
(NIZK)
NtMEÉe : Can we construct a zero-knowledge proof system where the proof is a single message from the

prover
to the verifier?

1¥70) (×)
why do we care? Interaction in practice
is expensive!

+
b. C- {0,13

✗ languages that can be decided by a

Unfortunately / NIZKS are only possible for sufficiently - easy languages (i.e. . languages in Bpp) .

randomized polynomial-time algorithm (w-h.pt

↳ The simulator (for 2K property) can essentially be used to decide the language
if ✗ C- L : S (x) → IT and it should be accepted by the verifier (by 2K)

if ✗ * £ : ˢ(×) → T' but I should not be accepted by verifier (by soundness,
} NIZK impossible for NP unless

NP ≤ BPP (unlikely !)

"""""" """ "
" " °" " "°" * " """ """ " "

"

"""
"

?⃝
&" "ʰ "" " " "ᵗᵗ "h " "

common random /reference string (CRS) model : random oracle model :

1- prover and verifier
have

I
access to shared randomness

⇔. . . ⇔⇔s⇒,
"-(could be a uniformly random
-

in this model
, simulator is allowed to choose lie

, simulate) the CRS in / in this model
,
simulator can

"

program
"
the random

conjunction with the proof , but soundness is defined with respect to an oracle [again, asymmetry
between real prover

and the

honesty- generated CRS [asymmetry between the capabilities of the real /
simulator]

prover
and the simulator]

⇒ In both cases
,
simulator has additional "power

"

than the real
prover , which is critical for enabling NIZK constructions for NP

.

I_É : CRS sampled from Setup (1^1)
Simulator is able to choose CRS

-

Must be computationally indistinguishable from real CRS

- simulated CRS will typically have a simulation trapdoor that can be used to simulate proofs
Real protocol : CRS is sampled by a -rustedpar-y_ (essential for soundness)

Zero - knowledge says that a particular choice of (CRS
,
Ti) can be simulated given only the statement ×

Ink_model : simulator has ability to program random oracle - must properly simulate distribution of

random oracle outputs

can extend to NIZK proofs of knowledge

FEÉti : NIZKS in random oracle model

Recall Schnorr's protocol for proving knowledge of discrete log:
×) ±É

In this protocol , verifier's message is uniformly random

u← gr #-) land in fact , is
"

public coin
" - the verifier has I

c←R2p secrets)

verify that g
7-
= a. he

Ke#a : Replace the verifier's challenge with a hash function H : { 0,13*-3 Ip
Namely , instead of sampling C⇐ Ep , we sample c← H (g, h , a) .

←

prover can now compute this quantity on its own!

Completes , zero- knowledge , proof of knowledge follow by a similar analysis as Schnorr [will rely on random oracle]

Signatures from discrete log in RO model (Schnorr) :
-

setup : ✗ 9- Ep
vk :(g. h=g✗) sk :X

-

sign (SK , m) : r E Zp } signature
is a NIZK proof of knowledge

of discrete log of h (with challengeu ← gr c ← H (g , h , u , m) z ← rtcx

derived from the message m)0 = (il , z) C

Z
-

Verify (vk.im,
0) : write 0=6,2-7 , compute c. ←H(g.hu, m) and accept if g

= Uh
vk = h

Security essentially follows from security of Schnorr's identification protocol (together with Fiat -Shamir)
↳ forged signature on a new message m is a pnootofknwedge of the discrete log (can be extracted from adversary)

Length of Schnorr's signature : vk: (g , h=g✗) 0 :(gr , c = H(g. h.gr, m) , 2- = rtcx) verification checks that gᵗ=gÑ
-

sk: ✗
can be computed given
other components, so ⇒ lol = 2. 161 [512 bits if 161=2256]
do not need to include

But
,
can do better

. . .
observe that challenge c only needs to be 128-bits (the knowledge error of Schnorr is YKI where C

is the set of possible challenges), so we can sample a 128 -bit challenge rather than 256- bit challenge . Thus
,
instead of sending

(gr , Z) , instead send (C
,
Z) and compute gr = 9Th

'

and that c= Hlg.h.gr , m) . Then resulting signatures are 384b

128 bit challenged
+

256 bit group element

Importuning : Schnorr signatures are randomized , and security relies on having good randomness

↳ What happens if randomness is reused for two different signatures ?

Then
, we have

0
,
= (§ , 4- Hlg, h.gr, ma), 2-

,
-

- r tax)) 2-
,
- zz = (c , -G) ✗ ⇒ ✗ = (c ,-G)

"

(2-1-2-2)

02 = (
g
"

, Cz = Hlg , h.gr, mz) , Zz-_ rtczx)
This is precisely the set of relations the knowledge extractor uses to

recover the discrete log ✗ lie
,
the signing key) !

Deterministicschnorr: We want to replace the random value r E Ep with one that is deterministic
,
but which does not compromise security

↳ Derive randomness from message using a PRF
.

In particular, signing key includes a secret PRF key K, and

signing algorithm computes r ← FCK, m) and 0 ← sign /skim ; r) .
↳ Avoids randomness reuse /misuse vulnerabilities

.

digital signature algorithm / elliptic -curve DSA
✗TLS protocol

In practice, we use a variant of Schnorr's signature scheme called DÉA/ECDSA-
↳ larger signatures (2 group elements

- 512 bits) and proof only in
"

generic group
" model {but we use it became Schnorr]

was patented . - -
until 2008

F-CDSA signatures (over a group ① of prime order p
) :

-

setup : ✗
£ Ep
vk :(g, h=g✗) sk : ✗ specifically, flu) parses u

= (Ij) C- Fgf where Flq isdeterministic function
-

Sign (sk, m) : ✗ F- Zp ≈ specified by ECDSA (the base field over which the elliptic curve is defined
,

]
u ← gt r ← flu) C- Zp and outputs Ñ (modp) , where it is viewed as a /
s ← (Htm) t r . X) / a c-Zp valve in [0 , g)
0 = (r

,
s)

HIM)/shirk- Verify (vk, m , 0) : write on = (rss) , compute a ← g , accept it r = flu)

vk = h

Hlm)/shirts = gltllm)
+ r✗% =

[HIM)tr✗]/[Him) + rx] I
'

a

correctness : u = g
=

g and r=flg9g

Security analysis non-trivial : requires either strong assumptions or modeling ① as an
" ideal

"

group

signature size : 0 = (r
,
s) E IF - for 128- bit security , p ~ 22

"

so 101=512 bits (can use P-256 or Curve 25519)

