
Focus thus for in the course : protecting communication leg, message confidentiality and message integrity
)

Remainder of course : protecting computations

with surprising implicationsZentwedge : a defining idea at the heart of theoretical cryptography (DSA / ECDSA signatures based on 2k !)
↳ Idea will seem very counter-intuitive

,
but surprisingly powerful

✓
↳ Showcases the importance and power of definitions leg, , "

What does it mean to know something ?
" )

we begin by introducing the notion of a
"

proof system
"

- God : A prover
wants to convince a verifier that some stated is true

e.g. ,
"

This Sudoku puzzle has a unique solution
"

J these are all examples of"

The number N is a product of two prime numbers P and q
"

statements

"

I know the discrete log of h base g
"

[
the verifier is assumed to be an efficient algorithm

we model this as follows :

⇒(X)

yverif_
(X) X : statement that the

prover is trying to prove (known to both

poorer
and verifier) ↳ We will write L to denote the set of true

Tl : the proof of ✗
statements (called a

"

language
"

)

↳ c- {0,13 - given statement ✗ and proof it , verifier decides whether to act or reject
Properties we care about:
-

Completeness : Honest prover should be able to convince honest verifier of true statements

Vx c- L : Pr [ IT ← PIX) : Vfx
,
a) = 1 ] = 1 [ Could relax requirement to allow for ]some error-Soundness : Dishonest

prover
cannot convince honest verifier of false statement

H ✗ ¢2 : Pr [ IT ←PCX) : ✓(× , Ti ) = I ]
< 43 Important : We are not restricting to efficient provers=

(for now)

Typically, proofs are
"

one-shot
" lie

, single message from prover to verifier) and the verifier 's decision algorithm is deterministic
↳ Languages with these types of proof systems precisely coincide with NP (proof of statement ✗ is to send NP witness w )

Recall that NP is the class of languages where there is a deterministic solution - checker :

£ C- NP ⇔ 7- efficiently - computable relation R sat .

✗ c- £ ⇔ 7- we {0,11×1 : Rtx ,w) = 1
↑ ↑ ↑

statement language witness NP relation

proot-ys-emf-NP.pe(x) verifier (x)

→
accept it Rtx ,w) = 1

Perfect completeness + soundness



Going beyond NP: we augment the model as follows

-> Add randomness: the verifier can be a randomized algorithm
- Add interaction: verifier can ask "questions" to the prover

#

reproof systems [Goldwasser - Micali-Rackoff):
efficient and
- randomized

proven (x)
<-may

be inefficient

verifier(x)
-

-
Verifier randomness is critical. Otherwise, class of languages that

< can be recognized collapses to NP. (See HWS).I->L
-

↳ b=90,13

Interactive proof should satisfycompleteness + soundness (as defined earlier)

We define IP2K) to denote class of languages where there is an interactive proof with to messages.
We write IP=14[poly (2)) where m is the statement length

(i.e., IP is the class of languages with an interactive proof with polynomially - many wounds)

What is the power
of IP?

-

For constant number of messages, seems comparable to WP

-Going from constant to polynomial number of rounds is significant
-the set of languages that can be checked in polynomial spaceV

#

rem. (Lund-Zortnow - Karloff-Nisan'90, Shamir'90) IP: PSPACE.



Consider following example: suppose prover
wants to convince verifier that N = pq where p, q are prime land secret)

.

prover
IN

, p , g) verifier (N)

t-p.gr
↓
accept if N

= pg
and reject otherwise

Proof is certainly complete and sound, but now verifier ate learned the factorization of N
...

(may not be
desirable if

prover was trying
to convince verifier that N is a proper RSA modulus (for a cryptographic scheme) witeveay factorization in the process

↳ In some sense
,
this proof conveys information to the verifier [i.e

,
verifier learns something it did not know before seeing
the proof ]

Zkdfe : ensure that verifier does not learn anything /other than the fact that the statement is true)

H#fiÉwdge"? We will introduce a notion of a
"

simulator
.

"

for a language L

Definition. An interactive proof system (P
,
V>

✓

is zero- knowledge if for all efficient land possibly malicious) verifiers ✓ *
,
there

exists an efficient simulator S such that for all ✗ C- L :

View
✓ * ( (P, V) (x))
I s (x)

-

random variable denoting the set of messages
sent and received by ✓* when interacting with the prover P on input ✗

What does this definition mean?

View
✓*
(PV* (x)) : this is what ✓* sees in the interactive proof protocol with P

S (X) : this is a function that only depends on the statement X
,
which ✓* already has

If these two distributions are indistinguishable, then anything that ✓* could have learned by talking to P, it could have learned

just by invoking the simulator itself, and the simulator output only depends on ✗
,
which ✓ * already knows

↳ In other words
, anything V* could have learned lie

, computed) after interacting with P, it could have learned without

ever talking to P !

Very remarkable definition !

I can
in fact be constructed from OWFS

Mrkable : Using cryptographic commitments
,
then every language L C- IP has a zero-knowledge proof system .

↳ Namely, anything that can be proved can be proved in zero- knowledge !

We will show this theorem for NP languages. Here it suffices to construct a single zero-knowledge proof system for an

NP - complete language. We will consider the language of graph 3- colorability.

3- colorable
←

not 3-colorable

¥#•E•.

Icing : given a graph G , can you color the vertices so that no adjacent nodes have the same color?



->cryptographic analog
of a sealed "envelope"

We will need a commitment scheme. A (non-interactive) commitment scheme consists of three algorithms (Setup, Commit. Open):
-

Setup (IP) -> o
·

Outputs a common reference string (used to generate/validate commitments) o
·Commit (0, m)- (C,T): Takes the CRS O and message m and outputs a commitment (and

opening TT

·

Verify (0, m,c, 7) -> 0/1: Checks it c is a valid commitment to m (given 4)

#

alsetup:
Committee Verifier
- -

o<- Setup (1%)

=

(C,T) <-Committoim

Isometime later)

=X
can check that Verity (0, m. c,4):1

Requirements:
·rectress: for all messages mi

Pr70 - Setup (14); (C,T) > Commit (0,m); Verify (0,c, m,4):17:1
-

Ading: for all common reference strings 890,13" and all efficient A, following distributions are computationally
indistinguishable:

adversary ChallengerE90,3

ToLizcomme
↓
b'E90,13

PrZb'= 1/ b=0] - 4r7b=11b:17): reg11x)

inding: for all adversaries A, if o <- Setup (14), the
&

Pr[(mom.340,41) 7A: Moton and Verify (00,Mo,40) = 1. Verify (0c,m.x.)) = reg1(x)


