mod N)

-

Decrypt (sk, ct) : Output m
←
c

Correctness follows from correctness of TDP
.

How about security ? NI. 1. Security of TDP says that inverting tandem element should be difficult

↳ Does not apply if messages chosen adversarially leg. , semantic security definition)
↳
Does not say anything about hiding preimage (e.g-, Flpp, ×) can leak information about ✗ so long
as leakage is not sufficient to fully recover ✗ - this is a weaker properly than full indistinguishability)

2. This scheme is deterministic : cannot be semantically secure !

NER use textbook RSA ! ↳ in fact
,
vulnerable to message

-

recovery
attacks in

many

settings [see HWY]
To use RSA / TDPS to construct a PKE scheme

,
we will use a similar strategy as in the FDH signature construction :

-

setup 117 : sample (pp, 1-d) ← Setup (E) for the TDP scheme and output pk = pp
and sk = td

-

Encrypt /pk, m) : sample ✗
£ ✗ from domain of TDP scheme is randomized!

Let K ← H (x) where H :X → Ko is an (ideal) hash function and K is the key
-

space for an

symmetric authenticated encryption scheme

compute y
← Flpp, ×) and c-i-I-ncpx.lk , m)

Output (y.ci)
-

Decrypt (sk , ct
'
= ly.CH) : compute ✗ ← F-

' (td
, g) , k ←HCX)

,
and output m ← Dean (k , et)

This is an example of hybrid encryption or KEM :

y is
used to encapsulate the key and at

'

is an encryption under
ko

theorem
.

If F is a trapdoor permutation and H is modeled as a random oracle
,
then the above encryption

scheme is

semantically secure . [In fact, this scheme is CCA - secure in the random oracle model]

Prootintuitin . Given a ciphertext ly , ct
') and public key pk = pp :

-

Adversary cannot compute ✗ from y (by security of TDP - since ✗ is uniform)
-

Adversary cannot evaluate H on ✗ ,
so K is uniformly random and hidden from adversary

- Semantic security follows from semantic security of symmetric encryption scheme .

RSAinstant-iat.in:
-

Setup 117) : sample CN
,e. d) where N=pq and ed= 1 (mod UND

. Output pk
-

- IN
, e) , ski IN,d)

-

Encrypt lpk , m) : sample ✗
⇐ 2Ñ and compute y

← ×
'

(mod N)
. } Output (y, CF)

compute K ← Hlx) and compute ct
'
← Erica_± (K , M) .

-

Decrypt Csk , ct) : compute ✗ ← yd (mod N) , K ← HCK)
,

and output m ← Deca-± (k , at't

Infraction : Most widely- used standard for RSA encryption is PKCSI (by RSA labs)

↳ Has shorter ciphertext if we are encrypting a single 2N element (no need for KEM + symmetric component]

(helpful if PKE just used to encrypt short token or metadata)

Eatman :

suppose N is 2048 bits and we want to encrypt 256- bit messages
↳

we will first apply a randomized padding to m to obtain a 2048 - bit padded message

PKCSI padding: _
(mode 2) ¥22É0€

-

16 bits s bits where sat

i+g
Encryption : Compute mpad

← PKCS (m) and set c ← mpead [i.e- , directly apply RSA trapdoor permutation to padded]
message

Decryption : Compute Mpad
← Cd and recover m from mpad

In SSL v3.0 : during the handshake , server decrypts client's message and checks if resulting mpad is well-formed

lie.

, has valid PKCSI padding) and rejects if not

↳ scheme is vulnerable to a chosen - ciphertext attack !

↳ allows adversary to eavesdrop on connection

Devastating attack on SSL 3.0 and very hard to fix : need to change both servers t clients !

↳
TLI.co : fix is to set ME 2nF if decryption ever fails and proceed normally (never alert

client if

padding is malformed) - setup fails at a later point in time, but hopefully no critical information is leaked.._

Takeaway : PKCSI is not CCA - secure which is very problematic for key exchange
↳ Absence of security proof should always be troubling - . .

Nested : Optimal Asymmetric Encryption Padding (OAEP) [19943 } standardized in PKCSI
↳ Can be shown to be CCA - secure in random oracle model version 2-0

Now that we have digital signatures, let's revisit the question of key exchange (with active security)

Alice gx Bobs

- } completely vulnerable to an active

←
network adversary that can intercept and inject packets↓

gxygxy

In addition
,
should guarantee that one compromised session should not affect other honest sessions

-

Alice Eve should not compromise security of Alice Bob

Authenticated key exchange (AKE) : provides secy against active adversaries

-

Requires a
"
root of trust

"
(certificate authority)

→
we need some binding between keys and identities

-

AÑ CA
(one- time setup , at least for duration of validity period)÷tA

1-
the certificate binds Alice's public key pk Alice to Alice's identity

- Certificates typically have the following format (✗509) :
-

Subject (entity being authenticated)
- Public key (public key for subject for signature scheme)
- CA : identity of the CA issuing the certificate

- Validity dates for certificate
- CA's signature on certificate ← the browser and operating system have a set of hard-coded

certificate authorities and their respective public keys
Basic flow of Diffie-Hellman based AKE : (usually several hundred authorities)

Atc [public-key infrastructure (PKI)]
✗⇐ xp g× Ñ÷<p
-

-EⁿÉ•L K
,
K
'

← Hlg,g%g%g✗J)
0 ← Sign 643am. . 19,9787pkB

↓ ↓
derive K

,
K'← H(g,g✗ , g? g

") session key k
'

check 0 is signature on Cg ,g? g%pkB } intuition: CertBank identifies server as Bank (with PkBank)
under pkBank is the public key identified by CertBank 0 binds the session parameters (

g , g? gJ) to
the public key identified by Cert

Bank

nEdotp : Alice knows she is talking to Bank (but not vice versa!)
" one-sided AKE

"
- most common mode on the web

↳
Basis of TLS 1.3 handshake (" one-sided

"

AKE) ALWAYS USE TLS 1.3 - Don't invent your own
AKE protocol !

client ⇔
Client Hello 1-

older systems / foreign systems
Clientele : List of supported ciphersuitesE may prefer different

(e.g. , AES- GCM- 128, AES
- GCM-256) ciphers

ServerHello
Possible TLS extensions Ader versions of

DH key-Shaef/ Certificate It: Chosen ciphersuite TLS vulnerable to
(encrypted)

cipher downgrade attacks

/¥É
Application layer secured using Unidirection keys

-

/<Application> 1-
Data KA→ B and K B→ A

