A 2K protocol for graph 3-coloring:
 reject otherwise

Intuitively: Prover commits to a coloring of the graph
Verifier challages prover to reveal coloring of a single edge
Prover reveals the ciboring on the chosen edje and opens the entries in the commitment
Completeness: By inspection [if coloring is valid, prover can always annver the challenge correctly] except with prob. 1- rel.
Soundness: Suppose G is not 3 -colorable. Let K_{1}, \ldots, K_{n} be the coloring the poorer committed to. If the commitment scheme is statisiciclly binding, c_{1}, \ldots, c_{n} uniquely determine K_{1}, \ldots, K_{n}. Since G is not 3 -colorable, there is an edge $(i . j) \in E$ where $K_{i}=K_{j}$ or $i \notin\{0,1,2\}$ or $j \notin\{0,1,2\}$. [Otherwise, G is 3 -colorable with coloring K_{1}, \ldots, K_{n}.] Since the verifier chooses an ede to check at random, the verifier will choose (i.j) with probability $1 / 1 E 1$. Thus, if G is not 3 -colorable,

$$
\operatorname{Pr}[\text { verifier rejects }] \geqslant \frac{1}{|E|}
$$

Thus, this protocol provides soundness $1-\frac{1}{|E|}$. We can repeat this protocol $O\left(|E|^{2}\right)$ times sequentially to reduce soundness error to

$$
\begin{aligned}
& \text { error to } \\
& \operatorname{Pr}[\text { verifier accepts prof of fake statement }] \leq\left(1-\frac{1}{|E|}\right)^{|E|^{2}} \leq e^{-|E|}=e^{-m} \quad\left[\text { since } 1+x \leq e^{x}\right]
\end{aligned}
$$

Zero Knooskede: We need to construct a simulator that outputs a valid transcript given only the graph G as input.
Let V^{*} be a (passidy malicious) verifier. Construct simulator S as follows:

1. Run V^{*} to get σ^{*}.
2. Choose $k_{i} \leftarrow\{0,1,2\}$ for all $i \in[n]$.

Let $\left(c_{i}, \pi_{i}\right) C_{\text {omit }}\left(\sigma^{*}, K_{i}\right)$
Give $\left(c_{1}, \ldots, c_{n}\right)$ to v^{*}.
3. V^{*} outputs an edge (i.j) $\in E$
4. If $k_{i} \neq k_{j}$, then S outputs $\left(k_{i}, k_{j}, \pi_{i}, \pi_{j}\right)$.

Othemive, restart and try again (it fails λ times, then abort)
Simulator succeeds with probability $2 / 3$ (over choice of $\left.K_{1}, \ldots, k_{n}\right)$. Thus, simulator produces a valid transcript with prob. $1-\frac{1}{3^{x}}=1-$ neg (λ) after λ attempts. It suffices to show that simulated tranceript is indistinguishable from a real transcript

- Real scheme: prover opens k_{i}, k_{j} where $k_{i,} k_{j} \leqslant\{0,1,2\}$ [since power randomly permutes the colors]
- Simulation: k_{i} and k_{j} sampled uniformly from $\{0,1,2\}$ and conditioned on $k_{i} \neq k_{j}$, distributions are identical

In addition, (i, j) output by V^{*} in the simulation is distributed correctly since commitment scheme is computationally-hiding (eeg. V^{*} behaves essentially the same given commitments to a random coloring as it does given commitment to a valid coloring

If we repeat this protocol (for soundness amplification), simulator simulate one transcript at a time
Summary: Every langrage in NP has a zen-knouledje prof (assuming existence of OWNs)

Bit commitments from PRG. Let $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\} \lambda}$ be a PRG.
Setup (17): Sample $\sigma \mathbb{R}^{R}\{0,1\}^{3 \lambda}$
Commit (σ, m) : sample $s^{2}\{0,1\}^{\lambda}$
if $m=0$: output $G(s)$
$\pi=s$
if $m=1$: output $G(s) \oplus \sigma \quad \pi=s$
$\operatorname{Verify}(\sigma, m, c, \pi)$: if $m=0$, check that $G(\pi)=c$
if $m=1$, check that $G(\pi) \otimes \sigma=C$
Hiding follows by PRG security.
Binding follows by union bound:

$$
\operatorname{\sigma r}_{\sigma_{[}^{R}\{0,1)^{3 \lambda}}\left[\exists s_{0}, s_{1} \in\{0,1)^{\lambda}: G\left(s_{0}\right)=G\left(s_{1}\right) \oplus \sigma\right]=\frac{2^{2 \lambda}}{2^{3 \lambda}}=\frac{1}{2^{\lambda}}
$$

