
TLS supports session setup using a
"

pre
-shared key

"

(so full handshake not needed) :

client serve client serves

<hÉ>
first message { tEid

)

←ÉiTÉⁿeid) ⇒ vulnerable to Erica, (k , data)
←

"
O -RTT data

"

replay attack
E- derived from preshared key↓

pre
shared key
derived from session secrets

,
nonce, and id

fresh key kA→B , kB→a derived for

rest of session (based on initial messages)
negotiated
[identity

of peer
key]

atp-t-AKE-pr.to : (key , id)

Authenticity : Only party that knows key is id (i.e.
,
the party identified by id)

Secret : All parties other than client and id cannot distinguish key from random (i.e.
, key is hidden)

Consistency : If id also completes protocol , then it outputs (key, idclient)
←
if we do not have client authentication

, then

idclient is empty

Often also require fÉ :
compromise of server in the future caret affect secrecy of sessions in the past

↳
In TLS

,
server secret is a signing key

- fresh Diffie-Hellman secret used for each session is fresh (" ephemeral
")

compromising signing key allows impersonation of server
,
but does not break secrecy of past sessions

↳
As we will see

,
not all AKE protocols provide forward secrecy

Very tricky to get right as we will see . . . Just use 7€!

AKEE : suppose server has certificate authenticating a public key for a PKE scheme (CCA - secure) :

← nonce

tBB skBank Yields statically - secure AKEKEK
É
-

Cert
Bank (no forward secrecy)

↓ ↓ µ,, ←Decrypt ↳↳a.µ, } compromise of skp.am, compromise, a,, pas,=

K
,
Bank K

,
I check that r '=r

sessions

[
no client authentication

If we do not encrypt the nonce r : replay attack possible (adversary replays messages from past session - e.g. .
"

send Eve $10
")

←
nonce ensures freshness

Mutualauthentiation : Bank has certificate identifying public key for PKE scheme

Alice has certificate identifying public key for signature scheme

-

<KEK[Alice / i"A%e"DBa
-

0← Sign (skatice
,

(r,c,
"Bank"))

↓ (k, Alice) ← Dec (skpsank, c)↓ Cert
_Alice

K
,
Bank k

,
Alice

check Alice matches id in certificate

check Alice's signature on (r, C,
"Bank

") under pkn-l.ie in Cert
Alice

Above protocol provides static (no forward secrecy) mutual authentication

Most variants to this protocol are broken! AKE very delicate:

-

Eiampe: suppose Alice encrypts (K
,
r) instead of (k

,

" Alice") like in the server - auth protocol above
- Vulnerable to

"

identity misbinding
"

attack where Alice thinks she's talking to Bank but Bank thinks it 's talking to Eve :

KEK

-

Fit ÷÷÷⇔i⇔y↓"↓
K
,

Bank K
,
Alice

0 ← sign 6kEve , Cr, c.
"

Bank
")) ⇒ Bank thinks it's talking to Eve

Cert
Eve

if Alice now sends
"

deposit this check into my account
"

to Bank,

Bank deposits it into Eve's account !

← observe that Eve didnt break secrecy
(she does not know b)

,
but nevertheless

,
broke

consistency

Above protocols supported by TLS 1.2
,
but deprecated in TLS 1.3 due to lack of forward secrecy

totally broken without signature,
To get forward secrecy , use ephemeratkeys : replace pk

with pk
' and

ffresh public key
learn Alice's

✗ for signature scheme
Provides one-sided authentication chosen key

⇔

"

÷:÷. (signature binds pk to Bank)
<

- } Forward game since ea, , p
, age, my ◦me

↓ ↓ k← Deccsk
,
c)
,

and long-term secret is signing key
k
,
Bank K

,
I delete sk

←
hardware security module (used to protect cryptographic secrets)

Prien : Does not provide
" HSM security

"

↳ Suppose adversary breaks into the bank and learns a single (pk
'

,
sk
'

) pair with 0
← sign / skpoauk.pk

')

↳
Adversary can now impersonate the bank to any

client :

adversary always use the message (pk's CertBank , 0) } defending against this requires testiness from client

↳ can decrypt keys for all clients that responds !

-

KIK

/ B.any } Provides HSM Security
: client chooses fred pk each time

,
so signature⇐Esk)s

on pk functions as a
" proof

"
that the otherr

CertBank
o←sign(skBank,lpk

Party possesses signing key for id identified by↓ ↓

ik
,
Bank k

,
1-

Cert
Bank

In
many cases, also want to hide the endpoint (the id identified by Cert)

Possible by encrypting two keys (k
,
k') and

using K
'
to encrypt certain,

Diffie-Hellman key - exchange : substitute Diffie-Hellman handshake for the PKE scheme (simpler)

(TLS 1.2
,

1.3)

