
In many cases , we
want a stronger property

: the prover actually
"
knows

"

w¥ a statement is true (e.g. , it knows a
" witness

" )

For instance, consider the following language :

£ = { he 6 / 7- ✗ c- Ip : h=g✗ } = IG

group of order
p
I

generator of 6

Note : this definition of £ implicitly defines an Np relation R :

E R 1h
,
x) = 1⇔ h=g✗ c- 6

In this case
,
all statements in GI are true ( i.e., contained in f) , but we can still consider a notion of proving knowtedge of

the discrete log of an element HE 6 - conceptually stronger property than proof of membership

Philosophiae: What does it mean to
" know

"

something
?

If a prover
is able to convince an honest verifier that it

"

knows
"

something, then it should be possible to extract that quantity
from the prover.

Definition. An interactive proof system (P, V) is a proof of knowledge for an NP relation R if there exists an efficient

p-roofofknowledge.is parameterized by a specific
extractor E such that for any x and

any prover
P*

relation R (as opposed to the language LD
p*

Pr [w← & (x) : Raw) =L ] ≥ Pr KPTV > 1×1=1 ] - e
more generally} £

knowledge errorcould be polynomially smaller

Trivial proof of knowledge : prover sends witness in the clear to the verifier
↳ In most applications, we additionally require zero

- knowledge

Note : knowledge is a strictly stronger property than soundness
-

↳ if protocol has knowledge error E ⇒ it also has soundness error E (i.e. a dishonest prover convinces an honest verifier of a

false statement with probability at most E)

assume g, h C- ①

prouingknowledgeofdiscreteloglschnorrbprotoc.co# where Gi has prime order q

Suppose prover wants to prove it knows ✗ such that h=ge. prover demonstrates knowledge of discrete log of h base g)
_P_VerifiersF-Ep
u← gr

cE2pA-
z←r£-1_↓-

verify that gt = u . he



Completeness : if 2- = rtcx
,
then
rtcx zero knowledge only required to hold against an honest verifier

gg£=g=gʳgc✗=U•# (e.g. , view of the honest verifier can be simulated)

Honest-VerifierZ-ero-knowkdge-ibu.tl a simulator as follows (familiar strategy : run the protocol in
"

reverse
" ) :

on input 1g , h) :
1. sample Z

£ Ip
2. sample C

± Ip Janitormy random challenge
3. set u = 8Th' and output (u, C, Z) } simulated +""""Pt " """"""Y

ᵈ⇔"b*ᵈ
I

← chosen so that

uniformly random
as the red transcript with an honest verifier

group element since gZ = a. he
2- is uniformly random

(relation
satisfied by a)Valid proof

what goes wrong if the challenge is not sampled uniformly at random lie
,
if the verifier is dishonest)

Above simulation no longer works (since we cannot sample z first)
↳ To get general zero- knowledge, we require that the

verifier first conceit to its challenge (using a satirically hiding commitment)

for simplicity, we assume
f P* succeeds with probability 1

Knowledge : Suppose P* is (possibly malicious ) prover that convinces honest verifier with probability 1. We construct an extractor as follows:

1. Run the prover
P* to obtain an initial message U .

2. Send a challenge C
,
#
Ep to P? The prover replies

with a response Zi .

3.
"

Rewind
"

the prover
P* so its internal state is the same as it was at the end of step 1. Then , send another

challenge Cz
⇐
Zp to P*. Let Zz be the response of P?

4. Compute and output ✗ = (Z ,
- 2-a) (4-4)-1 c- Ep .

Since P* succeeds with probability 1 and the extractor perfectly simulates the honest verifier's behavior
,
with probability 1 , both (44,2-1)

and Cu , Ca, Zz) are both accepting transcripts . This means that

g
£
'
= u . h

" and
g
"

= a. HE

⇒ gI=%£÷ ⇒ gz , tax 2-2+421
= g

h
"

←
with overwhelming probability,

⇒ ✗ = (z ,
- Zz) (c , -G)

→

C- Ip 9-1-02

Thus
,
extractor succeeds with Ey probability.

(Boneh- Shoup , lemma 19.2)

If P* succeeds with probability E
,
then need to rely on

"

Rewinding Lemma
"

to argue that extractor obtains two accepting
transcripts with probability at least E- Yp.

The ability to extract a witness from
any

two accepting transcripts is very useful

↳ called specialsoundness (for 3- message protocols)

given (U, -1 , , 4) and (U
,
-22

,
Zz) ⇒ can extract the witness

↑ E

initial challenge
ʳˢP°ⁿˢe [ same initial message , different challenges ]

message



3-message protocols that satisfy completeness , special soundness , and HVZK are called I- protocols
↳ I- protocols are useful for building signatures and identification protocols

How can a prover
both proveknowle.cl# and yet be zero- knowledge at the same time?

↳ Extractor operates by
"

rewinding
"

the prover
lit the

prover
has good success probability , it can answer most challenges correctly.

↳ But in the real (actual) protocol , verifier Canet rewind (i.e. , verifier only sees prover on fresh protocol executions) , which can

provide zero- knowledge.

Many extensions of Schnorr's protocol to prove relations in the exponent.

For example , suppose we want to prove
that (g.hair

) is a DDH tuple lie
, 7- ✗ C- Ep : h=g

"
and v=u✗)

cEn :

proud verifier
÷.

r>
rtxt ?

check that g = (g) ti

urtext ?=
(ur)vᵗ

Empty : Follows by construction
.

speÉs
:

suppose we have accepting transcripts
( lap) , -4 ,

Zi ) and ( lap) , Zz , Zz)
Then

Zi ahh
g- =
- ⇒ Z

,

- zz = ✗ (t , - tz) (modp)
✗ htz

g
£2

⇒ ✗ = (z , - 2-a) It , - tz)
"

similar calculation shows that V=U✗
.

HVZK_ : Construct simulator as follows :

1. Sample -2 £ Ip
2. Sample t

£
Zp.

3. Output (g%t , v%t ,
-1
,
Z )

since 2- is uniform and h=g
"

,
v=u✗

,
distribution of (g%t , u%t) is identical to (gr, ur) .

Challenge t is identically distributed
,
which uniquely determines 2-

.


